First processing steps
This commit is contained in:
3
data/__init__.py
Normal file
3
data/__init__.py
Normal file
@@ -0,0 +1,3 @@
|
||||
import pandas as pd
|
||||
from data_loading import *
|
||||
from data_processing import *
|
||||
54
data/data_loading.py
Normal file
54
data/data_loading.py
Normal file
@@ -0,0 +1,54 @@
|
||||
import pandas as pd
|
||||
from utils.df_utils import *
|
||||
|
||||
|
||||
def load_raw_metadata() -> pd.DataFrame:
|
||||
"""
|
||||
Load metadata.csv
|
||||
:return:
|
||||
"""
|
||||
with open("../data_raw/metadata.csv") as f:
|
||||
return pd.read_csv(f, index_col="file")
|
||||
|
||||
|
||||
def load_raw_measure(filename: str) -> pd.DataFrame:
|
||||
"""
|
||||
Load a given measure session
|
||||
:param filename:
|
||||
:return:
|
||||
"""
|
||||
with open(f"../data_raw/{filename}") as f:
|
||||
df_experiment = pd.DataFrame([x.split() for x in f.readlines()])
|
||||
df_experiment.columns = df_experiment.iloc[0]
|
||||
df_experiment = df_experiment[1:][["#Wave", "#Intensity"]].astype(float)
|
||||
return df_experiment
|
||||
|
||||
|
||||
def get_raw_measure_with_metadata(file: pd.Series) -> tuple[pd.DataFrame, list[pd.DataFrame]]:
|
||||
"""
|
||||
Load a given measure, slice it and give the corresponding metadata
|
||||
:param file:
|
||||
:return: dataframe containing the metadata with one row per sliced measure
|
||||
:return: list of sliced measure dataframes
|
||||
"""
|
||||
df_experiment = load_raw_measure(file.name)
|
||||
sliced_experiments = slice_df(df_experiment, df_experiment[df_experiment["#Wave"].diff() > 0].index)
|
||||
sliced_experiments = [exp.set_index("#Wave") for exp in sliced_experiments]
|
||||
file = pd.DataFrame(file).transpose()
|
||||
metadata = pd.DataFrame(file.loc[file.index.repeat(len(sliced_experiments))])
|
||||
return metadata, sliced_experiments
|
||||
|
||||
|
||||
def load_data() -> tuple[pd.DataFrame, list[pd.DataFrame]]:
|
||||
"""
|
||||
Load all the available data, slice it into individual measures and give the corresponding metadata
|
||||
:return: dataframe containing the metadata with one row per sliced measure
|
||||
:return: list of sliced measure dataframes
|
||||
"""
|
||||
metadata, sliced_experiments = pd.DataFrame(), []
|
||||
raw_metadata = load_raw_metadata()
|
||||
for _, row in raw_metadata.iterrows():
|
||||
temp_metadata, temp_sliced_experiments = get_raw_measure_with_metadata(row)
|
||||
metadata = pd.concat([metadata, temp_metadata])
|
||||
sliced_experiments.extend(temp_sliced_experiments)
|
||||
return metadata, sliced_experiments
|
||||
File diff suppressed because one or more lines are too long
88
data/data_processing.py
Normal file
88
data/data_processing.py
Normal file
@@ -0,0 +1,88 @@
|
||||
from pybaselines import Baseline
|
||||
import numpy as np
|
||||
from math import factorial
|
||||
|
||||
|
||||
def calculate_baseline(measure):
|
||||
baseline_fitter = Baseline(x_data=measure.index)
|
||||
bkg_2, params_2 = baseline_fitter.iasls(measure["#Intensity"], lam=10, p=1e-2)
|
||||
return bkg_2
|
||||
|
||||
|
||||
def adjust_baseline(measure, scale = False):
|
||||
baseline = calculate_baseline(measure)
|
||||
measure["#Intensity"] -= baseline
|
||||
if scale:
|
||||
measure["#Intensity"] /= baseline.max() - baseline.min()
|
||||
return measure
|
||||
|
||||
|
||||
def savitzky_golay(y, window_size, order, deriv=0, rate=1):
|
||||
r"""Smooth (and optionally differentiate) data with a Savitzky-Golay filter.
|
||||
The Savitzky-Golay filter removes high frequency noise from data.
|
||||
It has the advantage of preserving the original shape and
|
||||
features of the signal better than other types of filtering
|
||||
approaches, such as moving averages techniques.
|
||||
Parameters
|
||||
----------
|
||||
y : array_like, shape (N,)
|
||||
the values of the time history of the signal.
|
||||
window_size : int
|
||||
the length of the window. Must be an odd integer number.
|
||||
order : int
|
||||
the order of the polynomial used in the filtering.
|
||||
Must be less then `window_size` - 1.
|
||||
deriv: int
|
||||
the order of the derivative to compute (default = 0 means only smoothing)
|
||||
Returns
|
||||
-------
|
||||
ys : ndarray, shape (N)
|
||||
the smoothed signal (or it's n-th derivative).
|
||||
Notes
|
||||
-----
|
||||
The Savitzky-Golay is a type of low-pass filter, particularly
|
||||
suited for smoothing noisy data. The main idea behind this
|
||||
approach is to make for each point a least-square fit with a
|
||||
polynomial of high order over a odd-sized window centered at
|
||||
the point.
|
||||
Examples
|
||||
--------
|
||||
t = np.linspace(-4, 4, 500)
|
||||
y = np.exp( -t**2 ) + np.random.normal(0, 0.05, t.shape)
|
||||
ysg = savitzky_golay(y, window_size=31, order=4)
|
||||
import matplotlib.pyplot as plt
|
||||
plt.plot(t, y, label='Noisy signal')
|
||||
plt.plot(t, np.exp(-t**2), 'k', lw=1.5, label='Original signal')
|
||||
plt.plot(t, ysg, 'r', label='Filtered signal')
|
||||
plt.legend()
|
||||
plt.show()
|
||||
References
|
||||
----------
|
||||
.. [1] A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of
|
||||
Data by Simplified Least Squares Procedures. Analytical
|
||||
Chemistry, 1964, 36 (8), pp 1627-1639.
|
||||
.. [2] Numerical Recipes 3rd Edition: The Art of Scientific Computing
|
||||
W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery
|
||||
Cambridge University Press ISBN-13: 9780521880688
|
||||
"""
|
||||
|
||||
try:
|
||||
window_size = np.abs(int(window_size))
|
||||
order = np.abs(int(order))
|
||||
except ValueError:
|
||||
raise ValueError("window_size and order have to be of type int")
|
||||
if window_size % 2 != 1 or window_size < 1:
|
||||
raise TypeError("window_size size must be a positive odd number")
|
||||
if window_size < order + 2:
|
||||
raise TypeError("window_size is too small for the polynomials order")
|
||||
order_range = range(order+1)
|
||||
half_window = (window_size -1) // 2
|
||||
# precompute coefficients
|
||||
b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)])
|
||||
m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv)
|
||||
# pad the signal at the extremes with
|
||||
# values taken from the signal itself
|
||||
firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] )
|
||||
lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1])
|
||||
y = np.concatenate((firstvals, y, lastvals))
|
||||
return np.convolve(m[::-1], y.T[0], mode='valid')
|
||||
8
utils/df_utils.py
Normal file
8
utils/df_utils.py
Normal file
@@ -0,0 +1,8 @@
|
||||
import pandas as pd
|
||||
|
||||
def slice_df(df, slice_positions):
|
||||
sliced_dfs = [df[:slice_positions[0]-1].copy(deep=True)]
|
||||
for i in range(len(slice_positions)-1):
|
||||
sliced_dfs.append(df[slice_positions[i]-1:slice_positions[i+1]-1].copy(deep=True))
|
||||
sliced_dfs.append(df[slice_positions[-1]-1:].copy(deep=True))
|
||||
return sliced_dfs
|
||||
Reference in New Issue
Block a user