{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"c:\\Users\\Edouard\\Documents\\Git\\microwave\n"
]
}
],
"source": [
"%cd ..\n",
"import microwave.data_analysis.univariate as univariate\n",
"import pandas as pd\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"dict_keys(['size', 'non-null', 'nunique', 'sum', 'min', 'max', 'first', 'last', 'mean', 'median', 'mode', 'gmean', 'hmean', 'Pmean', 'geothmetic meandian', 'variance', 'std', 'mad', 'skewness', 'excesskurtosis', 'range', 'Prange', 'n_outliers', 'P75', 'P25', 'P10', 'P90', 'PN', 'skewtest', 'kurtosistest', 'normaltest', 'jarque_bera', 'shapiro', 'anderson', 'energy', 'rms', 'entropy', 'autocorrelation'])"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"univariate.AGGFUNCCODES.keys()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" A | \n",
" B | \n",
" C | \n",
" D | \n",
" E | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" 0 | \n",
" 1 | \n",
" 2 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" | 1 | \n",
" 1 | \n",
" 1 | \n",
" 1 | \n",
" 2 | \n",
" 1 | \n",
"
\n",
" \n",
" | 2 | \n",
" 0 | \n",
" 2 | \n",
" 0 | \n",
" 2 | \n",
" 2 | \n",
"
\n",
" \n",
" | 3 | \n",
" 2 | \n",
" 0 | \n",
" 2 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" | 4 | \n",
" 2 | \n",
" 2 | \n",
" 1 | \n",
" 2 | \n",
" 2 | \n",
"
\n",
" \n",
" | ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" | 995 | \n",
" 0 | \n",
" 1 | \n",
" 2 | \n",
" 2 | \n",
" 1 | \n",
"
\n",
" \n",
" | 996 | \n",
" 1 | \n",
" 2 | \n",
" 1 | \n",
" 1 | \n",
" 2 | \n",
"
\n",
" \n",
" | 997 | \n",
" 1 | \n",
" 0 | \n",
" 0 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" | 998 | \n",
" 2 | \n",
" 0 | \n",
" 1 | \n",
" 1 | \n",
" 0 | \n",
"
\n",
" \n",
" | 999 | \n",
" 2 | \n",
" 2 | \n",
" 0 | \n",
" 1 | \n",
" 2 | \n",
"
\n",
" \n",
"
\n",
"
1000 rows × 5 columns
\n",
"
"
],
"text/plain": [
" A B C D E\n",
"0 0 1 2 1 1\n",
"1 1 1 1 2 1\n",
"2 0 2 0 2 2\n",
"3 2 0 2 1 0\n",
"4 2 2 1 2 2\n",
".. .. .. .. .. ..\n",
"995 0 1 2 2 1\n",
"996 1 2 1 1 2\n",
"997 1 0 0 1 0\n",
"998 2 0 1 1 0\n",
"999 2 2 0 1 2\n",
"\n",
"[1000 rows x 5 columns]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.DataFrame(np.random.randint(0,3,size=(1000, 4)), columns=list('ABCD'))\n",
"df['E'] = df['B']\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" A | \n",
" B | \n",
" C | \n",
" D | \n",
" E | \n",
"
\n",
" \n",
" \n",
" \n",
" | size | \n",
" 1000 | \n",
" 1000 | \n",
" 1000 | \n",
" 1000 | \n",
" 1000 | \n",
"
\n",
" \n",
" | non-null | \n",
" 1000 | \n",
" 1000 | \n",
" 1000 | \n",
" 1000 | \n",
" 1000 | \n",
"
\n",
" \n",
" | nunique | \n",
" 3 | \n",
" 3 | \n",
" 3 | \n",
" 3 | \n",
" 3 | \n",
"
\n",
" \n",
" | sum | \n",
" 1040 | \n",
" 1026 | \n",
" 1002 | \n",
" 989 | \n",
" 1026 | \n",
"
\n",
" \n",
" | min | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" | max | \n",
" 2 | \n",
" 2 | \n",
" 2 | \n",
" 2 | \n",
" 2 | \n",
"
\n",
" \n",
" | first | \n",
" 0 | \n",
" 1 | \n",
" 2 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" | last | \n",
" 2 | \n",
" 2 | \n",
" 0 | \n",
" 1 | \n",
" 2 | \n",
"
\n",
" \n",
" | mean | \n",
" 1.04 | \n",
" 1.026 | \n",
" 1.002 | \n",
" 0.989 | \n",
" 1.026 | \n",
"
\n",
" \n",
" | median | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
"
\n",
" \n",
" | mode | \n",
" 2 | \n",
" 1 | \n",
" 1 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" | gmean | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" | hmean | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" | Pmean | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" | geothmetic meandian | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" | variance | \n",
" 0.6604 | \n",
" 0.649324 | \n",
" 0.661996 | \n",
" 0.634879 | \n",
" 0.649324 | \n",
"
\n",
" \n",
" | std | \n",
" 0.81265 | \n",
" 0.805806 | \n",
" 0.813631 | \n",
" 0.796793 | \n",
" 0.805806 | \n",
"
\n",
" \n",
" | mad | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
" 1.0 | \n",
"
\n",
" \n",
" | skewness | \n",
" -0.073251 | \n",
" -0.04714 | \n",
" -0.003661 | \n",
" 0.019674 | \n",
" -0.04714 | \n",
"
\n",
" \n",
" | excesskurtosis | \n",
" 1.517782 | \n",
" 1.541503 | \n",
" 1.510592 | \n",
" 1.575346 | \n",
" 1.541503 | \n",
"
\n",
" \n",
" | range | \n",
" 2 | \n",
" 2 | \n",
" 2 | \n",
" 2 | \n",
" 2 | \n",
"
\n",
" \n",
" | Prange | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" | n_outliers | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
" 0 | \n",
"
\n",
" \n",
" | P75 | \n",
" 2.0 | \n",
" 2.0 | \n",
" 2.0 | \n",
" 2.0 | \n",
" 2.0 | \n",
"
\n",
" \n",
" | P25 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" | P10 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" | P90 | \n",
" 2.0 | \n",
" 2.0 | \n",
" 2.0 | \n",
" 2.0 | \n",
" 2.0 | \n",
"
\n",
" \n",
" | PN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
"
\n",
" \n",
" | skewtest_a | \n",
" -0.951391 | \n",
" -0.612722 | \n",
" -0.047614 | \n",
" 0.255835 | \n",
" -0.612722 | \n",
"
\n",
" \n",
" | skewtest_b | \n",
" 0.341406 | \n",
" 0.54006 | \n",
" 0.962024 | \n",
" 0.798078 | \n",
" 0.54006 | \n",
"
\n",
" \n",
" | kurtosistest_a | \n",
" 87.592119 | \n",
" 92.396965 | \n",
" 86.38827 | \n",
" 103.150756 | \n",
" 92.396965 | \n",
"
\n",
" \n",
" | kurtosistest_b | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" | normaltest_a | \n",
" 7673.284425 | \n",
" 8537.574579 | \n",
" 7462.935452 | \n",
" 10640.143829 | \n",
" 8537.574579 | \n",
"
\n",
" \n",
" | normaltest_b | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" | jarque_bera_a | \n",
" 92.4347 | \n",
" 89.004259 | \n",
" 92.432906 | \n",
" 84.632762 | \n",
" 89.004259 | \n",
"
\n",
" \n",
" | jarque_bera_b | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" | shapiro_a | \n",
" 0.793814 | \n",
" 0.79688 | \n",
" 0.79431 | \n",
" 0.80017 | \n",
" 0.79688 | \n",
"
\n",
" \n",
" | shapiro_b | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
" 0.0 | \n",
"
\n",
" \n",
" | anderson_a | \n",
" 81.552961 | \n",
" 80.265394 | \n",
" 81.257078 | \n",
" 79.026048 | \n",
" 80.265394 | \n",
"
\n",
" \n",
" | anderson_b | \n",
" [0.574, 0.653, 0.784, 0.914, 1.088] | \n",
" [0.574, 0.653, 0.784, 0.914, 1.088] | \n",
" [0.574, 0.653, 0.784, 0.914, 1.088] | \n",
" [0.574, 0.653, 0.784, 0.914, 1.088] | \n",
" [0.574, 0.653, 0.784, 0.914, 1.088] | \n",
"
\n",
" \n",
" | anderson_c | \n",
" [15.0, 10.0, 5.0, 2.5, 1.0] | \n",
" [15.0, 10.0, 5.0, 2.5, 1.0] | \n",
" [15.0, 10.0, 5.0, 2.5, 1.0] | \n",
" [15.0, 10.0, 5.0, 2.5, 1.0] | \n",
" [15.0, 10.0, 5.0, 2.5, 1.0] | \n",
"
\n",
" \n",
" | energy | \n",
" 1742 | \n",
" 1702 | \n",
" 1666 | \n",
" 1613 | \n",
" 1702 | \n",
"
\n",
" \n",
" | rms | \n",
" 1.319848 | \n",
" 1.304607 | \n",
" 1.290736 | \n",
" 1.270039 | \n",
" 1.304607 | \n",
"
\n",
" \n",
" | entropy | \n",
" 1.583147 | \n",
" 1.583318 | \n",
" 1.584888 | \n",
" 1.581618 | \n",
" 1.583318 | \n",
"
\n",
" \n",
" | autocorrelation | \n",
" -0.008494 | \n",
" -0.001003 | \n",
" 0.001508 | \n",
" -0.015942 | \n",
" -0.001003 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A \\\n",
"size 1000 \n",
"non-null 1000 \n",
"nunique 3 \n",
"sum 1040 \n",
"min 0 \n",
"max 2 \n",
"first 0 \n",
"last 2 \n",
"mean 1.04 \n",
"median 1.0 \n",
"mode 2 \n",
"gmean 0.0 \n",
"hmean 0.0 \n",
"Pmean 0.0 \n",
"geothmetic meandian 0.0 \n",
"variance 0.6604 \n",
"std 0.81265 \n",
"mad 1.0 \n",
"skewness -0.073251 \n",
"excesskurtosis 1.517782 \n",
"range 2 \n",
"Prange 0.0 \n",
"n_outliers 0 \n",
"P75 2.0 \n",
"P25 0.0 \n",
"P10 0.0 \n",
"P90 2.0 \n",
"PN NaN \n",
"skewtest_a -0.951391 \n",
"skewtest_b 0.341406 \n",
"kurtosistest_a 87.592119 \n",
"kurtosistest_b 0.0 \n",
"normaltest_a 7673.284425 \n",
"normaltest_b 0.0 \n",
"jarque_bera_a 92.4347 \n",
"jarque_bera_b 0.0 \n",
"shapiro_a 0.793814 \n",
"shapiro_b 0.0 \n",
"anderson_a 81.552961 \n",
"anderson_b [0.574, 0.653, 0.784, 0.914, 1.088] \n",
"anderson_c [15.0, 10.0, 5.0, 2.5, 1.0] \n",
"energy 1742 \n",
"rms 1.319848 \n",
"entropy 1.583147 \n",
"autocorrelation -0.008494 \n",
"\n",
" B \\\n",
"size 1000 \n",
"non-null 1000 \n",
"nunique 3 \n",
"sum 1026 \n",
"min 0 \n",
"max 2 \n",
"first 1 \n",
"last 2 \n",
"mean 1.026 \n",
"median 1.0 \n",
"mode 1 \n",
"gmean 0.0 \n",
"hmean 0.0 \n",
"Pmean 0.0 \n",
"geothmetic meandian 0.0 \n",
"variance 0.649324 \n",
"std 0.805806 \n",
"mad 1.0 \n",
"skewness -0.04714 \n",
"excesskurtosis 1.541503 \n",
"range 2 \n",
"Prange 0.0 \n",
"n_outliers 0 \n",
"P75 2.0 \n",
"P25 0.0 \n",
"P10 0.0 \n",
"P90 2.0 \n",
"PN NaN \n",
"skewtest_a -0.612722 \n",
"skewtest_b 0.54006 \n",
"kurtosistest_a 92.396965 \n",
"kurtosistest_b 0.0 \n",
"normaltest_a 8537.574579 \n",
"normaltest_b 0.0 \n",
"jarque_bera_a 89.004259 \n",
"jarque_bera_b 0.0 \n",
"shapiro_a 0.79688 \n",
"shapiro_b 0.0 \n",
"anderson_a 80.265394 \n",
"anderson_b [0.574, 0.653, 0.784, 0.914, 1.088] \n",
"anderson_c [15.0, 10.0, 5.0, 2.5, 1.0] \n",
"energy 1702 \n",
"rms 1.304607 \n",
"entropy 1.583318 \n",
"autocorrelation -0.001003 \n",
"\n",
" C \\\n",
"size 1000 \n",
"non-null 1000 \n",
"nunique 3 \n",
"sum 1002 \n",
"min 0 \n",
"max 2 \n",
"first 2 \n",
"last 0 \n",
"mean 1.002 \n",
"median 1.0 \n",
"mode 1 \n",
"gmean 0.0 \n",
"hmean 0.0 \n",
"Pmean 0.0 \n",
"geothmetic meandian 0.0 \n",
"variance 0.661996 \n",
"std 0.813631 \n",
"mad 1.0 \n",
"skewness -0.003661 \n",
"excesskurtosis 1.510592 \n",
"range 2 \n",
"Prange 0.0 \n",
"n_outliers 0 \n",
"P75 2.0 \n",
"P25 0.0 \n",
"P10 0.0 \n",
"P90 2.0 \n",
"PN NaN \n",
"skewtest_a -0.047614 \n",
"skewtest_b 0.962024 \n",
"kurtosistest_a 86.38827 \n",
"kurtosistest_b 0.0 \n",
"normaltest_a 7462.935452 \n",
"normaltest_b 0.0 \n",
"jarque_bera_a 92.432906 \n",
"jarque_bera_b 0.0 \n",
"shapiro_a 0.79431 \n",
"shapiro_b 0.0 \n",
"anderson_a 81.257078 \n",
"anderson_b [0.574, 0.653, 0.784, 0.914, 1.088] \n",
"anderson_c [15.0, 10.0, 5.0, 2.5, 1.0] \n",
"energy 1666 \n",
"rms 1.290736 \n",
"entropy 1.584888 \n",
"autocorrelation 0.001508 \n",
"\n",
" D \\\n",
"size 1000 \n",
"non-null 1000 \n",
"nunique 3 \n",
"sum 989 \n",
"min 0 \n",
"max 2 \n",
"first 1 \n",
"last 1 \n",
"mean 0.989 \n",
"median 1.0 \n",
"mode 1 \n",
"gmean 0.0 \n",
"hmean 0.0 \n",
"Pmean 0.0 \n",
"geothmetic meandian 0.0 \n",
"variance 0.634879 \n",
"std 0.796793 \n",
"mad 1.0 \n",
"skewness 0.019674 \n",
"excesskurtosis 1.575346 \n",
"range 2 \n",
"Prange 0.0 \n",
"n_outliers 0 \n",
"P75 2.0 \n",
"P25 0.0 \n",
"P10 0.0 \n",
"P90 2.0 \n",
"PN NaN \n",
"skewtest_a 0.255835 \n",
"skewtest_b 0.798078 \n",
"kurtosistest_a 103.150756 \n",
"kurtosistest_b 0.0 \n",
"normaltest_a 10640.143829 \n",
"normaltest_b 0.0 \n",
"jarque_bera_a 84.632762 \n",
"jarque_bera_b 0.0 \n",
"shapiro_a 0.80017 \n",
"shapiro_b 0.0 \n",
"anderson_a 79.026048 \n",
"anderson_b [0.574, 0.653, 0.784, 0.914, 1.088] \n",
"anderson_c [15.0, 10.0, 5.0, 2.5, 1.0] \n",
"energy 1613 \n",
"rms 1.270039 \n",
"entropy 1.581618 \n",
"autocorrelation -0.015942 \n",
"\n",
" E \n",
"size 1000 \n",
"non-null 1000 \n",
"nunique 3 \n",
"sum 1026 \n",
"min 0 \n",
"max 2 \n",
"first 1 \n",
"last 2 \n",
"mean 1.026 \n",
"median 1.0 \n",
"mode 1 \n",
"gmean 0.0 \n",
"hmean 0.0 \n",
"Pmean 0.0 \n",
"geothmetic meandian 0.0 \n",
"variance 0.649324 \n",
"std 0.805806 \n",
"mad 1.0 \n",
"skewness -0.04714 \n",
"excesskurtosis 1.541503 \n",
"range 2 \n",
"Prange 0.0 \n",
"n_outliers 0 \n",
"P75 2.0 \n",
"P25 0.0 \n",
"P10 0.0 \n",
"P90 2.0 \n",
"PN NaN \n",
"skewtest_a -0.612722 \n",
"skewtest_b 0.54006 \n",
"kurtosistest_a 92.396965 \n",
"kurtosistest_b 0.0 \n",
"normaltest_a 8537.574579 \n",
"normaltest_b 0.0 \n",
"jarque_bera_a 89.004259 \n",
"jarque_bera_b 0.0 \n",
"shapiro_a 0.79688 \n",
"shapiro_b 0.0 \n",
"anderson_a 80.265394 \n",
"anderson_b [0.574, 0.653, 0.784, 0.914, 1.088] \n",
"anderson_c [15.0, 10.0, 5.0, 2.5, 1.0] \n",
"energy 1702 \n",
"rms 1.304607 \n",
"entropy 1.583318 \n",
"autocorrelation -0.001003 "
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"univariate.build_univariate_statistics(df, agg=\"all\", n_jobs=-1).T"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" A | \n",
" B | \n",
" C | \n",
" D | \n",
" E | \n",
"
\n",
" \n",
" \n",
" \n",
" | mean | \n",
" 1.04 | \n",
" 1.026 | \n",
" 1.002 | \n",
" 0.989 | \n",
" 1.026 | \n",
"
\n",
" \n",
" | median | \n",
" 1.00 | \n",
" 1.000 | \n",
" 1.000 | \n",
" 1.000 | \n",
" 1.000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A B C D E\n",
"mean 1.04 1.026 1.002 0.989 1.026\n",
"median 1.00 1.000 1.000 1.000 1.000"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"univariate.build_univariate_statistics(df, agg=[\"mean\", \"median\"], n_jobs=1).T"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" A | \n",
" B | \n",
" C | \n",
" D | \n",
" E | \n",
"
\n",
" \n",
" \n",
" \n",
" | somename | \n",
" 1.04 | \n",
" 1.026 | \n",
" 1.002 | \n",
" 0.989 | \n",
" 1.026 | \n",
"
\n",
" \n",
" | median | \n",
" 1.00 | \n",
" 1.000 | \n",
" 1.000 | \n",
" 1.000 | \n",
" 1.000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A B C D E\n",
"somename 1.04 1.026 1.002 0.989 1.026\n",
"median 1.00 1.000 1.000 1.000 1.000"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"univariate.build_univariate_statistics(df, agg=[{'func':\"mean\", 'name':\"somename\"}, \"median\"], n_jobs=1).T"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" A | \n",
" B | \n",
" C | \n",
" D | \n",
" E | \n",
"
\n",
" \n",
" \n",
" \n",
" | func_0 | \n",
" 1.04 | \n",
" 1.026 | \n",
" 1.002 | \n",
" 0.989 | \n",
" 1.026 | \n",
"
\n",
" \n",
" | mean | \n",
" 1.04 | \n",
" 1.026 | \n",
" 1.002 | \n",
" 0.989 | \n",
" 1.026 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A B C D E\n",
"func_0 1.04 1.026 1.002 0.989 1.026\n",
"mean 1.04 1.026 1.002 0.989 1.026"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"univariate.build_univariate_statistics(df, agg=[np.mean, \"mean\"], n_jobs=1).T"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" A | \n",
" B | \n",
" C | \n",
" D | \n",
" E | \n",
"
\n",
" \n",
" \n",
" \n",
" | skewtest_a | \n",
" -0.951391 | \n",
" -0.612722 | \n",
" -0.047614 | \n",
" 0.255835 | \n",
" -0.612722 | \n",
"
\n",
" \n",
" | skewtest_b | \n",
" 0.341406 | \n",
" 0.540060 | \n",
" 0.962024 | \n",
" 0.798078 | \n",
" 0.540060 | \n",
"
\n",
" \n",
" | mean | \n",
" 1.040000 | \n",
" 1.026000 | \n",
" 1.002000 | \n",
" 0.989000 | \n",
" 1.026000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A B C D E\n",
"skewtest_a -0.951391 -0.612722 -0.047614 0.255835 -0.612722\n",
"skewtest_b 0.341406 0.540060 0.962024 0.798078 0.540060\n",
"mean 1.040000 1.026000 1.002000 0.989000 1.026000"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"univariate.build_univariate_statistics(df, agg=[\"skewtest\", \"mean\"], n_jobs=1).T"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" A | \n",
" B | \n",
" C | \n",
" D | \n",
" E | \n",
"
\n",
" \n",
" \n",
" \n",
" | skewtest_stat | \n",
" -0.951391 | \n",
" -0.612722 | \n",
" -0.047614 | \n",
" 0.255835 | \n",
" -0.612722 | \n",
"
\n",
" \n",
" | skewtest_p | \n",
" 0.341406 | \n",
" 0.540060 | \n",
" 0.962024 | \n",
" 0.798078 | \n",
" 0.540060 | \n",
"
\n",
" \n",
" | mean | \n",
" 1.040000 | \n",
" 1.026000 | \n",
" 1.002000 | \n",
" 0.989000 | \n",
" 1.026000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A B C D E\n",
"skewtest_stat -0.951391 -0.612722 -0.047614 0.255835 -0.612722\n",
"skewtest_p 0.341406 0.540060 0.962024 0.798078 0.540060\n",
"mean 1.040000 1.026000 1.002000 0.989000 1.026000"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"univariate.build_univariate_statistics(df, agg=[{'func':\"skewtest\", \"ret_names\":[\"stat\", \"p\"]}, \"mean\"], n_jobs=1).T"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv_microwave (3.13.2)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}