{ "cells": [ { "cell_type": "code", "id": "initial_id", "metadata": { "collapsed": true, "ExecuteTime": { "end_time": "2024-04-30T17:29:12.400588100Z", "start_time": "2024-04-30T17:29:10.739708700Z" } }, "source": [ "from data import *\n", "from classifiers import *\n", "from sklearn.ensemble import RandomForestClassifier\n", "from sklearn.model_selection import GridSearchCV\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import os\n", "%matplotlib inline" ], "outputs": [], "execution_count": 1 }, { "cell_type": "code", "outputs": [], "source": [ "metadata_train, experiments_train = load_data(os.path.join(\"..\", \"data\", \"train\"), \"\")\n", "truth_train, metadata_train = categorize_metadata(metadata_train)\n", "metadata_test, experiments_test = load_data(os.path.join(\"..\", \"data\", \"test\"), \"\")\n", "truth_test, metadata_test = categorize_metadata(metadata_test)" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-04-30T17:29:12.734379Z", "start_time": "2024-04-30T17:29:12.403626100Z" } }, "id": "572471b20c6dc13e", "execution_count": 2 }, { "cell_type": "markdown", "source": [ "# Look for optimal classifier parameters for arbitrary processing parameters" ], "metadata": { "collapsed": false }, "id": "5e59ba986f3af3df" }, { "metadata": { "ExecuteTime": { "end_time": "2024-04-30T17:29:15.176719Z", "start_time": "2024-04-30T17:29:12.737252400Z" } }, "cell_type": "code", "source": [ "process_params = {\n", " 'baseline_lam': 10,\n", " 'baseline_p': 1e-2,\n", " 'smooth_window_length': 7,\n", " 'smooth_polyorder': 3\n", "}\n", "X_train, X_test = process_train_test(process_params, experiments_train, metadata_train, experiments_test, metadata_test, scale=True)" ], "id": "8fb458c0b78c9aa7", "outputs": [], "execution_count": 3 }, { "metadata": { "ExecuteTime": { "end_time": "2024-04-30T17:36:54.416783400Z", "start_time": "2024-04-30T17:29:15.174926800Z" } }, "cell_type": "code", "source": [ "param_grid = {\n", " 'n_estimators': range(1, 501, 50),\n", " 'max_depth': range(1, 21, 5)\n", "}\n", "\n", "clf = RandomForestClassifier()\n", "\n", "grid_clf = GridSearchCV(clf, param_grid, cv=5, verbose=1)\n", "_ = grid_clf.fit(X_train, truth_train.to_numpy().ravel())" ], "id": "80a355d2740ebf4a", "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Fitting 5 folds for each of 40 candidates, totalling 200 fits\n" ] } ], "execution_count": 4 }, { "metadata": { "ExecuteTime": { "end_time": "2024-04-30T17:36:54.458759600Z", "start_time": "2024-04-30T17:36:54.421964400Z" } }, "cell_type": "code", "source": [ "print(grid_clf.best_params_)\n", "grid_clf.cv_results_" ], "id": "790017144f8feaa6", "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'max_depth': 6, 'n_estimators': 251}\n" ] }, { "data": { "text/plain": "{'mean_fit_time': array([0.0109684 , 0.14558845, 0.29107876, 0.44401574, 0.62983117,\n 0.90464044, 1.30349817, 1.48963833, 1.51754761, 1.67650762,\n 0.017976 , 0.6056911 , 1.19775443, 1.80292883, 2.30820637,\n 2.88896217, 3.82544417, 4.70413437, 4.97188001, 5.21848907,\n 0.01667333, 0.51310201, 1.01425571, 1.49391861, 1.99586353,\n 2.51128693, 2.98905706, 3.46806045, 3.92700777, 5.75010052,\n 0.02581043, 0.72380571, 1.39286752, 2.20498114, 2.93115969,\n 3.56387682, 4.11949415, 4.70615325, 5.38364735, 5.85019794]),\n 'std_fit_time': array([0.00155099, 0.00615019, 0.00861202, 0.02400559, 0.06239083,\n 0.13825715, 0.04239042, 0.1053701 , 0.04325728, 0.06241927,\n 0.00243662, 0.02251424, 0.04135128, 0.03924291, 0.02104245,\n 0.01695606, 0.21097914, 0.29014807, 0.27792858, 0.88843571,\n 0.00131477, 0.02522849, 0.00494415, 0.01328549, 0.03210607,\n 0.06383789, 0.03718216, 0.1099683 , 0.03155994, 1.04643212,\n 0.00221217, 0.0263598 , 0.12859262, 0.02861865, 0.1220435 ,\n 0.06172856, 0.08973202, 0.12456827, 0.10154297, 0.08382902]),\n 'mean_score_time': array([0.0013011 , 0.0025938 , 0.00342321, 0.00612106, 0.009444 ,\n 0.01139131, 0.01663218, 0.01618752, 0.01761951, 0.0203896 ,\n 0.00206513, 0.00299563, 0.00652308, 0.0083303 , 0.01115127,\n 0.01504288, 0.02085476, 0.01870661, 0.02536807, 0.02297745,\n 0.00108495, 0.00345826, 0.00476518, 0.00687618, 0.00877767,\n 0.01109767, 0.01316743, 0.0145638 , 0.01673326, 0.02248774,\n 0.00219378, 0.00615301, 0.010185 , 0.00922937, 0.01489663,\n 0.01503243, 0.01878176, 0.02163701, 0.0230619 , 0.0240489 ]),\n 'std_score_time': array([7.23987999e-05, 7.74148268e-04, 3.53449895e-04, 1.12690740e-03,\n 3.00612234e-03, 2.53568104e-03, 3.57073130e-03, 4.32432141e-03,\n 2.64299973e-03, 1.56364308e-03, 2.52926252e-03, 2.45224273e-03,\n 1.93398462e-03, 3.18694894e-03, 1.92721936e-03, 3.10920812e-04,\n 1.89004296e-03, 2.83956742e-03, 2.90586103e-03, 4.28253419e-03,\n 3.19545818e-04, 8.12848403e-04, 4.96703523e-04, 1.11434566e-03,\n 6.63657897e-04, 1.01353197e-03, 6.85297673e-04, 1.12197462e-03,\n 1.12467004e-03, 4.95317152e-03, 2.73870810e-03, 1.29293245e-03,\n 4.45860459e-03, 1.96626655e-03, 7.95163057e-04, 2.72942127e-03,\n 2.18203886e-03, 1.49511276e-03, 1.59054862e-03, 3.71091030e-03]),\n 'param_max_depth': masked_array(data=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 6, 6, 6, 6, 6, 6, 6,\n 6, 6, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 16, 16,\n 16, 16, 16, 16, 16, 16, 16, 16],\n mask=[False, False, False, False, False, False, False, False,\n False, False, False, False, False, False, False, False,\n False, False, False, False, False, False, False, False,\n False, False, False, False, False, False, False, False,\n False, False, False, False, False, False, False, False],\n fill_value='?',\n dtype=object),\n 'param_n_estimators': masked_array(data=[1, 51, 101, 151, 201, 251, 301, 351, 401, 451, 1, 51,\n 101, 151, 201, 251, 301, 351, 401, 451, 1, 51, 101,\n 151, 201, 251, 301, 351, 401, 451, 1, 51, 101, 151,\n 201, 251, 301, 351, 401, 451],\n mask=[False, False, False, False, False, False, False, False,\n False, False, False, False, False, False, False, False,\n False, False, False, False, False, False, False, False,\n False, False, False, False, False, False, False, False,\n False, False, False, False, False, False, False, False],\n fill_value='?',\n dtype=object),\n 'params': [{'max_depth': 1, 'n_estimators': 1},\n {'max_depth': 1, 'n_estimators': 51},\n {'max_depth': 1, 'n_estimators': 101},\n {'max_depth': 1, 'n_estimators': 151},\n {'max_depth': 1, 'n_estimators': 201},\n {'max_depth': 1, 'n_estimators': 251},\n {'max_depth': 1, 'n_estimators': 301},\n {'max_depth': 1, 'n_estimators': 351},\n {'max_depth': 1, 'n_estimators': 401},\n {'max_depth': 1, 'n_estimators': 451},\n {'max_depth': 6, 'n_estimators': 1},\n {'max_depth': 6, 'n_estimators': 51},\n {'max_depth': 6, 'n_estimators': 101},\n {'max_depth': 6, 'n_estimators': 151},\n {'max_depth': 6, 'n_estimators': 201},\n {'max_depth': 6, 'n_estimators': 251},\n {'max_depth': 6, 'n_estimators': 301},\n {'max_depth': 6, 'n_estimators': 351},\n {'max_depth': 6, 'n_estimators': 401},\n {'max_depth': 6, 'n_estimators': 451},\n {'max_depth': 11, 'n_estimators': 1},\n {'max_depth': 11, 'n_estimators': 51},\n {'max_depth': 11, 'n_estimators': 101},\n {'max_depth': 11, 'n_estimators': 151},\n {'max_depth': 11, 'n_estimators': 201},\n {'max_depth': 11, 'n_estimators': 251},\n {'max_depth': 11, 'n_estimators': 301},\n {'max_depth': 11, 'n_estimators': 351},\n {'max_depth': 11, 'n_estimators': 401},\n {'max_depth': 11, 'n_estimators': 451},\n {'max_depth': 16, 'n_estimators': 1},\n {'max_depth': 16, 'n_estimators': 51},\n {'max_depth': 16, 'n_estimators': 101},\n {'max_depth': 16, 'n_estimators': 151},\n {'max_depth': 16, 'n_estimators': 201},\n {'max_depth': 16, 'n_estimators': 251},\n {'max_depth': 16, 'n_estimators': 301},\n {'max_depth': 16, 'n_estimators': 351},\n {'max_depth': 16, 'n_estimators': 401},\n {'max_depth': 16, 'n_estimators': 451}],\n 'split0_test_score': array([0.49056604, 0.6509434 , 0.60377358, 0.61320755, 0.60377358,\n 0.59433962, 0.61320755, 0.58490566, 0.63207547, 0.60377358,\n 0.74528302, 0.93396226, 0.94339623, 0.94339623, 0.90566038,\n 0.94339623, 0.95283019, 0.94339623, 0.94339623, 0.96226415,\n 0.83962264, 0.89622642, 0.94339623, 0.95283019, 0.93396226,\n 0.96226415, 0.94339623, 0.95283019, 0.96226415, 0.96226415,\n 0.64150943, 0.93396226, 0.94339623, 0.9245283 , 0.96226415,\n 0.94339623, 0.95283019, 0.96226415, 0.96226415, 0.96226415]),\n 'split1_test_score': array([0.5 , 0.60377358, 0.60377358, 0.58490566, 0.58490566,\n 0.58490566, 0.5754717 , 0.58490566, 0.59433962, 0.58490566,\n 0.72641509, 0.93396226, 0.9245283 , 0.95283019, 0.93396226,\n 0.96226415, 0.93396226, 0.93396226, 0.94339623, 0.95283019,\n 0.74528302, 0.96226415, 0.95283019, 0.97169811, 0.96226415,\n 0.95283019, 0.97169811, 0.96226415, 0.96226415, 0.95283019,\n 0.83962264, 0.94339623, 0.95283019, 0.9245283 , 0.98113208,\n 0.95283019, 0.96226415, 0.94339623, 0.93396226, 0.97169811]),\n 'split2_test_score': array([0.50943396, 0.61320755, 0.6509434 , 0.63207547, 0.6509434 ,\n 0.6509434 , 0.6509434 , 0.66037736, 0.66037736, 0.66037736,\n 0.71698113, 0.86792453, 0.89622642, 0.91509434, 0.93396226,\n 0.93396226, 0.93396226, 0.9245283 , 0.93396226, 0.88679245,\n 0.69811321, 0.90566038, 0.88679245, 0.9245283 , 0.93396226,\n 0.89622642, 0.91509434, 0.9245283 , 0.94339623, 0.91509434,\n 0.73584906, 0.87735849, 0.9245283 , 0.88679245, 0.91509434,\n 0.91509434, 0.90566038, 0.91509434, 0.94339623, 0.88679245]),\n 'split3_test_score': array([0.4952381 , 0.59047619, 0.59047619, 0.58095238, 0.59047619,\n 0.59047619, 0.58095238, 0.59047619, 0.58095238, 0.58095238,\n 0.77142857, 0.95238095, 0.98095238, 0.96190476, 1. ,\n 0.99047619, 0.97142857, 0.99047619, 0.98095238, 0.98095238,\n 0.80952381, 0.98095238, 0.97142857, 0.98095238, 0.99047619,\n 0.98095238, 0.99047619, 0.96190476, 0.98095238, 0.96190476,\n 0.64761905, 0.96190476, 0.93333333, 0.97142857, 0.98095238,\n 0.98095238, 0.97142857, 0.97142857, 0.98095238, 0.98095238]),\n 'split4_test_score': array([0.56190476, 0.66666667, 0.66666667, 0.66666667, 0.62857143,\n 0.61904762, 0.63809524, 0.65714286, 0.65714286, 0.67619048,\n 0.75238095, 0.94285714, 0.94285714, 0.93333333, 0.92380952,\n 0.94285714, 0.92380952, 0.92380952, 0.91428571, 0.93333333,\n 0.73333333, 0.92380952, 0.93333333, 0.92380952, 0.9047619 ,\n 0.9047619 , 0.91428571, 0.91428571, 0.91428571, 0.94285714,\n 0.73333333, 0.92380952, 0.92380952, 0.91428571, 0.8952381 ,\n 0.93333333, 0.91428571, 0.91428571, 0.9047619 , 0.93333333]),\n 'mean_test_score': array([0.51142857, 0.62501348, 0.62312668, 0.61556155, 0.61173405,\n 0.6079425 , 0.61173405, 0.61556155, 0.62497754, 0.62123989,\n 0.74249775, 0.92621743, 0.93759209, 0.94131177, 0.93947889,\n 0.95459119, 0.94319856, 0.9432345 , 0.94319856, 0.9432345 ,\n 0.7651752 , 0.93378257, 0.93755615, 0.9507637 , 0.94508535,\n 0.93940701, 0.94699012, 0.94316262, 0.95263252, 0.94699012,\n 0.7195867 , 0.92808625, 0.93557951, 0.92431267, 0.94693621,\n 0.94512129, 0.9412938 , 0.9412938 , 0.94506739, 0.94700809]),\n 'std_test_score': array([0.02599928, 0.0289506 , 0.02994875, 0.03170982, 0.02472205,\n 0.02446715, 0.02998975, 0.03534488, 0.03229561, 0.03949592,\n 0.0192467 , 0.02993138, 0.02765251, 0.01619938, 0.03197778,\n 0.02017511, 0.01694848, 0.02467804, 0.02166421, 0.03212657,\n 0.05179987, 0.03267101, 0.02831794, 0.02353168, 0.02908218,\n 0.03314663, 0.03033598, 0.0199535 , 0.02255366, 0.01746008,\n 0.0723014 , 0.02829915, 0.01117492, 0.0273068 , 0.03534969,\n 0.02184877, 0.02638229, 0.02352925, 0.0258229 , 0.03408073]),\n 'rank_test_score': array([40, 31, 33, 35, 37, 39, 37, 35, 32, 34, 29, 26, 21, 16, 19, 1, 13,\n 11, 13, 11, 28, 24, 22, 3, 9, 20, 5, 15, 2, 5, 30, 25, 23, 27,\n 7, 8, 17, 17, 10, 4])}" }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "execution_count": 5 }, { "cell_type": "code", "outputs": [ { "data": { "text/plain": "(1.0, 0.9494350282485879)" }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "evaluate_classifier_params(RandomForestClassifier, grid_clf.best_params_, X_train, truth_train, X_test, truth_test, iters=20)" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-04-30T17:38:07.299913400Z", "start_time": "2024-04-30T17:36:54.446783500Z" } }, "id": "3c0217cdaea05b55", "execution_count": 6 }, { "cell_type": "markdown", "source": [ "# Look for optimal processing parameters" ], "metadata": { "collapsed": false }, "id": "17ce0afe5a7a7b70" }, { "metadata": { "ExecuteTime": { "end_time": "2024-04-30T19:00:37.770828500Z", "start_time": "2024-04-30T17:41:00.296637300Z" } }, "cell_type": "code", "source": [ "param_grid = {\n", " 'baseline_lam': [1, 5, 10, 15, 20],\n", " 'baseline_p': [1e-1, 1e-2, 1e-3, 1e-4, 1e-5],\n", " 'smooth_window_length': [3,5,9,15,21],\n", " 'smooth_polyorder': [3,5,9,15,21],\n", " 'n_estimators': [grid_clf.best_params_['n_estimators']], #range(1, 101, 100),\n", " 'max_depth': [grid_clf.best_params_['max_depth']] #range(5, 16, 5)\n", "}\n", "import warnings\n", "with warnings.catch_warnings():\n", " warnings.filterwarnings('ignore')\n", " results = param_grid_search(RandomForestClassifier, param_grid, experiments_train, metadata_train, truth_train, cv=5)" ], "id": "e518d47d3a6aef5e", "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[{'baseline_lam': 1, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 5}, {'fit_time': array([2.26244473, 2.45940638, 2.25255084, 2.57544661, 3.4344821 ]), 'score_time': array([0.01044631, 0.00634313, 0.0092411 , 0.02027798, 0.01560187]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.87735849, 0.85849057, 0.88679245, 0.9047619 , 0.86666667])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 9}, {'fit_time': array([3.24201298, 3.3379643 , 3.46586609, 3.36105418, 3.31168151]), 'score_time': array([0.0149982 , 0.01619148, 0.01564789, 0.01617694, 0.01615047]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.8490566 , 0.85849057, 0.83962264, 0.91428571, 0.86666667])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 15}, {'fit_time': array([2.89600134, 2.91753745, 3.0246532 , 2.99498224, 2.96506524]), 'score_time': array([0.01343775, 0.0151186 , 0.01514697, 0.01500678, 0.01245928]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.88679245, 0.86792453, 0.85849057, 0.91428571, 0.85714286])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 21}, {'fit_time': array([3.38844752, 3.37981939, 3.50666523, 3.5072391 , 3.16789365]), 'score_time': array([0.01660466, 0.01503396, 0.01465034, 0.02274776, 0.01778579]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.82075472, 0.81132075, 0.85849057, 0.87619048, 0.84761905])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 9}, {'fit_time': array([3.04493523, 3.26249075, 3.24774122, 3.01459455, 2.30347967]), 'score_time': array([0.0150907 , 0.01977515, 0.01292443, 0.01249599, 0.01246262]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.86792453, 0.86792453, 0.80188679, 0.88571429, 0.86666667])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 15}, {'fit_time': array([2.3343749 , 2.26545835, 2.49188161, 2.73779511, 2.75858903]), 'score_time': array([0.01313162, 0.01170635, 0.01148701, 0.00946259, 0.01449609]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.88679245, 0.86792453, 0.83018868, 0.91428571, 0.84761905])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 21}, {'fit_time': array([2.45689154, 2.27439332, 2.32597065, 2.34087586, 2.2006979 ]), 'score_time': array([0.01098967, 0.01163864, 0.01269388, 0.01115918, 0.01177216]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.89622642, 0.86792453, 0.85849057, 0.91428571, 0.88571429])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 15}, {'fit_time': array([2.31427479, 2.32470417, 2.2589705 , 2.30545712, 2.33924794]), 'score_time': array([0.01144433, 0.01105571, 0.01023388, 0.00783277, 0.01017857]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.87735849, 0.8490566 , 0.86792453, 0.87619048, 0.85714286])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 21}, {'fit_time': array([2.29837894, 2.30403829, 2.22393727, 2.27736473, 2.27314353]), 'score_time': array([0.01168418, 0.01157784, 0.016155 , 0.0115571 , 0.01133513]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.87735849, 0.8490566 , 0.82075472, 0.94285714, 0.84761905])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 15, 'smooth_window_length': 21}, {'fit_time': array([2.33069563, 2.25576472, 2.25452876, 2.32613659, 2.27248526]), 'score_time': array([0.00995851, 0.01105475, 0.01118541, 0.01035666, 0.01027298]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.87735849, 0.88679245, 0.85849057, 0.8952381 , 0.86666667])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 5}, {'fit_time': array([2.26699281, 2.25534606, 2.23802376, 2.235847 , 2.27141476]), 'score_time': array([0.01033258, 0.01060414, 0.01048565, 0.01048493, 0.01186538]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.91509434, 0.93396226, 0.89622642, 0.95238095, 0.9047619 ])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 9}, {'fit_time': array([2.23404288, 2.46999359, 2.9114728 , 2.88353038, 2.87834072]), 'score_time': array([0.01098347, 0.01349568, 0.00997949, 0.00781846, 0.0171864 ]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.93396226, 0.93396226, 0.88679245, 0.97142857, 0.91428571])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 15}, {'fit_time': array([2.93446183, 2.87506151, 2.78843546, 2.85279012, 2.9228251 ]), 'score_time': array([0.01097679, 0.01663899, 0.01733184, 0.01203012, 0.01493263]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.90566038, 0.94339623, 0.89622642, 0.98095238, 0.88571429])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 21}, {'fit_time': array([2.8801434 , 2.85714293, 2.82165909, 2.89964938, 2.86867356]), 'score_time': array([0.00997138, 0.01083207, 0.02025223, 0.01033282, 0.01135254]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.87735849, 0.94339623, 0.87735849, 0.97142857, 0.87619048])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 9}, {'fit_time': array([2.84001851, 3.05169225, 2.84475684, 2.90972257, 2.85980988]), 'score_time': array([0.01617789, 0.01033401, 0.01502705, 0.01047683, 0.01496053]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.91509434, 0.9245283 , 0.89622642, 0.95238095, 0.9047619 ])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 15}, {'fit_time': array([2.84445333, 2.80749416, 2.8249712 , 2.8639884 , 2.85977292]), 'score_time': array([0.01644182, 0.0115068 , 0.01000166, 0.01604891, 0.01517916]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.93396226, 0.94339623, 0.91509434, 0.95238095, 0.9047619 ])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 21}, {'fit_time': array([3.33985043, 3.50458193, 3.4906342 , 3.2406528 , 3.15726089]), 'score_time': array([0.01520872, 0.01518559, 0.01758671, 0.01031065, 0.01772189]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.88679245, 0.97169811, 0.89622642, 0.98095238, 0.8952381 ])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 15}, {'fit_time': array([3.05299091, 2.89983034, 3.12647223, 3.28716612, 3.15505552]), 'score_time': array([0.01708245, 0.01347899, 0.01518273, 0.01764321, 0.01511145]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.91509434, 0.94339623, 0.93396226, 0.95238095, 0.9047619 ])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 21}, {'fit_time': array([2.92530584, 2.87853408, 3.40499163, 3.43540335, 3.14021444]), 'score_time': array([0.01446986, 0.01480389, 0.0200069 , 0.0145328 , 0.01608181]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.9245283 , 0.93396226, 0.93396226, 0.96190476, 0.9047619 ])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 15, 'smooth_window_length': 21}, {'fit_time': array([3.25512958, 3.49257398, 3.30206203, 3.44417787, 2.96169829]), 'score_time': array([0.01966548, 0.0113585 , 0.01631069, 0.01573539, 0.01501846]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.91509434, 0.91509434, 0.9245283 , 0.93333333, 0.9047619 ])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 5}, {'fit_time': array([3.16968608, 3.27496099, 3.45840001, 3.47771335, 3.42415309]), 'score_time': array([0.01103449, 0.01498818, 0.01659656, 0.0172255 , 0.01526999]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.9245283 , 0.95283019, 0.96226415, 0.99047619, 0.95238095])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 9}, {'fit_time': array([3.31707096, 3.34457636, 3.4343071 , 3.00426579, 2.93852043]), 'score_time': array([0.02028942, 0.01861072, 0.01679826, 0.01478291, 0.01298738]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.9245283 , 0.96226415, 0.91509434, 1. , 0.94285714])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 15}, {'fit_time': array([2.9319942 , 2.77475476, 2.80752182, 2.78998256, 2.91789317]), 'score_time': array([0.0126195 , 0.01266146, 0.0122242 , 0.01249909, 0.01588225]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.96226415, 0.99056604, 0.93396226, 0.98095238, 0.96190476])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 21}, {'fit_time': array([2.81993723, 2.89703369, 3.12476563, 2.73971796, 3.17156529]), 'score_time': array([0.01503134, 0.01816273, 0.01514697, 0.0100677 , 0.01349378]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.9245283 , 0.95283019, 0.89622642, 1. , 0.96190476])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 9}, {'fit_time': array([3.35012746, 3.22096586, 3.19492984, 3.09417558, 3.10469365]), 'score_time': array([0.01447988, 0.02294302, 0.014956 , 0.01493382, 0.01493979]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.93396226, 0.96226415, 0.9245283 , 1. , 0.94285714])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 15}, {'fit_time': array([2.86151099, 2.87480116, 2.78011322, 2.80960202, 2.80044627]), 'score_time': array([0.01870561, 0.01512051, 0.01506257, 0.01502633, 0.01103234]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.98113208, 0.93396226, 1. , 0.98095238])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 21}, {'fit_time': array([2.87041855, 2.76502156, 2.78008723, 2.86398864, 2.87653565]), 'score_time': array([0.01452971, 0.01522326, 0.0114882 , 0.01352572, 0.01503015]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.9245283 , 0.98113208, 0.93396226, 0.98095238, 1. ])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 15}, {'fit_time': array([2.90485048, 2.85520148, 2.88039684, 2.80826378, 2.9498558 ]), 'score_time': array([0.01501584, 0.01503921, 0.01616335, 0.00998545, 0.01517081]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.99056604, 0.93396226, 0.99047619, 0.96190476])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 21}, {'fit_time': array([3.11013889, 2.77738929, 3.20350218, 3.29692388, 3.22631598]), 'score_time': array([0.01247835, 0.01687574, 0.01571774, 0.01300907, 0.01508594]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.97169811, 0.96226415, 0.99047619, 0.98095238])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 15, 'smooth_window_length': 21}, {'fit_time': array([2.7956233 , 2.88600469, 2.82314754, 2.82862902, 2.81276989]), 'score_time': array([0.01454926, 0.01416016, 0.01256323, 0.01382565, 0.01519465]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.9245283 , 0.95283019, 0.93396226, 0.95238095, 0.95238095])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 5}, {'fit_time': array([3.29889226, 3.35549641, 3.3550024 , 3.37729287, 3.19144034]), 'score_time': array([0.01519537, 0.01956964, 0.01504898, 0.01616406, 0.01620078]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.71698113, 0.77358491, 0.74528302, 0.8 , 0.74285714])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 9}, {'fit_time': array([3.25105882, 3.60394716, 3.39487457, 2.99892211, 2.96512604]), 'score_time': array([0.01860452, 0.0213232 , 0.00999331, 0.01082993, 0.01520038]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.75471698, 0.80188679, 0.72641509, 0.83809524, 0.74285714])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 15}, {'fit_time': array([3.44480658, 3.65606284, 3.18530941, 3.63109326, 3.27489257]), 'score_time': array([0.01522207, 0.01598573, 0.01488805, 0.02071524, 0.01501822]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.73584906, 0.80188679, 0.74528302, 0.79047619, 0.75238095])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 21}, {'fit_time': array([3.27349615, 3.36575127, 3.54296732, 3.30128241, 3.08501005]), 'score_time': array([0.0124507 , 0.01785898, 0.01873732, 0.01557064, 0.01516867]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.76415094, 0.77358491, 0.75471698, 0.78095238, 0.77142857])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 9}, {'fit_time': array([3.22119188, 3.08246994, 3.22482634, 3.26772857, 3.03002667]), 'score_time': array([0.01622105, 0.0150342 , 0.01728225, 0.01310682, 0.01616192]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.76415094, 0.80188679, 0.74528302, 0.81904762, 0.72380952])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 15}, {'fit_time': array([2.61626983, 2.30370736, 2.27462602, 2.37134027, 2.34166932]), 'score_time': array([0.01164246, 0.01034355, 0.01115012, 0.01303816, 0.01153588]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.74528302, 0.79245283, 0.71698113, 0.80952381, 0.71428571])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 21}, {'fit_time': array([2.30345678, 2.30950952, 2.28701758, 2.33615613, 2.29750848]), 'score_time': array([0.01116943, 0.01064491, 0.01065397, 0.0100801 , 0.00979757]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.77358491, 0.82075472, 0.72641509, 0.80952381, 0.73333333])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 15}, {'fit_time': array([2.26150441, 2.26007199, 2.31994128, 2.33999658, 2.33644366]), 'score_time': array([0.01150656, 0.01185727, 0.01166201, 0.0108242 , 0.0100019 ]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.77358491, 0.76415094, 0.75471698, 0.80952381, 0.78095238])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 21}, {'fit_time': array([2.31483316, 2.32521629, 2.29092598, 2.32787228, 2.26898575]), 'score_time': array([0.01103759, 0.0101223 , 0.01284528, 0.01085329, 0.01290917]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.76415094, 0.77358491, 0.72641509, 0.81904762, 0.73333333])}]\n", "[{'baseline_lam': 1, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 15, 'smooth_window_length': 21}, {'fit_time': array([2.38901973, 2.42381263, 2.40732789, 2.31116438, 2.59368086]), 'score_time': array([0.01034474, 0.01124597, 0.01190805, 0.01287746, 0.0080626 ]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.77358491, 0.77358491, 0.73584906, 0.77142857, 0.76190476])}]\n", "[{'baseline_lam': 1, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 5}, {'fit_time': array([2.9499383 , 3.0323391 , 3.27998805, 3.00015187, 3.17970276]), 'score_time': array([0.01249385, 0.01496196, 0.01516438, 0.0149529 , 0.01516628]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.66981132, 0.78301887, 0.61320755, 0.7047619 , 0.6952381 ])}]\n", "[{'baseline_lam': 1, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 9}, {'fit_time': array([3.06975698, 2.98357391, 3.41115141, 3.28024626, 3.24505925]), 'score_time': array([0.01507306, 0.01146126, 0.01857305, 0.01501584, 0.01498175]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.67924528, 0.75471698, 0.60377358, 0.66666667, 0.68571429])}]\n", "[{'baseline_lam': 1, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 15}, {'fit_time': array([3.49625421, 3.2950747 , 3.24022746, 3.05266428, 3.15714788]), 'score_time': array([0.01557755, 0.01464987, 0.01203465, 0.01522565, 0.01593065]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.64150943, 0.76415094, 0.62264151, 0.65714286, 0.64761905])}]\n", "[{'baseline_lam': 1, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 21}, {'fit_time': array([3.5440073 , 3.71742082, 3.50561213, 3.44977784, 3.27057672]), 'score_time': array([0.01945472, 0.02156448, 0.01516056, 0.01507592, 0.0159657 ]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.6509434 , 0.77358491, 0.61320755, 0.71428571, 0.6952381 ])}]\n", "[{'baseline_lam': 1, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 9}, {'fit_time': array([3.1900425 , 3.47308064, 3.22826934, 3.20534515, 3.18036747]), 'score_time': array([0.01612329, 0.01035118, 0.01145768, 0.0161202 , 0.01334596]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.63207547, 0.72641509, 0.60377358, 0.63809524, 0.73333333])}]\n", "[{'baseline_lam': 1, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 15}, {'fit_time': array([3.2807858 , 3.18269849, 3.42869592, 3.13504457, 3.68161726]), 'score_time': array([0.01612902, 0.01505041, 0.01136875, 0.0235498 , 0.01933074]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.67924528, 0.74528302, 0.59433962, 0.68571429, 0.6952381 ])}]\n", "[{'baseline_lam': 1, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 21}, {'fit_time': array([3.07177448, 2.98540831, 3.12492394, 3.11530375, 3.10519052]), 'score_time': array([0.01469135, 0.01466227, 0.01505375, 0.01498008, 0.01782751]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.64150943, 0.73584906, 0.60377358, 0.71428571, 0.66666667])}]\n", "[{'baseline_lam': 1, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 15}, {'fit_time': array([3.15382433, 3.32630777, 3.19003439, 3.32503009, 3.42003703]), 'score_time': array([0.01616478, 0.01865506, 0.00982261, 0.0110178 , 0.01855111]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.69811321, 0.76415094, 0.63207547, 0.65714286, 0.68571429])}]\n", "[{'baseline_lam': 1, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 21}, {'fit_time': array([3.03224492, 3.22501588, 3.13016796, 3.41650534, 3.38769531]), 'score_time': array([0.01272941, 0.01502562, 0.01460981, 0.01616263, 0.01584649]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.66981132, 0.76415094, 0.60377358, 0.66666667, 0.66666667])}]\n", "[{'baseline_lam': 1, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 15, 'smooth_window_length': 21}, {'fit_time': array([2.96752238, 3.1396718 , 3.28774858, 3.76378226, 3.77270555]), 'score_time': array([0.01282597, 0.0150969 , 0.02036142, 0.01759267, 0.01515841]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.6509434 , 0.75471698, 0.62264151, 0.74285714, 0.67619048])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 5}, {'fit_time': array([3.38082719, 3.2095201 , 2.98393846, 3.40010357, 2.94024706]), 'score_time': array([0.01885557, 0.01155472, 0.00997686, 0.01497245, 0.01497126]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.89622642, 0.9245283 , 0.87735849, 0.91428571, 0.88571429])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 9}, {'fit_time': array([3.10240078, 2.96272373, 2.98353338, 2.90992498, 2.88170362]), 'score_time': array([0.01251507, 0.00631523, 0.01497388, 0.01447392, 0.01395202]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.89622642, 0.85849057, 0.9245283 , 0.93333333, 0.87619048])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 15}, {'fit_time': array([2.92872405, 2.86093092, 2.83987403, 2.92520142, 2.94754672]), 'score_time': array([0.01396608, 0.01001143, 0.01497436, 0.01614857, 0.01511574]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.86792453, 0.9245283 , 0.9245283 , 0.95238095, 0.88571429])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 21}, {'fit_time': array([3.1426568 , 3.12438059, 3.10650897, 3.15209627, 3.75993395]), 'score_time': array([0.0124774 , 0.01550484, 0.0161202 , 0.01548004, 0.02001333]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.85849057, 0.90566038, 0.91509434, 0.91428571, 0.86666667])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 9}, {'fit_time': array([2.26146317, 2.27042031, 2.2551899 , 2.2549243 , 2.27899647]), 'score_time': array([0.00895953, 0.01079988, 0.00979662, 0.01003766, 0.0109849 ]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.89622642, 0.93396226, 0.88679245, 0.95238095, 0.87619048])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 15}, {'fit_time': array([2.30237579, 2.2603755 , 2.2735641 , 2.29025102, 2.27474189]), 'score_time': array([0.00840664, 0.00982809, 0.01132035, 0.00997615, 0.0116086 ]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.90566038, 0.88679245, 0.88679245, 0.94285714, 0.87619048])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 21}, {'fit_time': array([2.26573825, 2.24568939, 2.24128914, 2.26597404, 2.25671721]), 'score_time': array([0.01203418, 0.01155925, 0.01109338, 0.00992084, 0.01177621]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.87735849, 0.91509434, 0.94339623, 0.95238095, 0.8952381 ])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 15}, {'fit_time': array([2.2758944 , 2.24678087, 2.23675776, 2.30960965, 2.27889085]), 'score_time': array([0.01006126, 0.00900888, 0.01127028, 0.01104879, 0.0127151 ]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.91509434, 0.89622642, 0.88679245, 0.94285714, 0.88571429])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 21}, {'fit_time': array([2.29106712, 2.25454831, 2.24450636, 2.25106645, 2.24851608]), 'score_time': array([0.0100143 , 0.00959992, 0.00922203, 0.01034403, 0.01168823]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.89622642, 0.91509434, 0.9245283 , 0.95238095, 0.87619048])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 15, 'smooth_window_length': 21}, {'fit_time': array([2.26299334, 2.2727952 , 2.30897307, 2.2699759 , 2.2723465 ]), 'score_time': array([0.01121736, 0.00916076, 0.01158595, 0.00742912, 0.01049519]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.90566038, 0.91509434, 0.88679245, 0.96190476, 0.87619048])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 5}, {'fit_time': array([3.06810045, 3.05398703, 2.99452472, 3.02389669, 2.97978735]), 'score_time': array([0.01589918, 0.01032948, 0.01500082, 0.01660085, 0.01497555]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.95283019, 0.97169811, 0.9245283 , 1. , 0.8952381 ])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 9}, {'fit_time': array([2.96501136, 2.82865381, 2.85001922, 2.90331244, 2.81751609]), 'score_time': array([0.01622868, 0.0140574 , 0.01078844, 0.01414108, 0.01497102]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.93396226, 0.95283019, 0.91509434, 0.95238095, 0.91428571])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 15}, {'fit_time': array([3.1316998 , 2.83103371, 2.97272754, 3.23092842, 2.98028493]), 'score_time': array([0.01502299, 0.01398206, 0.01609421, 0.01862812, 0.01479506]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.94339623, 0.9245283 , 0.97142857, 0.9047619 ])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 21}, {'fit_time': array([2.90267277, 3.11340904, 2.77522779, 2.92833114, 2.82886577]), 'score_time': array([0.01148629, 0.01505017, 0.01636291, 0.01500344, 0.01134562]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.93396226, 0.9245283 , 0.90566038, 0.99047619, 0.91428571])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 9}, {'fit_time': array([2.94995022, 3.22988892, 3.22011304, 3.00959659, 2.99540877]), 'score_time': array([0.01515293, 0.01503563, 0.01499748, 0.01501369, 0.01462197]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.91509434, 0.90566038, 0.96190476, 0.92380952])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 15}, {'fit_time': array([3.02630043, 3.00532222, 2.98998308, 3.01828361, 2.89209247]), 'score_time': array([0.02002883, 0.01496458, 0.01501369, 0.01184106, 0.01297975]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.98113208, 0.91509434, 0.97142857, 0.9047619 ])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 21}, {'fit_time': array([3.13105464, 2.9976809 , 2.99093795, 3.05790377, 2.94996595]), 'score_time': array([0.01568604, 0.01518297, 0.01591587, 0.01550722, 0.01002884]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.95283019, 0.96226415, 0.88679245, 0.98095238, 0.91428571])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 15}, {'fit_time': array([3.07495832, 3.11186028, 2.3252995 , 2.32006121, 2.23453712]), 'score_time': array([0.01515985, 0.01611924, 0.01153398, 0.00909209, 0.0119369 ]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.93396226, 0.9245283 , 0.91509434, 0.99047619, 0.9047619 ])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 21}, {'fit_time': array([2.20519328, 2.18782473, 2.24106956, 2.22186899, 2.26949286]), 'score_time': array([0.01065683, 0.01023197, 0.01296878, 0.01143718, 0.01248574]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.93396226, 0.91509434, 0.98095238, 0.91428571])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 15, 'smooth_window_length': 21}, {'fit_time': array([2.21015215, 2.22111678, 2.18022251, 2.21865296, 2.19060564]), 'score_time': array([0.01164007, 0.01166606, 0.01052761, 0.01036453, 0.00998497]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.9245283 , 0.93396226, 0.91509434, 1. , 0.88571429])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 5}, {'fit_time': array([2.17637587, 2.18133521, 2.17759037, 2.16675997, 2.17227173]), 'score_time': array([0.01039577, 0.01138687, 0.01030588, 0.01054049, 0.01166224]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.93396226, 0.96226415, 0.91509434, 0.97142857, 0.98095238])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 9}, {'fit_time': array([2.18472576, 2.19855046, 2.17288542, 2.18890619, 2.40812397]), 'score_time': array([0.01133752, 0.01054263, 0.01092982, 0.00881124, 0.0114572 ]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.95283019, 0.97169811, 0.96226415, 1. , 0.98095238])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 15}, {'fit_time': array([2.86120009, 2.94455361, 2.71027589, 2.7809 , 2.74895453]), 'score_time': array([0.01417851, 0.0149951 , 0.01120377, 0.02388501, 0.00635028]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.97169811, 0.94339623, 1. , 0.96190476])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 21}, {'fit_time': array([2.93507195, 3.11994123, 2.71717405, 2.75558496, 2.73994994]), 'score_time': array([0.01512098, 0.0177505 , 0.01446009, 0.02015257, 0.01351666]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.9245283 , 0.93396226, 0.94339623, 0.98095238, 0.96190476])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 9}, {'fit_time': array([2.78996396, 3.28519559, 2.78504467, 3.07068086, 3.09390807]), 'score_time': array([0.01520967, 0.00984073, 0.01539636, 0.01618695, 0.01614714]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.96226415, 0.94339623, 0.98095238, 0.97142857])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 15}, {'fit_time': array([2.79811096, 2.74013042, 2.73506594, 2.94992065, 3.14631724]), 'score_time': array([0.01509786, 0.00982523, 0.00834846, 0.0151577 , 0.01859999]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.9245283 , 0.97169811, 0.93396226, 0.98095238, 0.97142857])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 21}, {'fit_time': array([2.91137195, 2.96001887, 3.28979921, 3.02502656, 3.19777036]), 'score_time': array([0.00792384, 0.01151013, 0.01514602, 0.00996542, 0.02226615]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.95283019, 0.97169811, 0.93396226, 0.98095238, 0.97142857])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 15}, {'fit_time': array([2.1390245 , 2.09190989, 2.0375607 , 2.11567378, 2.0655477 ]), 'score_time': array([0.01028919, 0.01160097, 0.01031232, 0.01116419, 0.01058149]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.95283019, 0.97169811, 0.97169811, 0.98095238, 0.98095238])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 21}, {'fit_time': array([2.12139273, 2.14037943, 2.1031723 , 2.14544368, 2.13820958]), 'score_time': array([0.00902462, 0.01057386, 0.01126742, 0.01149607, 0.00942183]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.95283019, 0.96226415, 0.95283019, 1. , 0.97142857])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 15, 'smooth_window_length': 21}, {'fit_time': array([3.32535839, 2.90185761, 2.9702332 , 3.25500154, 3.14416504]), 'score_time': array([0.01463413, 0.01310992, 0.01511121, 0.01613426, 0.01462698]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.95283019, 0.96226415, 0.91509434, 0.98095238, 0.96190476])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 5}, {'fit_time': array([2.90546298, 2.97997141, 2.93506765, 2.96744466, 2.93980503]), 'score_time': array([0.01197505, 0.01517105, 0.01511669, 0.01251435, 0.01493716]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.73584906, 0.77358491, 0.70754717, 0.78095238, 0.8 ])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 9}, {'fit_time': array([2.93292046, 3.02391219, 2.90987945, 2.93865871, 2.92001629]), 'score_time': array([0.01317596, 0.01518512, 0.01502419, 0.01130748, 0.01510739]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.69811321, 0.81132075, 0.68867925, 0.8 , 0.79047619])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 15}, {'fit_time': array([2.94017315, 2.9449687 , 2.93511581, 3.05087709, 2.9350667 ]), 'score_time': array([0.01483703, 0.01500463, 0.01495838, 0.01400948, 0.01499534]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.72641509, 0.79245283, 0.66981132, 0.78095238, 0.77142857])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 21}, {'fit_time': array([2.95427179, 2.90527534, 2.89396572, 2.96480966, 2.95228553]), 'score_time': array([0.01565313, 0.00588727, 0.01512861, 0.01498318, 0.01765466]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.67924528, 0.78301887, 0.70754717, 0.80952381, 0.82857143])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 9}, {'fit_time': array([2.94873261, 2.95487833, 2.90463018, 3.31027746, 3.29651546]), 'score_time': array([0.01469254, 0.01519299, 0.01495838, 0.01354718, 0.00984049]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.72641509, 0.77358491, 0.70754717, 0.78095238, 0.85714286])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 15}, {'fit_time': array([2.29315042, 2.22121382, 2.2581861 , 2.29042292, 2.34036756]), 'score_time': array([0.01278162, 0.01391554, 0.01288342, 0.01158881, 0.01048565]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.74528302, 0.81132075, 0.67924528, 0.8 , 0.82857143])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 21}, {'fit_time': array([2.33445501, 2.34034705, 2.23971939, 2.30738068, 2.32148504]), 'score_time': array([0.011971 , 0.00980926, 0.00915909, 0.01028085, 0.01183414]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.74528302, 0.76415094, 0.69811321, 0.77142857, 0.78095238])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 15}, {'fit_time': array([2.28223419, 2.29653239, 2.26031041, 2.29442382, 1.80755925]), 'score_time': array([0.01117396, 0.01166081, 0.0115006 , 0.01080489, 0.00492811]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.69811321, 0.79245283, 0.68867925, 0.75238095, 0.84761905])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 21}, {'fit_time': array([1.20444918, 1.18675399, 1.17968607, 1.22218513, 1.22023988]), 'score_time': array([0.00433946, 0.00540209, 0.00429988, 0.00540376, 0.00430155]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.75471698, 0.79245283, 0.66981132, 0.76190476, 0.82857143])}]\n", "[{'baseline_lam': 5, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 15, 'smooth_window_length': 21}, {'fit_time': array([1.24022436, 1.24622703, 1.22530293, 1.23037052, 1.29024863]), 'score_time': array([0.00501323, 0.00479865, 0.00581241, 0.0065341 , 0.00485492]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.72641509, 0.81132075, 0.68867925, 0.76190476, 0.80952381])}]\n", "[{'baseline_lam': 5, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 5}, {'fit_time': array([1.3240273 , 1.31269622, 1.29925585, 1.32566643, 1.32817507]), 'score_time': array([0.00601888, 0.00526023, 0.00605726, 0.00637555, 0.00482988]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.68867925, 0.59433962, 0.63207547, 0.64761905, 0.68571429])}]\n", "[{'baseline_lam': 5, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 9}, {'fit_time': array([1.33245683, 1.31011987, 1.36309719, 1.40800738, 1.38347268]), 'score_time': array([0.00607753, 0.00599146, 0.00493836, 0.00556755, 0.00523496]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.71698113, 0.59433962, 0.66037736, 0.62857143, 0.64761905])}]\n", "[{'baseline_lam': 5, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 15}, {'fit_time': array([1.34066415, 1.3262167 , 1.29530072, 1.32277942, 1.30420518]), 'score_time': array([0.00643086, 0.00597525, 0.0048995 , 0.00502491, 0.00603008]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.71698113, 0.60377358, 0.64150943, 0.62857143, 0.6952381 ])}]\n", "[{'baseline_lam': 5, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 21}, {'fit_time': array([1.33730102, 1.33422446, 1.32283115, 1.31188464, 1.31039 ]), 'score_time': array([0.0060575 , 0.00600648, 0.00601506, 0.00538588, 0.00469255]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.73584906, 0.5754717 , 0.59433962, 0.62857143, 0.66666667])}]\n", "[{'baseline_lam': 5, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 9}, {'fit_time': array([1.32401514, 1.31177735, 1.3085928 , 1.31321192, 1.30331802]), 'score_time': array([0.00576568, 0.0051074 , 0.00521159, 0.00567341, 0.00481296]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.69811321, 0.59433962, 0.6509434 , 0.62857143, 0.65714286])}]\n", "[{'baseline_lam': 5, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 15}, {'fit_time': array([1.31524515, 1.31210613, 1.30284309, 1.31886864, 1.32096601]), 'score_time': array([0.00579143, 0.00481534, 0.00480366, 0.00523543, 0.00493431]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.68867925, 0.58490566, 0.66037736, 0.65714286, 0.68571429])}]\n", "[{'baseline_lam': 5, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 21}, {'fit_time': array([1.3108058 , 1.32284951, 1.30565691, 1.30358911, 1.33511662]), 'score_time': array([0.0057826 , 0.00653648, 0.00524187, 0.00576735, 0.00645566]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.71698113, 0.59433962, 0.63207547, 0.62857143, 0.6952381 ])}]\n", "[{'baseline_lam': 5, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 15}, {'fit_time': array([1.33879137, 1.30707169, 1.30957437, 1.33006907, 1.32494378]), 'score_time': array([0.0053637 , 0.0053308 , 0.00497484, 0.00639176, 0.00592852]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.70754717, 0.58490566, 0.60377358, 0.65714286, 0.67619048])}]\n", "[{'baseline_lam': 5, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 21}, {'fit_time': array([1.32935572, 1.32363081, 1.30991459, 1.32020259, 1.32168579]), 'score_time': array([0.00531101, 0.00643396, 0.00484228, 0.00683236, 0.00520778]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.68867925, 0.59433962, 0.63207547, 0.63809524, 0.66666667])}]\n", "[{'baseline_lam': 5, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 15, 'smooth_window_length': 21}, {'fit_time': array([1.3227036 , 1.31430292, 1.31855464, 1.32310581, 1.31643319]), 'score_time': array([0.00566506, 0.00579691, 0.00672388, 0.00473881, 0.00579977]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.72641509, 0.58490566, 0.61320755, 0.64761905, 0.65714286])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 5}, {'fit_time': array([1.28561354, 1.27655792, 1.27130413, 1.30473399, 1.28330398]), 'score_time': array([0.00465178, 0.004668 , 0.00541615, 0.0059402 , 0.00536752]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.9245283 , 0.91509434, 0.93396226, 0.93333333, 0.87619048])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 9}, {'fit_time': array([1.28921318, 1.28679562, 1.2619462 , 1.32250571, 1.3436265 ]), 'score_time': array([0.00540137, 0.00494146, 0.00479174, 0.00626731, 0.00515079]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.91509434, 0.94339623, 0.91509434, 0.94285714, 0.9047619 ])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 15}, {'fit_time': array([1.33331299, 1.31580043, 1.30716681, 1.33546162, 1.32119274]), 'score_time': array([0.00546622, 0.00562668, 0.00519061, 0.00627971, 0.00547838]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.90566038, 0.9245283 , 0.91509434, 0.94285714, 0.88571429])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 21}, {'fit_time': array([1.3183701 , 1.32227969, 1.29641509, 1.31449008, 1.3230679 ]), 'score_time': array([0.0065701 , 0.0046258 , 0.00542688, 0.00641203, 0.00599504]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.89622642, 0.9245283 , 0.9245283 , 0.93333333, 0.86666667])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 9}, {'fit_time': array([1.32844925, 1.32906294, 1.32380295, 1.33474493, 1.32126093]), 'score_time': array([0.00567603, 0.00537539, 0.00499916, 0.00598907, 0.00628495]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.9245283 , 0.94339623, 0.91509434, 0.95238095, 0.88571429])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 15}, {'fit_time': array([1.31404424, 1.31791472, 1.31334043, 1.33114529, 1.33284926]), 'score_time': array([0.00492072, 0.00511575, 0.00589347, 0.00517535, 0.00591683]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.91509434, 0.93396226, 0.93396226, 0.93333333, 0.8952381 ])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 21}, {'fit_time': array([1.30608702, 1.32638812, 1.29392552, 1.3072381 , 1.31864858]), 'score_time': array([0.005548 , 0.00590444, 0.00597262, 0.0048418 , 0.00656915]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.91509434, 0.91509434, 0.9245283 , 0.94285714, 0.91428571])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 15}, {'fit_time': array([1.32346368, 1.33295298, 1.31437063, 1.33095884, 1.34869385]), 'score_time': array([0.00634646, 0.00512028, 0.00644779, 0.00654006, 0.00606632]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.93396226, 0.88679245, 0.9245283 , 0.93333333, 0.87619048])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 21}, {'fit_time': array([1.3333292 , 1.34507203, 1.31772757, 1.34112906, 1.37109685]), 'score_time': array([0.00589681, 0.00536966, 0.00545049, 0.00433493, 0.00639677]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.93396226, 0.90566038, 0.89622642, 0.94285714, 0.9047619 ])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 15, 'smooth_window_length': 21}, {'fit_time': array([1.35608768, 1.35402179, 1.31605887, 1.27852249, 1.2681818 ]), 'score_time': array([0.00572753, 0.00653791, 0.00541067, 0.00530672, 0.00616217]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.91509434, 0.9245283 , 0.93396226, 0.95238095, 0.87619048])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 5}, {'fit_time': array([1.25370669, 1.24134803, 1.25090432, 1.25949574, 1.26517391]), 'score_time': array([0.00633478, 0.0060904 , 0.00564313, 0.00543857, 0.00614071]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.95283019, 0.95283019, 0.90566038, 0.96190476, 0.92380952])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 9}, {'fit_time': array([1.26628757, 1.24384594, 1.24224234, 1.25521636, 1.23766422]), 'score_time': array([0.00593543, 0.00606561, 0.00529075, 0.00705743, 0.00527048]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.97169811, 0.94339623, 0.91509434, 0.98095238, 0.93333333])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 15}, {'fit_time': array([1.25641966, 1.23669744, 1.22394323, 1.25080633, 1.24425983]), 'score_time': array([0.00602365, 0.00607038, 0.00603604, 0.0048039 , 0.00605989]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.94339623, 0.91509434, 0.98095238, 0.93333333])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 21}, {'fit_time': array([1.23841071, 1.23017693, 1.22581482, 1.25106192, 1.29249954]), 'score_time': array([0.00591326, 0.00530338, 0.00525689, 0.00527692, 0.00485444]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.93396226, 0.89622642, 0.98095238, 0.92380952])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 9}, {'fit_time': array([1.32688212, 1.39138389, 1.2682724 , 1.31253147, 1.35174561]), 'score_time': array([0.00534439, 0.00532889, 0.00597262, 0.00510788, 0.00532126]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.94339623, 0.90566038, 0.97142857, 0.91428571])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 15}, {'fit_time': array([1.40193462, 1.38524723, 1.34187007, 1.28531718, 1.25718999]), 'score_time': array([0.00605035, 0.00487161, 0.00633669, 0.00616026, 0.00578523]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.96226415, 0.96226415, 0.93396226, 0.99047619, 0.93333333])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 21}, {'fit_time': array([1.26645207, 1.24874544, 1.23234367, 1.25007558, 1.23709607]), 'score_time': array([0.00460482, 0.00368142, 0.00614595, 0.00592828, 0.00470972]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.94339623, 0.94339623, 0.98095238, 0.93333333])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 15}, {'fit_time': array([1.25101662, 1.24256825, 1.22883844, 1.26671815, 1.24978733]), 'score_time': array([0.00479913, 0.00485992, 0.00526381, 0.00478053, 0.00479436]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.94339623, 0.88679245, 0.99047619, 0.91428571])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 21}, {'fit_time': array([1.24168301, 1.24229455, 1.23066068, 1.23866868, 1.23396349]), 'score_time': array([0.0065515 , 0.00530839, 0.005759 , 0.00600457, 0.00524211]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.93396226, 0.89622642, 0.98095238, 0.94285714])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 15, 'smooth_window_length': 21}, {'fit_time': array([1.25026107, 1.233325 , 1.23181176, 1.26248932, 1.23334265]), 'score_time': array([0.0061264 , 0.00523615, 0.00540709, 0.00553012, 0.00592041]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.93396226, 0.90566038, 0.98095238, 0.91428571])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 5}, {'fit_time': array([1.19905949, 1.20690584, 1.19637799, 1.19185591, 1.20661283]), 'score_time': array([0.00527143, 0.00480413, 0.00600004, 0.00484753, 0.00555921]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.95283019, 0.91509434, 0.98095238, 0.92380952])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 9}, {'fit_time': array([1.19048619, 1.19940066, 1.17581058, 1.19447303, 1.21043324]), 'score_time': array([0.00526881, 0.00488758, 0.0058558 , 0.00585961, 0.00483632]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.95283019, 0.97169811, 0.94339623, 0.99047619, 0.97142857])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 15}, {'fit_time': array([1.19595695, 1.18738127, 1.17811012, 1.20033836, 1.17241406]), 'score_time': array([0.00643682, 0.00462532, 0.00596237, 0.0069685 , 0.00478292]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.97169811, 0.96226415, 0.95283019, 0.99047619, 0.97142857])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 21}, {'fit_time': array([1.19886303, 1.1842041 , 1.15986872, 1.17664766, 1.17890882]), 'score_time': array([0.00486493, 0.00598097, 0.00608397, 0.00614452, 0.00518394]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.96226415, 0.93396226, 0.99047619, 0.94285714])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 9}, {'fit_time': array([1.2308228 , 1.2091279 , 1.23688483, 1.22894144, 1.2185905 ]), 'score_time': array([0.00483918, 0.00563407, 0.0047276 , 0.00595927, 0.00491953]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.97169811, 0.97169811, 0.93396226, 0.98095238, 0.95238095])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 15}, {'fit_time': array([1.2162807 , 1.20634413, 1.20336223, 1.2072773 , 1.20210195]), 'score_time': array([0.00492787, 0.00645065, 0.00539565, 0.00645089, 0.00532198]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.94339623, 0.95283019, 0.98095238, 0.94285714])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 21}, {'fit_time': array([1.20663691, 1.20432234, 1.17845988, 1.19136143, 1.18539023]), 'score_time': array([0.00453711, 0.00637937, 0.0062027 , 0.00585842, 0.00598454]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.96226415, 0.96226415, 0.95283019, 0.99047619, 0.95238095])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 15}, {'fit_time': array([1.21980238, 1.21452689, 1.21540022, 1.21051431, 1.21598887]), 'score_time': array([0.00462317, 0.00603795, 0.00576663, 0.00601292, 0.00479484]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.96226415, 0.99056604, 0.9245283 , 0.97142857, 0.94285714])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 21}, {'fit_time': array([1.21867204, 1.2164669 , 1.19096804, 1.22025561, 1.25701809]), 'score_time': array([0.00610089, 0.00482488, 0.0054419 , 0.005934 , 0.00558567]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.97169811, 0.97169811, 0.94339623, 0.99047619, 0.95238095])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 15, 'smooth_window_length': 21}, {'fit_time': array([1.23598814, 1.21850276, 1.22146797, 1.23047543, 1.23199677]), 'score_time': array([0.00586224, 0.00655437, 0.00645018, 0.00606203, 0.00484705]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.95283019, 0.9245283 , 0.98095238, 0.97142857])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 5}, {'fit_time': array([1.31806016, 1.3082211 , 1.3009932 , 1.32693505, 1.29485202]), 'score_time': array([0.00609136, 0.00481606, 0.00651646, 0.00604844, 0.00477862]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.75471698, 0.76415094, 0.67924528, 0.7047619 , 0.8 ])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 9}, {'fit_time': array([1.31125498, 1.30546331, 1.29907656, 1.32086468, 1.32354259]), 'score_time': array([0.00603437, 0.00658464, 0.00470853, 0.00644517, 0.00531578]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.71698113, 0.85849057, 0.69811321, 0.72380952, 0.76190476])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 15}, {'fit_time': array([1.3032248 , 1.29995179, 1.29404569, 1.32240605, 1.30570006]), 'score_time': array([0.00655055, 0.00488663, 0.00485969, 0.00599885, 0.00480032]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.70754717, 0.80188679, 0.70754717, 0.73333333, 0.76190476])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 21}, {'fit_time': array([1.3012495 , 1.35893011, 1.29497027, 1.31494951, 1.29862237]), 'score_time': array([0.00524712, 0.00541425, 0.00575638, 0.00487232, 0.0053091 ]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.70754717, 0.82075472, 0.66981132, 0.75238095, 0.78095238])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 9}, {'fit_time': array([1.29896307, 1.29808044, 1.29259419, 1.29617 , 1.30130434]), 'score_time': array([0.00612473, 0.00532055, 0.00608802, 0.00528646, 0.00602603]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.76415094, 0.83962264, 0.68867925, 0.75238095, 0.77142857])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 15}, {'fit_time': array([1.29668355, 1.2977221 , 1.28444958, 1.31761122, 1.30262399]), 'score_time': array([0.00599313, 0.00640345, 0.00533581, 0.00589013, 0.0064559 ]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.76415094, 0.85849057, 0.68867925, 0.73333333, 0.77142857])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 21}, {'fit_time': array([1.31036758, 1.32751107, 1.31188464, 1.31023049, 1.3091197 ]), 'score_time': array([0.0073483 , 0.00608349, 0.00588584, 0.0052259 , 0.00599432]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.68867925, 0.83018868, 0.66981132, 0.75238095, 0.78095238])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 15}, {'fit_time': array([1.3024323 , 1.29249024, 1.27591276, 1.30789089, 1.3049562 ]), 'score_time': array([0.00610304, 0.0054121 , 0.00568581, 0.00546646, 0.00657964]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.71698113, 0.81132075, 0.67924528, 0.73333333, 0.79047619])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 21}, {'fit_time': array([1.29004669, 1.28917861, 1.29591227, 1.31563282, 1.29444456]), 'score_time': array([0.00490236, 0.00563979, 0.00493765, 0.00464034, 0.00601244]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.76415094, 0.81132075, 0.69811321, 0.73333333, 0.75238095])}]\n", "[{'baseline_lam': 10, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 15, 'smooth_window_length': 21}, {'fit_time': array([1.37068629, 1.29674554, 1.2771461 , 1.31168604, 1.30231214]), 'score_time': array([0.00525832, 0.00526953, 0.0045445 , 0.00538707, 0.00573802]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.73584906, 0.83962264, 0.70754717, 0.75238095, 0.76190476])}]\n", "[{'baseline_lam': 10, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 5}, {'fit_time': array([1.32111931, 1.31303763, 1.30405903, 1.33099103, 1.34644651]), 'score_time': array([0.00493646, 0.00599337, 0.0046618 , 0.00643897, 0.00478292]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.67924528, 0.62264151, 0.70754717, 0.75238095, 0.78095238])}]\n", "[{'baseline_lam': 10, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 9}, {'fit_time': array([1.33980632, 1.33554506, 1.31323433, 1.35835004, 1.34819078]), 'score_time': array([0.00601864, 0.0064106 , 0.00609565, 0.00653887, 0.00688863]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.61320755, 0.62264151, 0.68867925, 0.73333333, 0.77142857])}]\n", "[{'baseline_lam': 10, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 15}, {'fit_time': array([1.32899785, 1.36656952, 1.34734273, 1.35996222, 1.3524859 ]), 'score_time': array([0.00580573, 0.00759864, 0.00529075, 0.00638151, 0.0047729 ]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.58490566, 0.66037736, 0.66981132, 0.72380952, 0.73333333])}]\n", "[{'baseline_lam': 10, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 21}, {'fit_time': array([1.35262704, 1.33651042, 1.31954503, 1.34594488, 1.33934093]), 'score_time': array([0.00480843, 0.00613666, 0.00536084, 0.00590444, 0.00527072]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.62264151, 0.64150943, 0.66981132, 0.72380952, 0.75238095])}]\n", "[{'baseline_lam': 10, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 9}, {'fit_time': array([1.33176327, 1.31944084, 1.31246018, 1.33362675, 1.33239675]), 'score_time': array([0.00527239, 0.0054183 , 0.00479555, 0.00480676, 0.0052526 ]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.63207547, 0.63207547, 0.69811321, 0.72380952, 0.76190476])}]\n", "[{'baseline_lam': 10, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 15}, {'fit_time': array([1.35731816, 1.32084346, 1.31654692, 1.3471663 , 1.33726072]), 'score_time': array([0.00680351, 0.00486207, 0.00528097, 0.00640392, 0.00614715]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.63207547, 0.60377358, 0.66037736, 0.78095238, 0.77142857])}]\n", "[{'baseline_lam': 10, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 21}, {'fit_time': array([1.33268952, 1.34810162, 1.32030702, 1.34121275, 1.32747483]), 'score_time': array([0.00641727, 0.00569296, 0.00650263, 0.0056076 , 0.00551701]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.63207547, 0.66981132, 0.71698113, 0.6952381 , 0.79047619])}]\n", "[{'baseline_lam': 10, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 15}, {'fit_time': array([1.32351089, 1.33129048, 1.33276653, 1.33993649, 1.34917378]), 'score_time': array([0.00523233, 0.00532937, 0.00486755, 0.00648093, 0.00581145]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.63207547, 0.63207547, 0.69811321, 0.73333333, 0.79047619])}]\n", "[{'baseline_lam': 10, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 21}, {'fit_time': array([1.32679892, 1.33907914, 1.32070923, 1.34659195, 1.36259484]), 'score_time': array([0.00663376, 0.00583577, 0.00610733, 0.00639486, 0.00639415]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.63207547, 0.63207547, 0.67924528, 0.75238095, 0.74285714])}]\n", "[{'baseline_lam': 10, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 15, 'smooth_window_length': 21}, {'fit_time': array([1.33326626, 1.32514739, 1.32662606, 1.32986021, 1.33370209]), 'score_time': array([0.00724125, 0.00655842, 0.00474572, 0.00520325, 0.0064559 ]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.6509434 , 0.63207547, 0.68867925, 0.74285714, 0.78095238])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 5}, {'fit_time': array([1.3096118 , 1.29613471, 1.29644704, 1.32243991, 1.27190423]), 'score_time': array([0.00481868, 0.00604486, 0.00657034, 0.00645518, 0.00643563]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.93396226, 0.88679245, 0.94285714, 0.9047619 ])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 9}, {'fit_time': array([1.28258157, 1.27712536, 1.27644205, 1.30558634, 1.27542138]), 'score_time': array([0.00483084, 0.0055263 , 0.00511193, 0.0066421 , 0.00592566]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.93396226, 0.96226415, 0.93396226, 0.94285714, 0.8952381 ])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 15}, {'fit_time': array([1.27744412, 1.27027965, 1.26871395, 1.29586411, 1.27668428]), 'score_time': array([0.00604653, 0.00499177, 0.00637054, 0.00602984, 0.0048027 ]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.95283019, 0.95283019, 0.94339623, 0.96190476, 0.88571429])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 21}, {'fit_time': array([1.28152728, 1.26295638, 1.2503202 , 1.27511764, 1.27774835]), 'score_time': array([0.00517249, 0.0048089 , 0.00662398, 0.00601578, 0.00530505]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.91509434, 0.94339623, 0.88679245, 0.96190476, 0.88571429])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 9}, {'fit_time': array([1.28248191, 1.28976703, 1.30453777, 1.31898761, 1.30882406]), 'score_time': array([0.0064652 , 0.0048008 , 0.00481725, 0.00548434, 0.00490785]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.9245283 , 0.95283019, 0.91509434, 0.93333333, 0.8952381 ])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 15}, {'fit_time': array([1.27650428, 1.27142262, 1.29327798, 1.27413583, 1.26378131]), 'score_time': array([0.00540614, 0.00653267, 0.00531435, 0.00581026, 0.00611043]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.93396226, 0.97169811, 0.94339623, 0.92380952, 0.8952381 ])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 21}, {'fit_time': array([1.28569388, 1.26460433, 1.24861479, 1.28097177, 1.2612927 ]), 'score_time': array([0.00482655, 0.00531411, 0.0051775 , 0.00518513, 0.0048399 ]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.94339623, 0.9245283 , 0.98095238, 0.9047619 ])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 15}, {'fit_time': array([1.28765178, 1.27541685, 1.27016163, 1.29459715, 1.29431558]), 'score_time': array([0.00510335, 0.00598335, 0.0055933 , 0.0060277 , 0.00478387]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.9245283 , 0.94339623, 0.93396226, 0.94285714, 0.9047619 ])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 21}, {'fit_time': array([1.31359911, 1.30674005, 1.27625418, 1.32345343, 1.28635263]), 'score_time': array([0.00485301, 0.00605202, 0.00645733, 0.00522923, 0.00482488]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.93396226, 0.94339623, 0.91509434, 0.94285714, 0.92380952])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 15, 'smooth_window_length': 21}, {'fit_time': array([1.31612587, 1.30521941, 1.27613807, 1.30943465, 1.29292369]), 'score_time': array([0.00598335, 0.00614786, 0.00526738, 0.00594926, 0.00577688]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.93396226, 0.9245283 , 0.9245283 , 0.93333333, 0.9047619 ])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 5}, {'fit_time': array([1.26666474, 1.25075269, 1.23435307, 1.25351381, 1.25291276]), 'score_time': array([0.00584626, 0.00512624, 0.00528669, 0.00523043, 0.00527763]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.96226415, 0.93396226, 0.95283019, 0.98095238, 0.93333333])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 9}, {'fit_time': array([1.24021006, 1.24174261, 1.22391224, 1.25457311, 1.24364209]), 'score_time': array([0.00607705, 0.0052619 , 0.00533295, 0.00536084, 0.00524139]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.96226415, 0.94339623, 0.91509434, 0.98095238, 0.95238095])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 15}, {'fit_time': array([1.24337029, 1.23064399, 1.22045684, 1.25762844, 1.23915529]), 'score_time': array([0.00521946, 0.00568628, 0.00485802, 0.00586462, 0.00512862]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.91509434, 0.95283019, 0.93396226, 0.99047619, 0.92380952])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 21}, {'fit_time': array([1.24093938, 1.24991965, 1.23052764, 1.23441339, 1.24000835]), 'score_time': array([0.00531816, 0.00490761, 0.00524545, 0.00646162, 0.0047946 ]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.91509434, 0.91509434, 0.87735849, 0.98095238, 0.94285714])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 9}, {'fit_time': array([1.26892519, 1.2481401 , 1.23158908, 1.26455808, 1.26021791]), 'score_time': array([0.00489783, 0.0052774 , 0.00694036, 0.00588155, 0.00477767]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.95283019, 0.94339623, 0.89622642, 0.97142857, 0.91428571])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 15}, {'fit_time': array([1.25388622, 1.2754519 , 1.23095655, 1.26695299, 1.25815964]), 'score_time': array([0.00604987, 0.00597644, 0.00643754, 0.004807 , 0.0057199 ]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.94339623, 0.88679245, 0.96190476, 0.94285714])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 21}, {'fit_time': array([1.09849644, 1.15526652, 1.27175546, 1.31419921, 1.26852942]), 'score_time': array([0.00575256, 0.0055058 , 0.00506854, 0.00578833, 0.00517941]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.93396226, 0.95283019, 0.94339623, 0.98095238, 0.93333333])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 15}, {'fit_time': array([1.25946736, 1.25122809, 1.23126626, 1.26533294, 1.2896359 ]), 'score_time': array([0.00580525, 0.00677609, 0.00681496, 0.00583673, 0.0051055 ]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.93396226, 0.93396226, 0.93396226, 0.97142857, 0.93333333])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 21}, {'fit_time': array([1.28930902, 1.27869868, 1.25662422, 1.27243614, 1.27758193]), 'score_time': array([0.01002717, 0.0051055 , 0.00616169, 0.00677609, 0.00512671]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.95283019, 0.97169811, 0.98095238, 0.94285714])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 15, 'smooth_window_length': 21}, {'fit_time': array([1.260746 , 1.28013134, 1.25711942, 1.27759671, 1.28861356]), 'score_time': array([0.00621843, 0.00565648, 0.00566888, 0.00571918, 0.0051806 ]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.96226415, 0.94339623, 0.95283019, 0.99047619, 0.92380952])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 5}, {'fit_time': array([1.22724271, 1.21717095, 1.2054162 , 1.25368428, 1.19786954]), 'score_time': array([0.00593901, 0.00672007, 0.00521588, 0.00640893, 0.00629163]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.97169811, 0.98113208, 0.9245283 , 0.99047619, 0.93333333])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 9}, {'fit_time': array([1.20325661, 1.22573018, 1.19585323, 1.19646335, 1.21650934]), 'score_time': array([0.00646257, 0.00553393, 0.00525951, 0.00581717, 0.00527263]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.97169811, 0.96226415, 0.9245283 , 0.99047619, 0.98095238])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 15}, {'fit_time': array([1.21324348, 1.19357085, 1.20023656, 1.1970675 , 1.21741295]), 'score_time': array([0.00676489, 0.00582719, 0.00464749, 0.00512576, 0.00531411]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.95283019, 0.96226415, 0.93396226, 1. , 0.94285714])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 21}, {'fit_time': array([1.33918238, 1.21218443, 1.18299699, 1.17916512, 1.1933701 ]), 'score_time': array([0.00629783, 0.00479984, 0.00511432, 0.01100206, 0.00580454]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.96226415, 0.90566038, 0.99047619, 0.93333333])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 9}, {'fit_time': array([1.24194336, 1.23531485, 1.25879025, 2.03853631, 2.14114761]), 'score_time': array([0.00575924, 0.00518394, 0.00616884, 0.00907707, 0.00870299]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.97169811, 0.90566038, 0.99047619, 0.94285714])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 15}, {'fit_time': array([2.11098027, 2.12015772, 2.06344748, 1.72577977, 1.12444186]), 'score_time': array([0.01085901, 0.00811195, 0.00850105, 0.00538683, 0.00507736]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.97169811, 0.94339623, 0.91509434, 0.99047619, 0.97142857])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 21}, {'fit_time': array([1.17654991, 1.79470515, 2.04308796, 2.16348386, 2.10975504]), 'score_time': array([0.00478101, 0.01536536, 0.01304793, 0.01515055, 0.01040196]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.97169811, 0.95283019, 0.9245283 , 1. , 0.97142857])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 15}, {'fit_time': array([2.15629888, 2.19988632, 2.22354436, 2.32521462, 2.06394958]), 'score_time': array([0.00863647, 0.01146579, 0.01004004, 0.00965619, 0.0047338 ]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.95283019, 0.95283019, 0.90566038, 1. , 0.95238095])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 21}, {'fit_time': array([2.21002102, 2.19777727, 2.37320662, 2.19857311, 2.07442021]), 'score_time': array([0.01196265, 0.01000214, 0.00835419, 0.01514649, 0.00931072]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.96226415, 0.95283019, 0.91509434, 0.99047619, 0.98095238])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 15, 'smooth_window_length': 21}, {'fit_time': array([2.21384525, 2.24942851, 2.14531255, 2.23576188, 2.10509706]), 'score_time': array([0.015136 , 0.01543045, 0.00513172, 0.00994062, 0.00993562]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.96226415, 0.91509434, 0.98095238, 0.96190476])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 5}, {'fit_time': array([2.3343761 , 2.27341771, 2.34025741, 2.3660965 , 2.36486268]), 'score_time': array([0.00566387, 0.01144218, 0.009794 , 0.00990868, 0.01493692]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.72641509, 0.78301887, 0.70754717, 0.80952381, 0.84761905])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 9}, {'fit_time': array([2.47932315, 2.36845875, 2.36406779, 2.32420564, 2.35987592]), 'score_time': array([0.02065539, 0.01256132, 0.01097012, 0.01495075, 0.01297259]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.74528302, 0.74528302, 0.67924528, 0.80952381, 0.84761905])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 15}, {'fit_time': array([2.31824732, 2.39012265, 2.35024285, 2.36980677, 2.33508635]), 'score_time': array([0.01495147, 0.00994134, 0.00980854, 0.01031351, 0.00929236]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.69811321, 0.76415094, 0.69811321, 0.77142857, 0.82857143])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 21}, {'fit_time': array([2.32164717, 2.27004242, 2.26172209, 2.32027555, 2.32484698]), 'score_time': array([0.01292539, 0.01167965, 0.01594925, 0.01497841, 0.01510358]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.71698113, 0.75471698, 0.70754717, 0.76190476, 0.82857143])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 9}, {'fit_time': array([2.28473616, 2.28350425, 2.25977087, 2.33504248, 2.36002493]), 'score_time': array([0.01156425, 0.01029468, 0.01512337, 0.00992894, 0.01012254]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.68867925, 0.73584906, 0.69811321, 0.80952381, 0.84761905])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 15}, {'fit_time': array([2.31010103, 2.29973674, 2.31308651, 2.30395603, 2.30235982]), 'score_time': array([0.01031399, 0.00678968, 0.00629115, 0.00981236, 0.0078187 ]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.78301887, 0.78301887, 0.70754717, 0.82857143, 0.83809524])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 21}, {'fit_time': array([2.27832222, 2.29494047, 2.29983115, 2.34303904, 2.2848053 ]), 'score_time': array([0.01032043, 0.01495886, 0.01244044, 0.01032734, 0.00984526]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.70754717, 0.73584906, 0.69811321, 0.81904762, 0.83809524])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 15}, {'fit_time': array([2.32227111, 2.29020023, 2.25197768, 2.32373953, 2.29499936]), 'score_time': array([0.01033545, 0.00801921, 0.00932717, 0.00683713, 0.01514769]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.73584906, 0.77358491, 0.69811321, 0.80952381, 0.85714286])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 21}, {'fit_time': array([2.26505923, 2.30505252, 2.33259916, 2.32087064, 2.36974764]), 'score_time': array([0.00995421, 0.01252484, 0.00998759, 0.00933337, 0.00833058]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.74528302, 0.77358491, 0.67924528, 0.80952381, 0.82857143])}]\n", "[{'baseline_lam': 15, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 15, 'smooth_window_length': 21}, {'fit_time': array([2.34222293, 2.31983662, 2.26989722, 2.37504435, 2.34614801]), 'score_time': array([0.00763345, 0.01046777, 0.00982475, 0.00832653, 0.00883198]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.75471698, 0.76415094, 0.71698113, 0.79047619, 0.83809524])}]\n", "[{'baseline_lam': 15, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 5}, {'fit_time': array([2.4123795 , 2.47987747, 2.46888566, 2.48653126, 2.48263192]), 'score_time': array([0.00764537, 0.01498151, 0.00978971, 0.00997996, 0.00714207]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.59433962, 0.66037736, 0.64150943, 0.73333333, 0.61904762])}]\n", "[{'baseline_lam': 15, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 9}, {'fit_time': array([2.48187375, 2.4698875 , 2.38521338, 2.48001575, 2.36981153]), 'score_time': array([0.00996876, 0.00996828, 0.01488948, 0.00989151, 0.01033258]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.5754717 , 0.68867925, 0.66981132, 0.71428571, 0.62857143])}]\n", "[{'baseline_lam': 15, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 15}, {'fit_time': array([2.54290223, 2.49276209, 2.41545296, 2.41549373, 2.4006424 ]), 'score_time': array([0.01198769, 0.01033044, 0.01189351, 0.01051664, 0.01353812]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.59433962, 0.66981132, 0.66037736, 0.74285714, 0.62857143])}]\n", "[{'baseline_lam': 15, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 21}, {'fit_time': array([2.3900969 , 2.36505461, 2.38117242, 2.392591 , 2.36236477]), 'score_time': array([0.00994134, 0.01115847, 0.01162481, 0.01158786, 0.01176119]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.59433962, 0.68867925, 0.66037736, 0.76190476, 0.61904762])}]\n", "[{'baseline_lam': 15, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 9}, {'fit_time': array([2.35996413, 2.37674046, 2.36753011, 2.39099336, 2.3404758 ]), 'score_time': array([0.01116681, 0.0115819 , 0.01073551, 0.01169658, 0.01048803]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.59433962, 0.68867925, 0.63207547, 0.76190476, 0.64761905])}]\n", "[{'baseline_lam': 15, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 15}, {'fit_time': array([2.33301497, 2.3552599 , 2.34848738, 2.41099286, 2.42212272]), 'score_time': array([0.00987887, 0.01041842, 0.01073647, 0.0110364 , 0.01166415]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.60377358, 0.68867925, 0.63207547, 0.74285714, 0.64761905])}]\n", "[{'baseline_lam': 15, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 21}, {'fit_time': array([2.35600519, 2.34346318, 2.34463906, 2.38442039, 2.38442469]), 'score_time': array([0.01047444, 0.01035929, 0.01045871, 0.00773144, 0.00942755]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.58490566, 0.66981132, 0.66037736, 0.74285714, 0.64761905])}]\n", "[{'baseline_lam': 15, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 15}, {'fit_time': array([3.09147239, 3.01485729, 3.09968019, 3.28464007, 3.26326966]), 'score_time': array([0.01599145, 0.01520395, 0.01349092, 0.02018213, 0.01763344]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.59433962, 0.6509434 , 0.67924528, 0.73333333, 0.61904762])}]\n", "[{'baseline_lam': 15, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 21}, {'fit_time': array([2.97163463, 3.03355026, 3.06994104, 3.05160475, 3.09864759]), 'score_time': array([0.01492572, 0.01671052, 0.01351309, 0.01611495, 0.01146746]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.58490566, 0.68867925, 0.66981132, 0.6952381 , 0.64761905])}]\n", "[{'baseline_lam': 15, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 15, 'smooth_window_length': 21}, {'fit_time': array([3.11755967, 2.40674758, 2.37411499, 2.3709805 , 2.33793712]), 'score_time': array([0.01449203, 0.01069522, 0.01177907, 0.01178765, 0.01033735]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.58490566, 0.67924528, 0.64150943, 0.76190476, 0.65714286])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 5}, {'fit_time': array([2.27040052, 2.23467112, 2.20359397, 2.25994039, 2.26132417]), 'score_time': array([0.01039553, 0.01019406, 0.01031876, 0.0102911 , 0.01220179]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.9245283 , 0.95283019, 0.91509434, 0.94285714, 0.91428571])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 9}, {'fit_time': array([2.24831772, 2.24128032, 2.20485854, 2.28147244, 2.23868942]), 'score_time': array([0.01178145, 0.0104475 , 0.00901413, 0.01178789, 0.01413965]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.93396226, 0.94339623, 0.90566038, 0.95238095, 0.92380952])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 15}, {'fit_time': array([2.24100471, 2.25458789, 2.20777631, 2.28718877, 2.20956588]), 'score_time': array([0.01171494, 0.00943708, 0.01216173, 0.01216102, 0.01126552]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.93396226, 0.96226415, 0.9245283 , 0.94285714, 0.8952381 ])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 21}, {'fit_time': array([2.2317493 , 2.24117589, 2.24299192, 2.30499411, 2.27898002]), 'score_time': array([0.0092783 , 0.01252055, 0.01047373, 0.01173949, 0.01160192]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.94339623, 0.88679245, 0.95238095, 0.87619048])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 9}, {'fit_time': array([2.31194639, 2.30401778, 2.28587937, 2.30086064, 2.28045082]), 'score_time': array([0.01022267, 0.01194453, 0.01162243, 0.01154757, 0.01176023]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.94339623, 0.87735849, 0.93333333, 0.88571429])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 15}, {'fit_time': array([2.25372028, 2.27062249, 2.2332058 , 2.32385445, 2.28007674]), 'score_time': array([0.01267576, 0.0115149 , 0.01000047, 0.01047683, 0.01164937]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.93396226, 0.98113208, 0.9245283 , 0.93333333, 0.92380952])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 21}, {'fit_time': array([2.26770973, 2.24244308, 2.25725317, 2.28016043, 2.20408154]), 'score_time': array([0.01189566, 0.01162839, 0.01150155, 0.01034665, 0.00915766]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.96226415, 0.9245283 , 0.96190476, 0.91428571])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 15}, {'fit_time': array([2.18596506, 2.25685525, 2.24415636, 2.26658654, 2.2589035 ]), 'score_time': array([0.0116148 , 0.01108599, 0.01182032, 0.01224113, 0.00985456]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.93396226, 0.97169811, 0.90566038, 0.95238095, 0.91428571])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 21}, {'fit_time': array([2.27013683, 2.31861186, 2.24878883, 2.31070805, 2.31961679]), 'score_time': array([0.01148248, 0.01035666, 0.01036811, 0.01169801, 0.01039052]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.93396226, 0.9245283 , 0.9245283 , 0.95238095, 0.9047619 ])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.1, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 15, 'smooth_window_length': 21}, {'fit_time': array([2.29664421, 2.26564932, 2.27890253, 2.31936789, 2.24480462]), 'score_time': array([0.01151848, 0.01161408, 0.01049852, 0.00976968, 0.01024485]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.9245283 , 0.90566038, 0.94285714, 0.9047619 ])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 5}, {'fit_time': array([2.22292376, 2.20514178, 2.18913221, 2.24800944, 2.2052536 ]), 'score_time': array([0.00933576, 0.00863481, 0.0103569 , 0.01160383, 0.01034021]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.93396226, 0.94339623, 0.99047619, 0.94285714])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 9}, {'fit_time': array([2.18754673, 2.1836648 , 2.19425344, 2.20331168, 2.1853807 ]), 'score_time': array([0.01021814, 0.01142836, 0.01041842, 0.01177406, 0.01064587]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.9245283 , 0.95283019, 0.89622642, 0.99047619, 0.94285714])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 15}, {'fit_time': array([2.15926933, 2.15858865, 2.16119218, 2.20752859, 2.21999645]), 'score_time': array([0.01186705, 0.010355 , 0.0103004 , 0.01129603, 0.0101707 ]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.96226415, 0.9245283 , 0.99047619, 0.91428571])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 21}, {'fit_time': array([2.16283917, 2.15131688, 2.1423564 , 2.15021729, 2.14506483]), 'score_time': array([0.01209855, 0.01022029, 0.01028085, 0.00906372, 0.01030231]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.91509434, 0.93396226, 0.90566038, 0.98095238, 0.94285714])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 9}, {'fit_time': array([2.19272494, 2.16753721, 2.18098164, 2.23220944, 2.21996975]), 'score_time': array([0.01644611, 0.00951743, 0.01014352, 0.01162815, 0.01156044]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.95283019, 0.96226415, 0.88679245, 0.98095238, 0.94285714])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 15}, {'fit_time': array([2.19366765, 2.14010024, 2.13206863, 2.16759872, 2.14993858]), 'score_time': array([0.00877619, 0.0088551 , 0.0117898 , 0.0086832 , 0.01037121]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.94339623, 0.9245283 , 0.99047619, 0.95238095])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 21}, {'fit_time': array([2.13990331, 2.15383458, 2.43042874, 2.22895885, 2.38337779]), 'score_time': array([0.01169991, 0.0103364 , 0.01058459, 0.00853539, 0.01221609]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.93396226, 0.97169811, 0.93396226, 0.98095238, 0.93333333])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 15}, {'fit_time': array([2.85003734, 3.3025229 , 2.96506548, 2.88860512, 2.86833906]), 'score_time': array([0.01249456, 0.01620007, 0.01616549, 0.00983286, 0.01664186]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.96226415, 0.90566038, 0.99047619, 0.94285714])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 21}, {'fit_time': array([2.83771634, 2.88532019, 2.8097086 , 2.82525826, 2.89977431]), 'score_time': array([0.01759291, 0.01469612, 0.01032591, 0.00732803, 0.01501226]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.97169811, 0.97169811, 0.9245283 , 0.99047619, 0.93333333])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.01, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 15, 'smooth_window_length': 21}, {'fit_time': array([2.96054745, 2.83498025, 2.80017805, 3.03469276, 3.41012073]), 'score_time': array([0.01451516, 0.01512742, 0.01460123, 0.0156641 , 0.01448154]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.93396226, 0.94339623, 0.90566038, 0.98095238, 0.92380952])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 5}, {'fit_time': array([3.09009123, 3.15748215, 3.19996548, 3.18764925, 3.28720951]), 'score_time': array([0.0124886 , 0.01497102, 0.01765299, 0.01243925, 0.01552129]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.93396226, 0.93396226, 0.99047619, 0.95238095])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 9}, {'fit_time': array([3.11998153, 3.13469958, 3.01880455, 3.18526697, 3.02865529]), 'score_time': array([0.01518822, 0.01150489, 0.01510763, 0.01494217, 0.01510549]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.97169811, 0.97169811, 0.91509434, 0.99047619, 0.95238095])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 15}, {'fit_time': array([2.98646307, 3.01783538, 3.10471582, 3.09996152, 3.09169412]), 'score_time': array([0.0138123 , 0.01511264, 0.00980878, 0.01498771, 0.01299596]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.93396226, 0.94339623, 0.9245283 , 1. , 0.97142857])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 21}, {'fit_time': array([3.33453798, 2.67525339, 2.77499223, 3.01500607, 3.29442263]), 'score_time': array([0.01500821, 0.01463032, 0.01513863, 0.01988316, 0.01551008]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.97169811, 0.93396226, 0.94339623, 1. , 0.95238095])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 9}, {'fit_time': array([3.48635864, 3.23744154, 3.15026236, 3.01497054, 3.29984426]), 'score_time': array([0.01397467, 0.01499081, 0.01511931, 0.00981736, 0.00828862]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.9245283 , 0.95283019, 0.88679245, 0.97142857, 0.95238095])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 15}, {'fit_time': array([2.99128604, 3.26029849, 3.12672806, 3.0383327 , 2.99596667]), 'score_time': array([0.02711987, 0.01578355, 0.01540136, 0.0140202 , 0.01249433]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.94339623, 0.94339623, 0.91509434, 0.99047619, 0.95238095])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 21}, {'fit_time': array([3.12899899, 2.85994649, 2.71002316, 2.69484758, 2.70198441]), 'score_time': array([0.0112381 , 0.0114789 , 0.01514745, 0.01517344, 0.01294088]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.93396226, 0.9245283 , 0.9245283 , 1. , 0.96190476])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 15}, {'fit_time': array([2.80984402, 2.80604649, 2.6979475 , 2.85989523, 2.75014067]), 'score_time': array([0.01512456, 0.0141499 , 0.01512384, 0.01496744, 0.01496363]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.97169811, 0.9245283 , 0.90566038, 0.99047619, 0.92380952])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 21}, {'fit_time': array([2.69927549, 2.77724576, 2.86114359, 2.96020985, 2.73521447]), 'score_time': array([0.01309252, 0.0097928 , 0.01615024, 0.02227974, 0.01103258]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.96226415, 0.96226415, 0.93396226, 0.99047619, 0.95238095])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 15, 'smooth_window_length': 21}, {'fit_time': array([3.13526487, 3.07540059, 3.00959301, 3.0539012 , 3.13313007]), 'score_time': array([0.01928329, 0.02027917, 0.01639509, 0.01512361, 0.01151299]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.93396226, 0.91509434, 0.9245283 , 0.99047619, 0.97142857])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 5}, {'fit_time': array([3.41001797, 3.48455238, 3.54466534, 3.37596202, 3.25729847]), 'score_time': array([0.01036191, 0.01509809, 0.01944184, 0.01515889, 0.01759911]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.78301887, 0.82075472, 0.78301887, 0.6952381 , 0.8 ])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 9}, {'fit_time': array([3.43201399, 3.52493095, 3.56988239, 3.26954436, 3.20376873]), 'score_time': array([0.01977754, 0.01345825, 0.01721001, 0.01710868, 0.01607466]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.81132075, 0.80188679, 0.79245283, 0.74285714, 0.80952381])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 15}, {'fit_time': array([3.6802001 , 3.62939596, 3.45614552, 3.78360796, 3.8261342 ]), 'score_time': array([0.01509142, 0.01551056, 0.02026749, 0.0184803 , 0.02011704]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.79245283, 0.78301887, 0.78301887, 0.74285714, 0.8 ])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 21}, {'fit_time': array([3.61975431, 3.44756365, 3.3868885 , 3.2651124 , 3.20960546]), 'score_time': array([0.01464772, 0.01594615, 0.01460981, 0.01522732, 0.01513386]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.80188679, 0.83018868, 0.77358491, 0.71428571, 0.78095238])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 9}, {'fit_time': array([2.31638145, 2.33721542, 2.32019687, 2.32230473, 2.31658792]), 'score_time': array([0.01349068, 0.00788283, 0.01253223, 0.01831579, 0.00995493]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.79245283, 0.81132075, 0.80188679, 0.68571429, 0.8 ])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 15}, {'fit_time': array([2.37338424, 2.32489967, 2.35609388, 2.38297701, 2.35485792]), 'score_time': array([0.00664043, 0.00932884, 0.01222563, 0.01383376, 0.01016808]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.81132075, 0.82075472, 0.79245283, 0.71428571, 0.80952381])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 21}, {'fit_time': array([2.34214377, 2.38483548, 2.39468503, 2.38520074, 2.30417681]), 'score_time': array([0.01282048, 0.01536012, 0.00987744, 0.01298571, 0.01763344]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.79245283, 0.81132075, 0.78301887, 0.73333333, 0.78095238])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 15}, {'fit_time': array([2.43293285, 2.40993881, 2.42535615, 2.36974192, 2.38469505]), 'score_time': array([0.00997329, 0.00982785, 0.00978732, 0.01031494, 0.01247549]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.83018868, 0.81132075, 0.80188679, 0.71428571, 0.8 ])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 21}, {'fit_time': array([2.32963371, 2.36354876, 2.32173014, 2.3402319 , 2.37521148]), 'score_time': array([0.01151705, 0.00832415, 0.00982833, 0.00978827, 0.00999379]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.79245283, 0.81132075, 0.78301887, 0.72380952, 0.79047619])}]\n", "[{'baseline_lam': 20, 'baseline_p': 0.0001, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 15, 'smooth_window_length': 21}, {'fit_time': array([2.37991834, 2.30470824, 2.33707285, 2.28251719, 2.08471727]), 'score_time': array([0.01031303, 0.00932121, 0.00880456, 0.01596975, 0.01511836]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.80188679, 0.80188679, 0.77358491, 0.68571429, 0.81904762])}]\n", "[{'baseline_lam': 20, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 5}, {'fit_time': array([2.40538025, 2.31685185, 2.37020254, 2.35020733, 2.3608129 ]), 'score_time': array([0.01300168, 0.00980115, 0.00978446, 0.00986409, 0.01400781]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.66981132, 0.71698113, 0.60377358, 0.65714286, 0.72380952])}]\n", "[{'baseline_lam': 20, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 9}, {'fit_time': array([2.35966182, 2.35485101, 2.36006546, 2.38497853, 2.40402818]), 'score_time': array([0.01034045, 0.01494122, 0.00978971, 0.01029468, 0.0107882 ]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.67924528, 0.71698113, 0.60377358, 0.63809524, 0.71428571])}]\n", "[{'baseline_lam': 20, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 15}, {'fit_time': array([2.37021446, 2.39198804, 2.3750217 , 2.3864646 , 2.38431883]), 'score_time': array([0.00930452, 0.01279664, 0.01347065, 0.01098394, 0.00897646]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.64150943, 0.72641509, 0.5754717 , 0.68571429, 0.71428571])}]\n", "[{'baseline_lam': 20, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 3, 'smooth_window_length': 21}, {'fit_time': array([2.38323474, 2.39411807, 2.37510133, 2.35733318, 2.38433957]), 'score_time': array([0.01184583, 0.00981569, 0.00980353, 0.0127933 , 0.0072782 ]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.64150943, 0.67924528, 0.60377358, 0.64761905, 0.7047619 ])}]\n", "[{'baseline_lam': 20, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 9}, {'fit_time': array([2.2873013 , 2.33262491, 2.3235786 , 2.35395503, 2.310359 ]), 'score_time': array([0.00939727, 0.01154804, 0.01036 , 0.01244879, 0.01175666]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.6509434 , 0.71698113, 0.5754717 , 0.64761905, 0.7047619 ])}]\n", "[{'baseline_lam': 20, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 15}, {'fit_time': array([2.32716656, 2.31920099, 2.33662939, 2.33931208, 2.29356146]), 'score_time': array([0.0098927 , 0.01159406, 0.01088881, 0.01325727, 0.01041913]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.68867925, 0.73584906, 0.60377358, 0.62857143, 0.7047619 ])}]\n", "[{'baseline_lam': 20, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 5, 'smooth_window_length': 21}, {'fit_time': array([2.30517626, 2.30634713, 2.28889322, 2.29828334, 2.29947948]), 'score_time': array([0.01030588, 0.01052213, 0.0114162 , 0.01038861, 0.01104951]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.67924528, 0.72641509, 0.60377358, 0.61904762, 0.72380952])}]\n", "[{'baseline_lam': 20, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 15}, {'fit_time': array([2.91851807, 2.82336879, 2.83572459, 2.82081437, 2.92844152]), 'score_time': array([0.01066136, 0.01288652, 0.01453924, 0.01308012, 0.01309586]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.70754717, 0.73584906, 0.58490566, 0.63809524, 0.67619048])}]\n", "[{'baseline_lam': 20, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 9, 'smooth_window_length': 21}, {'fit_time': array([3.87813878, 3.97478247, 4.09288049, 4.01539588, 3.92453146]), 'score_time': array([0.01673341, 0.02021503, 0.01864934, 0.02181458, 0.02007008]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.6509434 , 0.68867925, 0.59433962, 0.64761905, 0.6952381 ])}]\n", "[{'baseline_lam': 20, 'baseline_p': 1e-05, 'max_depth': 6, 'n_estimators': 251, 'smooth_polyorder': 15, 'smooth_window_length': 21}, {'fit_time': array([3.56980085, 3.5767231 , 4.12484026, 4.00038314, 3.71829653]), 'score_time': array([0.01830745, 0.01505828, 0.02472568, 0.01977682, 0.01626277]), 'estimator': [RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251), RandomForestClassifier(max_depth=6, n_estimators=251)], 'test_score': array([0.68867925, 0.70754717, 0.59433962, 0.65714286, 0.7047619 ])}]\n" ] } ], "execution_count": 7 }, { "cell_type": "code", "outputs": [ { "data": { "text/plain": "(0.9735489667565138,\n {'baseline_lam': 5,\n 'baseline_p': 0.001,\n 'max_depth': 6,\n 'n_estimators': 251,\n 'smooth_polyorder': 3,\n 'smooth_window_length': 9})" }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "k = 0\n", "best_params = dict()\n", "for r in results:\n", " mean = np.mean(r[1]['test_score'])\n", " if mean > k:\n", " k = mean\n", " best_params = r[0]\n", "k, best_params" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-04-30T19:04:48.175220400Z", "start_time": "2024-04-30T19:04:48.149936700Z" } }, "id": "846605ecc9c07eb4", "execution_count": 8 }, { "cell_type": "code", "outputs": [ { "data": { "text/plain": "(1.0, 0.969774011299435)" }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "process_params = {key: best_params[key] for key in ['baseline_lam', 'baseline_p', 'smooth_window_length', 'smooth_polyorder']}\n", "classifier_params = {key: best_params[key] for key in best_params.keys() if key not in ['baseline_lam', 'baseline_p', 'smooth_window_length', 'smooth_polyorder']}\n", "X_train, X_test = process_train_test(process_params, experiments_train, metadata_train, experiments_test, metadata_test, scale=True)\n", "evaluate_classifier_params(RandomForestClassifier, classifier_params, X_train, truth_train, X_test, truth_test, iters=20)" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-04-30T19:06:08.372947200Z", "start_time": "2024-04-30T19:04:54.002559400Z" } }, "id": "f07d35308265f471", "execution_count": 9 }, { "cell_type": "code", "outputs": [ { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAGzCAYAAAAlqLNlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gUVReH39m+m94LCUlIICH03gSUKmLBgqKoiF3B3hv2/tk7FrB3RQSl9947gZCQTnrZbN+dme+PDZusCSCIBnTe58nD7p07d87MLju/OfeccwVZlmUUFBQUFBQUFBQAULW2AQoKCgoKCgoKpxKKOFJQUFBQUFBQaIIijhQUFBQUFBQUmqCIIwUFBQUFBQWFJijiSEFBQUFBQUGhCYo4UlBQUFBQUFBogiKOFBQUFBQUFBSaoIgjBQUFBQUFBYUmKOJIQUFBQUFBQaEJijhSUFA4LXjiiScQBKG1zVBQUPgPoIgjBYUmHL4BV1ZWtri9c+fOnHnmmf+sUQoKpyHPPfccs2bNam0zFBROCEUcKSgoKCicdBRxpHA6o4gjBYXTAIfDgSRJrW3GaYvNZmttExSOgtVqbW0TFBT8UMSRgsJfYNmyZQiCwHfffcezzz5LQkICBoOB4cOHc+DAAb++Z555Jp07d2bz5s0MHDgQo9FISkoK77//fotjfvPNNzz66KO0adMGk8mE2WwG4Pvvv6dXr14YjUYiIyO58sorKS4ubmZbVlYWl156KVFRURiNRtLT03nkkUf8+hQXF3PttdcSExODXq+nU6dOfPLJJ83Geuutt+jUqRMmk4mwsDB69+7NV1995dteX1/PnXfeSXJyMnq9nujoaEaOHMmWLVv8xlm/fj1nn302ISEhmEwmhg4dyurVq5sdb9WqVfTp0weDwUBqaioffPDBMT6Jlq/zkCFDMJlMPPzwwwD88ssvjB07lvj4ePR6PampqTz99NOIotjiGDt27GDo0KGYTCbS0tL44YcfAFi+fDn9+vXzXddFixb57Z+fn8+tt95Keno6RqORiIgIxo8fT15enl+/mTNnIggCq1ev5u677yYqKoqAgAAuvPBCKioqjnmupaWlTJ48mYSEBPR6PXFxcVxwwQV+x0lOTubcc89lwYIFdO/eHYPBQGZmJj/99FOz8Wpra7nzzjtJTExEr9eTlpbGiy++2EyYS5LEG2+8QZcuXTAYDERFRXH22WezadMmAARBwGq18umnnyIIAoIgcM011wCNU9d79uzhiiuuICwsjDPOOAOAHTt2cM0119CuXTsMBgOxsbFce+21VFVVHfNaKCicTDStbYCCwr+BF154AZVKxb333ktdXR0vvfQSEydOZP369X79ampqOOecc7j00ku5/PLL+e6777jlllvQ6XRce+21fn2ffvppdDod9957L06nE51Ox8yZM5k8eTJ9+vTh+eefp6ysjDfeeIPVq1ezdetWQkNDAe9NZvDgwWi1Wm688UaSk5PJycnh119/5dlnnwWgrKyM/v37IwgCU6dOJSoqit9//53rrrsOs9nMnXfeCcCHH37I7bffziWXXMIdd9yBw+Fgx44drF+/niuuuAKAm2++mR9++IGpU6eSmZlJVVUVq1atYu/evfTs2ROAJUuWMGbMGHr16sXjjz+OSqVixowZDBs2jJUrV9K3b18Adu7cyahRo4iKiuKJJ57A4/Hw+OOPExMT86c/j6qqKsaMGcOECRO48sorffvOnDmTwMBA7r77bgIDA1myZAnTpk3DbDbz8ssvN/uszj33XCZMmMD48eN57733mDBhAl9++SV33nknN998M1dccQUvv/wyl1xyCYWFhQQFBQGwceNG1qxZw4QJE0hISCAvL4/33nuPM888kz179mAymfyOddtttxEWFsbjjz9OXl4er7/+OlOnTuXbb7896nlefPHF7N69m9tuu43k5GTKy8tZuHAhBQUFJCcn+/plZ2dz2WWXcfPNNzNp0iRmzJjB+PHjmTdvHiNHjgS83rWhQ4dSXFzMTTfdRNu2bVmzZg0PPfQQhw4d4vXXX/eNd9111zFz5kzGjBnD9ddfj8fjYeXKlaxbt47evXvz+eefc/3119O3b19uvPFGAFJTU/1sHz9+PO3bt+e5555DlmUAFi5cSG5uLpMnTyY2Npbdu3czffp0du/ezbp165SAfIV/DllBQcHH448/LgNyRUVFi9s7deokDx061Pd+6dKlMiB37NhRdjqdvvY33nhDBuSdO3f62oYOHSoD8iuvvOJrczqdcvfu3eXo6GjZ5XL5jdmuXTvZZrP5+rpcLjk6Olru3LmzbLfbfe1z5syRAXnatGm+tiFDhshBQUFyfn6+n/2SJPleX3fddXJcXJxcWVnp12fChAlySEiI79gXXHCB3KlTpyNfNFmWQ0JC5ClTphxxuyRJcvv27eXRo0f72WCz2eSUlBR55MiRvrZx48bJBoPBz/Y9e/bIarVa/jM/WYev8/vvv99sW9PreZibbrpJNplMssPhaDbGV1995WvLysqSAVmlUsnr1q3ztc+fP18G5BkzZhz1OGvXrpUB+bPPPvO1zZgxQwbkESNG+F2Xu+66S1ar1XJtbe0Rz7OmpkYG5JdffvmIfWRZlpOSkmRA/vHHH31tdXV1clxcnNyjRw9f29NPPy0HBATI+/fv99v/wQcflNVqtVxQUCDLsiwvWbJEBuTbb7+92bGankNAQIA8adKkZn0O/x+7/PLLm21r6bp9/fXXMiCvWLHiqOepoHAyUabVFBROApMnT0an0/neDx48GIDc3Fy/fhqNhptuusn3XqfTcdNNN1FeXs7mzZv9+k6aNAmj0eh7v2nTJsrLy7n11lsxGAy+9rFjx5KRkcHcuXMBqKioYMWKFVx77bW0bdvWb8zDT96yLPPjjz9y3nnnIcsylZWVvr/Ro0dTV1fnmxILDQ2lqKiIjRs3HvH8Q0NDWb9+PSUlJS1u37ZtG9nZ2VxxxRVUVVX5jmW1Whk+fDgrVqxAkiREUWT+/PmMGzfOz/aOHTsyevToIx7/j+j1eiZPntysven1rK+vp7KyksGDB2Oz2cjKyvLrGxgYyIQJE3zv09PTCQ0NpWPHjvTr18/Xfvh108+66XHcbjdVVVWkpaURGhrabKoR4MYbb/TzigwePBhRFMnPzz/iORqNRnQ6HcuWLaOmpuaI/QDi4+O58MILfe+Dg4O5+uqr2bp1K6WlpYB3unbw4MGEhYX5fR9GjBiBKIqsWLECgB9//BFBEHj88cebHed4PDs333xzi+d0GIfDQWVlJf379wdo8bopKPxdKOJIQeE4aekG8EcREhYWBtDsphUfH09AQIBfW4cOHQCaxaOkpKT4vT98o0xPT292/IyMDN/2wzfpzp07H/EcKioqqK2tZfr06URFRfn9HRYV5eXlADzwwAMEBgbSt29f2rdvz5QpU5rFCb300kvs2rWLxMRE+vbtyxNPPOEnFrKzswGv4Pvj8T766COcTid1dXVUVFRgt9tp3759M5tbOu8j0aZNGz+xepjdu3dz4YUXEhISQnBwMFFRUVx55ZUA1NXV+fVNSEho9lmHhISQmJjYrA38P2u73c60adN8sTuRkZFERUVRW1vb7Djw578/TdHr9bz44ov8/vvvxMTEMGTIEF566SWf2GlKWlpas3P54/cuOzubefPmNft8RowYATR+H3JycoiPjyc8PPyItv0Z/vj9BqiuruaOO+4gJiYGo9FIVFSUr19L101B4e9CiTlSUGjCYY+M3W5vcbvNZvPz2hxGrVa32F9uiKU4EZo+RZ9sDgfYXnnllUyaNKnFPl27dgW8Xpt9+/YxZ84c5s2bx48//si7777LtGnTePLJJwG49NJLGTx4MD///DMLFizg5Zdf5sUXX+Snn35izJgxvuO9/PLLdO/evcXjBQYG4nQ6T8r5tXTtamtrGTp0KMHBwTz11FOkpqZiMBjYsmULDzzwQLOg4yN9pn/ms77tttuYMWMGd955JwMGDCAkJARBEJgwYUKLWYcn+v258847Oe+885g1axbz58/nscce4/nnn2fJkiX06NHjqPv+EUmSGDlyJPfff3+L2w+LqZNFS5/RpZdeypo1a7jvvvvo3r07gYGBSJLE2WefrWRrKvyjKOJIQaEJSUlJAOzbt6+Zh8Bms1FYWMioUaNOePySkhKsVquf92j//v0AfgG0x7Jt2LBhftv27dvn296uXTsAdu3adcSxoqKiCAoKQhRFn2fgaAQEBHDZZZdx2WWX4XK5uOiii3j22Wd56KGHfGIxLi6OW2+9lVtvvZXy8nJ69uzJs88+y5gxY3zBuMHBwUc93uHMusOepj+e419h2bJlVFVV8dNPPzFkyBBf+8GDB//SuC3xww8/MGnSJF555RVfm8PhoLa29qQfKzU1lXvuuYd77rmH7OxsunfvziuvvMIXX3zh63PgwAFkWfbzHv3xe5eamorFYjnm9yE1NZX58+dTXV19VO/R8QZP19TUsHjxYp588kmmTZvma2/pu6Cg8HejTKspKDRh+PDh6HQ63nvvvWZPqtOnT8fj8TBmzJgTHt/j8filpbtcLj744AOioqLo1avXUfft3bs30dHRvP/++34elt9//529e/cyduxYwCswhgwZwieffEJBQYHfGIc9EWq1mosvvpgff/yxRRHVNI38j2nUOp2OzMxMZFnG7XYjimKzKY/o6Gji4+N9dvbq1YvU1FT+97//YbFYjng8tVrN6NGjmTVrlp/te/fuZf78+Ue9PsfisHemqTfG5XLx7rvv/qVxj3SsP3p93nrrrWYlA/4KNpsNh8Ph15aamkpQUFAzD1xJSQk///yz773ZbOazzz6je/fuxMbGAl6vzdq1a1u8zrW1tXg8HsCbISfLss9r2JSm5xwQEHBcYrClzwfwy5JTUPinUDxHCgpNiI6OZtq0aTz66KMMGTKE888/H5PJxJo1a/j6668ZNWoU55133gmPHx8fz4svvkheXh4dOnTg22+/Zdu2bUyfPh2tVnvUfbVaLS+++CKTJ09m6NChXH755b5U/uTkZO666y5f3zfffJMzzjiDnj17cuONN5KSkkJeXh5z585l27ZtgLf8wNKlS+nXrx833HADmZmZVFdXs2XLFhYtWkR1dTUAo0aNIjY2lkGDBhETE8PevXt5++23GTt2LEFBQdTW1pKQkMAll1xCt27dCAwMZNGiRWzcuNHnOVGpVHz00UeMGTOGTp06MXnyZNq0aUNxcTFLly4lODiYX3/9FYAnn3ySefPmMXjwYG699VY8Ho+vztKOHTtO+NoPHDiQsLAwJk2axO23344gCHz++ed/aerzSJx77rl8/vnnhISEkJmZydq1a1m0aBEREREn7Rj79+9n+PDhXHrppWRmZqLRaPj5558pKyvzCyQH75TYddddx8aNG4mJieGTTz6hrKyMGTNm+Prcd999zJ49m3PPPZdrrrmGXr16YbVa2blzJz/88AN5eXlERkZy1llncdVVV/Hmm2+SnZ3tm/JauXIlZ511FlOnTgW8gnjRokW8+uqrxMfHk5KS4hfI/keCg4N9cVNut5s2bdqwYMGCv8Wzp6BwTFojRU5B4VTniy++kPv37y8HBATIer1ezsjIkJ988km/dG9Zbky7//777/3aDx482Cy9e+jQoXKnTp3kTZs2yQMGDJANBoOclJQkv/32239qzMN8++23co8ePWS9Xi+Hh4fLEydOlIuKipr127Vrl3zhhRfKoaGhssFgkNPT0+XHHnvMr09ZWZk8ZcoUOTExUdZqtXJsbKw8fPhwefr06b4+H3zwgTxkyBA5IiJC1uv1cmpqqnzffffJdXV1six7yxHcd999crdu3eSgoCA5ICBA7tatm/zuu+82s2nr1q3yRRdd5BsrKSlJvvTSS+XFixf79Vu+fLncq1cvWafTye3atZPff/99Xwr4sTh8nVti9erVcv/+/WWj0SjHx8fL999/vy8Vf+nSpcccIykpSR47dmyzdsCvlEFNTY08efJkOTIyUg4MDJRHjx4tZ2VlyUlJSX7p7YdT+Tdu3Og33uHvQFOb/khlZaU8ZcoUOSMjQw4ICJBDQkLkfv36yd99912LNs+fP1/u2rWr7/vc0vervr5efuihh+S0tDRZp9PJkZGR8sCBA+X//e9/vlITsizLHo9Hfvnll+WMjAxZp9PJUVFR8pgxY+TNmzf7+mRlZclDhgyRjUajDPjO+2jlMoqKinzf2ZCQEHn8+PFySUmJDMiPP/74Ea+FgsLJRpDlv+GxSUFBoRlnnnkmlZWVR40FUlA42SQnJ9O5c2fmzJnT2qYoKJw2KDFHCgoKCgoKCgpNUMSRgoKCgoKCgkITFHGkoKCgoKCgoNAEJeZIQUFBQUFBQaEJiudIQUFBQUFBQaEJijhSUFBQUFBQUGjCf7oIpCRJlJSUEBQUdNyl7hUUFBQUFBRaB1mWqa+vJz4+HpXq5Pt5/tPiqKSkpNn6WQoKCgoKCgqnB4WFhSQkJJz0cf/T4igoKAjwXtzg4OBWtkZBQUFBQUHhz2A2m0lMTPTdx082/2lxdHgqLTg4WBFHCgoKCgoKpxl/V0iMEpCtoKCgoKCgoNAERRwpKCgoKCgoKDRBEUcKCgoKCgoKCk1QxJGCgoLCUbBVFLD191uozt3c2qYoKCj8Q/ynA7IVFBQUjsWWDVfhNBZh35vDwHYLWtscBQWFfwDFc6SgoKBwFJzGIgDsxpxWtkRBQeGfQhFHCgoKCgoKCgpNUMSRgoKCgoKCgkITFHGkoKCgcDTkxiJzkuhpRUMUFBT+KRRxpKCgoHA05MafSbe1tvXsUFBQ+MdQxJGCgoLCEZBED5Igsb+mHS5Ri9ta19omKSgo/AMoqfwKCgoKR8Bjr2dNSR9m7L6SzIgs+qXWtLZJCgoK/wCK50hBQUHhCLjtZraUdQdgT1UGHofiOVJQ+C+giCMFBQWFI+Cx11PvDvC9d9pqW88YBQWFfwxFHCkonMJY1pRg21re2mb8Z/E4zchNArJrLLWtZ4yCgsI/hhJzpKBwiiLWOamd7a3KbOwaiaBWnmX+adzOeqQm4qjKam5FaxQUFP4plF9bBYVTFFmUfa8li7sVLfnv4nHW4xB1vvfVNlsrWqOgoPBPcdziqLi4mCuvvJKIiAiMRiNdunRh06ZNvu2yLDNt2jTi4uIwGo2MGDGC7OxsvzGqq6uZOHEiwcHBhIaGct1112GxWPz67Nixg8GDB2MwGEhMTOSll15qZsv3339PRkYGBoOBLl268Ntvvx3v6SgonLLIouR7LZpdrWjJfxePqx6nqPe9r3U6W9EaBQWFf4rjEkc1NTUMGjQIrVbL77//zp49e3jllVcICwvz9XnppZd48803ef/991m/fj0BAQGMHj0ah8Ph6zNx4kR2797NwoULmTNnDitWrODGG2/0bTebzYwaNYqkpCQ2b97Myy+/zBNPPMH06dN9fdasWcPll1/Oddddx9atWxk3bhzjxo1j165df+V6KCicOjT1HNmVysytgdtlxuEx+N6b3crnoKDwX0CQZVk+djcvDz74IKtXr2blypUtbpdlmfj4eO655x7uvfdeAOrq6oiJiWHmzJlMmDCBvXv3kpmZycaNG+nduzcA8+bN45xzzqGoqIj4+Hjee+89HnnkEUpLS9HpdL5jz5o1i6ysLAAuu+wyrFYrc+bM8R2/f//+dO/enffff79F+5xOJ84mT35ms5nExETq6uoIDg7+s5dBQeEfwVVUT/nb2wAIn5iBqUtU6xr0H2TPwmcYu7gbcsNz5OR2K3n8xhda2SoFBQWz2UxISMjfdv8+Ls/R7Nmz6d27N+PHjyc6OpoePXrw4Ycf+rYfPHiQ0tJSRowY4WsLCQmhX79+rF27FoC1a9cSGhrqE0YAI0aMQKVSsX79el+fIUOG+IQRwOjRo9m3bx81NTW+Pk2Pc7jP4eO0xPPPP09ISIjvLzEx8XhOX0HhH6VpzJHsEFvRkv8uFpfVJ4wAbNKffpZUUFA4jTkucZSbm8t7771H+/btmT9/Prfccgu33347n376KQClpaUAxMTE+O0XExPj21ZaWkp0dLTfdo1GQ3h4uF+flsZoeowj9Tm8vSUeeugh6urqfH+FhYXHc/oKCv8osqcx5khyKuKoNTC7/AOwbaKSw/JvQpKkY3dS+E9yXKn8kiTRu3dvnnvuOQB69OjBrl27eP/995k0adLfYuDJRK/Xo9frj91RQeFUoKnnSBFHrYLF7R8I75DUrWSJwsnGVlnEpg3j0UoR9B31A2qd4dg7KfxnOK7HoLi4ODIzM/3aOnbsSEFBAQCxsbEAlJWV+fUpKyvzbYuNjaW83L+oncfjobq62q9PS2M0PcaR+hzerqBwutPUc9T0tcI/h0X0L6FgF5XScP8WinZ+hdtQjs20l6oDq1vbnH8lp7Nn7rjE0aBBg9i3b59f2/79+0lKSgIgJSWF2NhYFi9e7NtuNptZv349AwYMAGDAgAHU1tayefNmX58lS5YgSRL9+vXz9VmxYgVud+MP08KFC0lPT/dlxg0YMMDvOIf7HD6OgsLpTtNU/qbxRwr/HNY/iiNJgySeXl48y6EcqnM3H7vjf4x62+7G11VZrWjJ6UN17iYs5bl/qq8kSWz8bTx7Fj2Os776b7bs5HNcj0F33XUXAwcO5LnnnuPSSy9lw4YNTJ8+3ZdiLwgCd955J8888wzt27cnJSWFxx57jPj4eMaNGwd4PU1nn302N9xwA++//z5ut5upU6cyYcIE4uPjAbjiiit48sknue6663jggQfYtWsXb7zxBq+99prPljvuuIOhQ4fyyiuvMHbsWL755hs2bdrkl+6voHA6Y69sjJ+TT7Mb8r8Fi+QhDRVPYWQGTkpEA876Koyh0cfe+RRAEkU2b7scj76KPvq5BLfJaG2TThmswv7G19YDrWjJ6UF51jJ2Fl8PgkzXNjOJSh8MQM3BrVTkL+GQ42sEWY1ejMNi2undyQRWcTcpnptb0fIT47jEUZ8+ffj555956KGHeOqpp0hJSeH1119n4sSJvj73338/VquVG2+8kdraWs444wzmzZuHwdA4n/vll18ydepUhg8fjkql4uKLL+bNN9/0bQ8JCWHBggVMmTKFXr16ERkZybRp0/xqIQ0cOJCvvvqKRx99lIcffpj27dsza9YsOnfu/Feuh4LCKYPH1rgCvKQUH/zHkUQRC3AxOtqi5nFMXO0x4qwrPW3EUc3BjXj0VQCU7v9VEUcNOM2VuA2N4R12z8FWtObUpmjzDxwsewOXoQQEb9uO4muIyb+UyDbD2F3WIHwaksvdVPrtHymegzEs7h+0+ORwXHWO/m383XUSFBT+CiU/LUba4P3F0XU2EX1lr1a26L+FpSyXp+Y+x+D9E+nR8Bw5PmA/sy5KIqbTiGPsfWqwc949lOtmARBiH0TvsZ+1rkGnCKW7FrC7/Bbfe5XHyBmD16E1BraiVacekuhhxcK+iLq6Y3dugQjn2XQ+6yU0hoCTbNnff/9WogsVFE5RRKcNoeFxTHQrnqN/mrqSHdg8RvSHH5cBm9uI01bRilb9eSRJolpuLNhrVe9BkiRUKqUcgbliOwDB9r5Y1fsRdbVU7FtKfPfzWtmyUwNbRQHbNtyE3bjf5xECaB/0DIKgprRsFmbjer99Osd8QEBUGoHRyYgeN2qN9h+2+uSiiCMFhVOUOouVUEIBsNvtrWvMf5CqsuXY3Ca/rBW324jTVtBqNh0P9UV7fFNqAB5dDbbKPAKj2wFe8VRfvAdjeAK6gNBWsrJ1qLftBiMEGbuhshupZTn1NbsBRRy5LDWs3XkWGBvb4qSrScycQFB8OgAx1lFsXzYFs3EdyALd235GRPuBvv6nuzACRRwpKJyy2J2uBmkEVfVO2rWmMf9BaqX1WN2jkRHRq7bjlDqjlfXUWEqOup/oslN1YC0RaQNbrXaO6Haye+c9XgFg64VHqMVuzKE6b51PHOWv+4Rcx/Po7W0ZMHrBv+KG9meQRJF6zTYAwmP7IBbXA+B0lh9lr38v1op8zIf2EBCRQva2F6g1+i8PFuYYRuY5j/u16QJC6TP2SyzleYDk+079m1DEkYLCKYrb3Zih5nSfvvVCTkfMxVm4DWVY3QG0VS8hSvs2drEvJvddVDiOPK0muuysXzgOu/EA4Xkj6XFOy+s8/p1Iood1C87FYcwFSU1yu5spLZiDnRzqqjcDVwBQUvMNGMFpLODQtlkk9B7/j9vaGtTmbUHU1qPyGIhofwZ1FbtABJf47xZHotuJWttYBLl480/kl07Hbsz2NlTi5y0C6N3+F0ISj5zkFBidfPINPUVQxJGCwimKu0ltI7fnP5s30SqUHZgHQK09jLbqGQAY1RswuQWq3fVH3C9nzbvYjd608BrdUlw2MzrTP5vsUZW92iuMgHamB4jOHIbDcogKyy/Ui94Ua6e5EoexMUPrYPmbJPDfEEc1JZsAMLkyUGv1BEVkQDnU6TdgrcgnICqplS08uUiih/W/X4DNlEWEYzSJHSZxIOsFLKYdzcRQUwZ0XY4pMuGfM/QUQ4nMU1A4RZHExkDg/25OaetQYfGKoxpnKCoavXZGBMxCy8HxkuihxPGV772s8lCRteTvNbQFakq9N/8AW2dSBl4HQHiytziuXZ+H226hrmQXAILkfT52GUpw248s+v5N1Fu85x6o7whAdMcRaJ2RoBKpzl9/tF1POSTR06zNXltO8dZZOGrL2bPocdbOG43N5C1yWWWYz7aCK7zC6A8ka+8lI/QV9Pa2pIe8+J8WRqB4jhQUTlmkJoucqmThKD0VTible5diN2bj9OiwigYEdePnEIILi6jFaa5EHxzpv1/WUkRdLSp3AKFif6oNi6mt2kwbxh3zmPaaQ+RuepvY5LF+ga0ngsW2FwwQauzjazNFJqNxheHR1VBzcAP11d6VDgKd3bBp9iNq66kvySI8tc+Rhv3XYJW8xR+Dw7oCoFKrCZA6UstK7JYTW4y8fM9iDhx8CT1tCA8bSMrA60+avX9EEj3sXfI4ta71OPQFoGqcfjfY2/m8htTgdX8cwTtktLcnWNsdWfaQ1udujOHeIsx/5vv6X0ARRwoKpyiy3LjIqaCIo78N0ePGVV+FMSyWuoJd7CqaAmooqfTWlRKapPJHYcXiNrFt5c3IspvEuEkIGi2xXcZyKP9HMECYeAYBAR2oFhdjdx27uKAkSWxbfR020z5KC79hYOSqv1Q0zyZ7p/WCwr2xIjMWbOZghZnzQjIx61ZTXjgfSXaBDkzadoguGzbtXuorGsWRuTgLWRYJSeh0wnacirjt9Tj0+QCEtunpazfp21HLSkptP5Jsu6HZVOgf43U8TjsqjRbR5SB79SscUn0GRrBzgFrHcnKXPE+QvTeRocOI63ThcRcNLd+zBKetgsTel/mOt2/FM5Sqv/F2UNOi6PEJoxaIdI4lscNVlB2cR3TSCCLaK0ttHQ1FHCkonKLIkiKOAKqy1+KoLyOu27mo1Cf+k1WVvYbc/W/hEApxGQ4BoHe0waWtQFa5ifFcTJn2B1CDxhVGoeMCNIAgOHxjRAtmDjlDsBjXAJBVdx8AZfN+pUbrzfJp0+4y3E4zVIGDomPaVZm1DJupcc3KTWvHM/icVSd0jm67BafBe8ywhJ5Um608ucS7DE1s1zNJN62mXPUrGk8QAAGBHZDrJWzspbp6FUlchdNcwca956OSdAwKXYkuMOyEbDkVyVv/EahEtM4oAmIaM6yik0ZQUvgpbkMZK9f1wGRPJy78UrS6YPZVP4KsdpEo3ExSr8nkrH+TQ6qvvJ44ffURg1PqjZuod27i4KZX6BTzJrFdzv5TNhZu/Ib99Y8AUD7398bsMfVRdmpCuGMkAcZUJNlNYHB7qipXo1UHkznmKe/2/4B38GSgiCMFhVMV6b87rVZzcCsanQldUDjb865FVrsomz+Xnud8eMJjZu97Eatpl1+b01Dse12m/cH3ulPqO9ywvAwjoKKxxlQstexyhDcbu9rgXQRb54gjosNgrKXZUAUuXekxC+IVHPzEzwvgMhzCZanBbTejD4o8rurCdYXbQZBRu4IxRCTw2+rGxVXXlkXQMcKEpLXhVjtReYzEZpxNfWkS5aU/Uqteg8tSw7o1Z4NORFLZqcpdS1zXc/yOIbrsZK98FY9YT3K3GwmMOfXTuCVRpGDjlxRIbwPQJvAqACa8+itFZg9z7j2bxOJbKJTeA8Bm3EeO/Wmw4xMlhdIHlKz9AlFrAfAKoybESVcSm3IuW/Mn+B9cJbK7fCq1iyeTMfyRFu2rOrAec9kOBLWeHNuTvvY/ptUfJsI5hpj4sykr/o3E9lcRmtwTR20pHns9IW39s8v+K4H2JxtFHCkonKIITabVVP+h3Al7zSG2HrgcWe32NjRchhr90hZjff4MVdlrmgkjALU7CFHrH4hstLfn3U12XLKaYAQEGj1HUaoaSmszAYh2jSM4tDvlVfO8xfCA+KDLWbB5P9Nm72VE8jCGpyyhfM/CZgLjMAdWvEWdcS0AHYKe9XkMVm7oDXhrFPU997s/fZ7lBYtABQFiOiqViu35jetc7aqS6Bj/EntK70ZWu0gKuA1jeDz6kGi0edG4DeVsXj4Rj7HWt8++Qw8R2X6Ib1kNSZLYtvAW701bAxXb5jJw4HL0Qc0FY2tSX7If0e1ArTWQu+MdzNJmn7dQEHW0HXA1q3fnsa5cBej4Zd1erjrrTpyLyinX/th8QFkAQfYJo6a04To6nPmgr/L48NQcnOYKSnbOIjCiAwU5n1JrXE4xn1C85BNUbhMR8nCsnmw8qjpEtaXZd7ApgqhHVjsx2jvQre/7GCMSfceK63aur9+/LcuutVHEkYLCKYrwH51Wq8he0iiMmiLIlO2dR9t+V/7psWrztlFy4GcOqb4AIMQ+gN5jv/DrU1+yn427L0AlGunecSZBbTrywLNzAB3BuBCExoygcMFMpTOYs4buR6X2fj6J0kTKdy9ArQ8kqsMZXPTILOpEHT/knMNZyUupLltNHP7iqOrAevbte9xXY8ZkyyRx2ASsi3MoFj5ptM20mbVzzqFb/+nHzB4S3U4O8SUAkWEjAdhXZuHwvE+NR0d9eG/6RP6KvbaQyPSh1FnshAQaiTNdSoH0NjbjPv8xtRYOrH6VjiOmAVC85Qc/b4aktbFtxfX0Oft73/U4Hlw2MxpD4F9a0qRi30oOZr+JQdMGp1jhE6peA9WgE/36h7mHojUGMW/bRl/bhpxyJo3Q0GX0S8BLAGycewVm43oM9mS69niXnVvvxKHLI5bxhET1BkkiKv3MFquL64OjSBl0AwBRGUPZPPdaao3LvSZpbVTwq9+yHE1Ru0JJCr4VnSGCiHYDMZwmixz/21DEkYLCKYqqiedIzb9THEmSxIHl/8PtqSPjzGmotXpqqtZCY+wrBnsKGoKxGLdzwPwMxn1tiUof0vJ4okjVgTUYguPI3fYmlfq5vpgQlcdIZr/nm+0TFN+BgablqDQ6dIGhVNRaKLJ7p8H+NzoBljf2DREs1Hs0uEUJfYMYUKlUvniSDVkF1InefV2SjoL6BFTB31C65BtU7gAyE14lLKUve/bfjctY6hu311mfA9B+6P0YNsbjdtVRIL4FgM20j7U7htKv4wJM0UnN4q5EtxNnXTn7NzwPBq8QUEf35+6PF7Khwl90zN2YzZ3jBhIUl8aMBZt5cskhzmoj8N6kqynY9LavX/fEL8jd/wZm40ZKVJ8StrMvGn0Q+80PARDtvpjAwDRynS9iMW6naPM3tO07sdm1FV129ix9HI9oxqhPpMz9EwCy4CHQ04U641oShBtJP+uBFj/PYyFJEvsPPInDdJB6tjTvoPIXRtGucaQN8MaJrcur47BC2V3WfHmeHsM/JGft28T3uND7HYn//YTXDOs06AV2r76PWmPzWLJwx3BkJAJNGUQnDycovmOrVVZXaEQRRwoKpyhqWdPk9b9zWq189wIK5Q9ADaUrv6Fvx/nUCt5ppozQV2jTcxx788soyMtCb70P0VDF3tz7kMXn0RrDMIa1ob58PxFpA1GpVGQtfcabOVSMn8BCFhg0cBWVDoHSkkpMBh2x4cG+hVibPp1/sXQHMgKhaheRGn8PVoBgQ0Yg91A1HZNimp3P9MX+U3f7a1JJDvamh0taK7vKboIyoMm9r33Akz7vg1qjJXnAZACSLJPYs/IxqvS/A7B+7yjYC3p7AqHaQVTKv6F3J2Iz7fEO1DCmyh7LeTOyfSLNKHjoFqViXbmK7YU1vuPO3lYMqFlaDM//uoPxUZdSpvmOSNd5RLQfgD4w2ntMYHfFlEaDJTWpvW7HFJlA3W/bqDLMJ9syDWmtm8Q+E3FZaqjYv5Cyijm4KMNhzIfDeqKJt6RO6/2ci+TptBfvOe5ge4/Dyr6Vz/sVs/wjgbZuhBh7Uu6cS6cOrxOR1g+AbQeKybE2GlNkU+NwuTHoGoWPxhDQTLSd6BIrhtBoeo391K9NEr3C7UQ8bgp/P4o4UlA4RVHJAqGad5EIpsIz4dg7nIaUFH7vJxQ27B3tu4FGth9CncXORe+vwy5rGBD1INf3uA+3vpKdpd4pCxrui6HZQ9Gog6jUzfEbP9jeB50qmuj4Uby1YDdvbahtZkNGkJtebYMZmplAVb2dN9dXAwLD2gViKfNPjTZiBWB/cSVOtwcZmR5p3ukuq8PFqiI3oCFG56LMpaOoqg/q+M3NYkoEUU9a8MNojeHEdD7bt79Rp/FNMekCw+g6+k12L3zQLw7GaSyijG8BsGn3+NtnT8Mc9Tp1otfu89ppuOvcfvyyfj/rymvIrXb5+hZbRA4HdP24u45pTz1FYslEghK8MVWmmBQ02721kZqSFviYb4ovJuFcqirnA5BreYmi+TNwGosOX6w/zcqF/eia/hFhKT382uuK9rB7+5241BXoxCi69/sEU2QCkuhh86KrsJi2AxArXk5St2uxVR4kMuMs3JZqtIHhvmuZwaP+x9vjXTw4Xu+iyqXCKWtYsyefYd3T/rzRfxFFFJ3aKOJIQeEURPS4Mck1BGp/A0Dn+XNpwKcTLmsttdo1LW5z1pzFXV9uYGGeC3fDz9TaCj03mMchB89q1v9wPMdhjPY04iMuJ3nYNb62H376mZYCPbLqtWTttvPl7oY1phCI07t46OKhlHz3tl9ffUPm2h2z8wDQInJJx30MzWzDwfI6HLKGAJWb8ztF8OHWeiqcsZw5ehvgrV1z8OC7iJhJSbyLuK5jfON+NG8Tzy07RIcgkXmPjPO1q1Qquox+CXvNXRzY8Br1nu2+5UnAW4ogQjcSj1iHVhtOyuAbeWmuN0OtQ5Cbt24cC0DvNDOsr+GQXY0kSVgdLipcjV4Qi6Sl2uIkqkmmk0qlokeXL6jIXUyNeT0CAsnptxCR1t/XJ67rOegORLD94GRktbNRGDUhxD6IIFMm1bYVdOr+KobQWCxlB7DXFlJbuZFSzbd4dLVs33cdvQ3fU12wloLKj3AaGwoyNogsO2bW7hhKqukx3I4anzAKsvWkw/AH0RoDfQugHitof3dxLQCpYVoCrR7218PKPUX/qDg63ai12Hnvt41MGt6N+IiQI/arMlsx6rSYDDpe+mEVgzq2YUDHpL8UV9YaKOJIQeEURHRaMQmN3oYgVU4rWvP3ULLjZ2S1C50jjoEjFrF90W24pQoCQy7i6q2BVHkaPRuHKQ+9mot6P0bBls8osn2KqKsFQOeIx2UoASAj5GXaDLvIt8/SbQd4+tedHHJ6hVG3MA8JoXp6JEUyc10hRQ5/wZQe5Oane8YSYNBRavFfjFTbJHMNwI2ar/c6mJW1j2iDBOg4K9lISnQwUE+No3Hdl+jMYURnDmvxWny0phAJHVn1KpZtz+HMbql+241hcQ3BwmApzyV70wvExJ9HfPfzmo2VVVoPCKRFNLrkerZPAPbgQk1BeS17C8uRETAKHgRBxiZp2ZxdxNl9MvzGCm6TQXCbDGAKRyIirR+pVQ9xwPoE4C02GB45kLgu51F9cAMRqf1R64zAg759wtv1BnoTJ55PwMYMcmxPIurqfNN4Tb1OWmckejEBi2kbADm2p33bYsUJdDr32SPadiSyKx2AjvTYIAJqbOyvl8ittB73OP8VbA4Xk95ZwPYaDR9sWUXnEA8vXt6XTslx2BwuFm7JpqTGwox1JZS7/f8/vbupjt9uMZKZFNtK1p8YijhSUDgFEV12dDSu4aUXqo/S+/SkrGo2mEAln82rszeRmXg3Y/t15ImvllHlabxRqZEI1nio8eh4eF4BQ7okkzbkdtK4/ajj7847xJTP1pFn03HYYzQgWuLruy/w9bn+7N4cPFTFPZ+vZku1mks66Hj2ylHoG2JP1E7/KSUNzQN3AeyyhvyGTbeM6orZ5gKKqfMce+rkh5U7KXU13lBu/24nK1LjCQ1seV4qMLodPc6ZfsTx8uvcgI5ObUJ9bQEGHaFqN7WijlnrsrA6vRl4iQEyHkkm1wa7Cqo4+wTrAyb2vgL78mL0+ghSht3ga4/ueNZR91Op1ST3v5rg3Ey25l3WbHu8dA0dxzwGQMX+VewomuS3vW3nycdtq8XmIM/qvfUN65LEij2FkG+msM51jD3/myzaks313+2nqVzYVafhppnreObCrlzzdVaT3s09s4Eq92knjEARRwoKpySiy+7npdD+y8SRtSIfi3EnbknDQ+szKHfVwaY66mxOlh2oAXSMaqviretH4PaILNqWw52z85BQMeqVpbx6cSajenVoNq7F5uDNORtwukU+3Wmj6Y+1gMyzE5ovmZASF8FP95/fop26BpEmysGoBTMqwUHuc2P4ZMEWIoIMfLwyh3KbRKVLg4SKtEAXnZLjqDJbARmXrG7RE9SUr9cdBNSEa1yYPWrMopavl+/glrH9jueSAuB0uTnk8P6s920f77dtRGogP+x38fo6b0wVQLsIPXa3RK4N9peZfX1f/Xk1bo/EA+MH/6njqtRqMoY9eOyORyC8XW96a36haN+3hIR3IzSxp2+K7DBRHc6gl/5ncna9Sp1uA7FcQlDc8U+DzducjYgKk8pN/45tESWJ9zebKbA2D8r+L1NabWZrTgm3/NjotdYi4m7w5hY5dH8QRo2EqN1oVTI2UeDNSzu32OdURxFHCgqnIKLThqaJOFLT8krwpyPVORsp3P8Z6GVW5ZxLuavRQ/LCojzMolfQ3HFOd/Q6LXqdlnEDO6FVq5j6cw4WScuN32fT/vc9TB3WnuHdUzHbnVSbbZz7wWZooexBktHF3PvGEGg6vhRpnWwDQJTDveIIGyqViuvP9hZpvHCQ94c/u7iCb1fu4Yoh3rXIIoIDyAz2sMes5Zs1+1sUR4XlNYx9Yznmhqyyx8a059etBSwpknlxZSWvrJzN6BQd4/u3P6q4asqGfYWIqNAh0iOtjd+2szol8MP+XJpen05tQjHb3SwvqW+YavKey5vra737dCmgb0bbP3m1/hohbTs3q+78R0KTutIraeZfOs7SPd6q6B3DVKhUKgZ0TMIg7MQha1i89QBj+3X8S+Ofzuw6eIjYsCAWb8/lgd8bF+HVIfLI8ASuGt6dLQeKeWveDpaX+O87OknFZQPa8+umXJ65ciQBhiMUcjpNUMSRgsIpiOi2o2kiiFR4jtL79KB05zxyCl7xLo7ZkGa/qNi7uGuU1kWFW+cTCu1MXg9MU8b264hKJTD1R++Tf7ZF6w2MbgiO9uIvjAbFyEy7pC8xYUHHLYwAtLL3M5BkbwCqGhuyJCH8Ibi0fZsoHp0w1K9tSPsI9mw2syTfTX5ZNUkxjVWk1+zO44rPd3M4xz1O7+KcPulYHW6WFHnvOh7UzD0oMvdgFr8EGumW6u8Jaonft3rT9xJMIhqN/5Re7w5tgMbsu4ExElcP6052SSUfbt1Bvk1DSWUdd3y62mfX5yv2HlEclVTVYdBqCA/+88ubnArsLbMDOnonhQKg0ahpHwI7a2HxrqL/nDjyeETW7s0nv7yOxxYWo0FCRKDponHfXd+L7g1iu3eHRGakteGj+Zt5bUUJQRqJH287k8Ro7xp8/5agdkUcKSicgohuGyoaa+wIiMiyjCCc2sUgJUnCeiibgNhUv7o1LpuZvYfuRTI2xuzU1aZR6gwBZB47J53bf/He2DuHePjopuEtjj+mTwa/RIawfFc+y/dXNCtyCDAiUeC9m0aj1fz1VOnD3ju5od6AIHiw260YA4KOue+wLkm8v3knLtSMen0lsQaJfm2D6JsWw71zC/z6zr3HG+d0br8MnlhYiOcPgegXfLiVGRNsnHWUG09heQ1f7fHaOzw9otn2mLBgbuoZxMa8Wj6dOoqgBrHYM60NoepN1Io6xr6+hBpP4xP/0jy7rxbUYUqrzVzz3hKy6jUYBZFVD40g4jQRSG6PSKHNe23P6NhYcbxfcig7t1nYVtx8eZBj4fGI3P/pEuYdsKEWZIYkGbjijHTCAk+dIOTC8hpemb2Re87vgyjJtI0ORaVS8eu6Pdw2q2mdKME3bQbeeKFvbuhH5xT/BxWVSsWNY/pw/WjptMtC+7Mo4khB4RTE5bAS4CeOXEgeCbX21K6NkrXkSQ6pviBy53l0O/t1ADxOO+uWj0TSNwojrT2WN3deD0CCwc35AzLZXVhJQbWNl68eflQvT+eUODqnxDEFyCut5o05m1hy0IYowz1nJjJ5VK+Tdj6HPUeiw41sUiEIEubK8j8ljvpmtOX2foW8s74aZ0PAdv4+J9/t8xdGb41L8XlfQgONbJ3mzdgKMhl49efVvLu+Cg9qrv0mC/mbfYRrXFzfP54uSVEM7tIYl3PLxys4/JM+aViXFm166NLmlcVVKhVX947mzfW1PmEkICMjYJG0XPXGb3x5l3cNL7dH5Iq3F5Nr8/azyxpunr6Y7+9tOWbrj3y+eCtZJTXcfUG/VhFU6/bm40aNBpH+HRvXIhvaKZGPtu0l16bj5R9Wcc9F3qKikiTx3Hcr+WibhUldTDw5sTHAvKSyjldnb2D2fjsu1IAGZBq8fd76U+1MLr64dRjxkUdOff+rLNqSzfrsQ9xxXl8MOi0uj8iBkkq6tovH7RH5aP4mXlzpXWNv1qstl85oSojaxRltjTxx2RlEhQYete+/VRgBCLIsy8fu9u/EbDYTEhJCXV0dwcHBrW2OgoKP7DU/Ej13MSFa71pZVvFMhHs+xxR66n5PRZedZasaY0bipCupc2zGpTmEpyHlPll7NxGJA/kxy8PTy7xp8hMzjTx7dcsp7q2N7YlMTBRTuDyc+EE21BoHB8/9jZTeg/70GNN/38jrK4uxSf6Bvtd3D2R09xT6HCOmp6zGzJhXFlPtaR7DEaFx0SlKx5pDos/bdH6qhjdvGP2n7QM4eKiKs95oXJPsnQvbMWNlNpsqvWPOvrEHXdvF8/qsNby+zpvBp0JCQoWAzOp7Bx9RAJRU1vHmnE3kVtmaefo0iDw2IoFJI3oel70nwrYDxVz+8Sbssob0IDfzm9STcntEBj812y9rUC94cMr+/oNBMTJatUCPtmG8ts4/k/GyDANZZRa21/jvo0HklfNTuWBgpxO2/bB3SqdWMW3CYD6ctwmTXkuP1Fgu+WSHr1+I2u2rjH48aPB+fy5M0/LKtSNOC9Hzd9+/FXGkiCOFU5Ctiz4nddkygjU/AGATB1F/w4fEtG1zjD1bjz2LHvct8NoSka5z6TLyVVRqNVe/MZcV3kXSWXbnAJJjT61V3QFkSUJ6Kg41DnLmRtFmUA2GUA97+n1E5pjxxz3eyp25vDFvFzHBOh65eMBxeRN25JYw8aMN1EtHv/HF612sevyCE7q53f3xQn7KdnFWG5hx21isDhedn1iA3BDHFa11+WrYnJOs5u0bR5H+8BzcqDknWc27NzcvVOp0uRn09Bwq3UcPzt3zxEhMJymAV5Ik3B7RV45hQ1YBa7OK/MTMi2MSuWxoV7/9ducd4uIPNuCQj39C5fXzkxk3sBMej8j23BLu+GpTs/pZwWo3c+8Y6ovNORK5JZVsP+hddy+v3MzqA5UU1Yt+wu2vEqV10aeNkdToIO4aN+C0EEN/5O++fyvTagoKpyA2hwuhSUC2gBu79dQtUie67JSJP4HK6zEq98xG1DWmhqcHv4Aj7kwufmUOB+skahsy0h4cEnVKCiOA4tw9JOBAEsFt1eBxeG8gYmXBMfZsmcFd2vlNgx0PXdvFs/O5cThcbnJKKpkwfT31kpYOQW7CjWrsbolwk4Zplww54Rvdq9eNZJrF7quvFGDQMblbEJ9s98bhHBZGKiTub7ihXtDByA/7XfyWJ/LyD6u475IzAJi9dg9vLNrXsH6Zdz81EunBIsnhBn7L818Q9o6PF/HhlHNOyG5Jkvhh1S4KKuqZubkCS4OANAkeJGgmdiZmGpsJI4BOyXFsemw0pTX1XPfRKvLtXruv6mwC4PNdtmb79I2SuPGsDEb0bA94g7t7dUhk6aPxzFy4hXU5FSwu8vofzKKW22eu5Md7z+V/P61Bp1HRKzXW953IK63m+Z/XMz9f+sNR1PyxGOrRUCMhNgmm7hku0ic5lPsuGsTMRVupsTh8n5PCkVHEkYLCKYjdYW8mjmzW5j/Opwr5Gz9D0tqQ7VGUxF7O0C6PcnD1a+iMscR3HYfOFMyFL81ma3XjT45e8DD+jBOfavi7KVr/EwmAvdqALAmIDu8NSlWX32o2GXRaOiXHsfO5cX/L+H8sPDnt8qGc3aOAy2Z6F+MN17iY3DfWJ2jvvqAvK15fQrlbx8ebq1CpVrM4q4I9Zi1Na0w9PDSaG8c0Vpj8efUuHG6Rb9bnsb1Gw5JCkSe+Wsajlw5Go1HjdLmxOFx8u2IXC/aUsq1aQ2qAi1/u8S/H4PaI3DdzMbMOHI7Pa/Ss2f4gisI0Lt69oicDMpM4EoEmA2kmA8sfvxDAF4zu8Yjof1iFQavhrC5t+X1LLrec0/uIcVNajZobxvThBuDpr5fzcYPA3Fqtpt3Dvzd2XFcD7EWH2BC31ByD4CFQLVHp0RGidnNuejAX9E0jJMCAxe5Er9XwwcIdnN2tLWP6pPvEsc3hoqymnpS4xuD8wyUoFI6NMq2mTKspnIL8+uWrDM9ahkntXTPMKXVmz8j/0WNw8yKGrY3odrJ60Zm49eW8v/F+NtYk0CHQzez7x6LTqPlkwRaWZ5WystQ/0+6qziaevvLoFZRbkx0vDKerYxNl2yOp3qsjulsdER2tZBtH0v6BH1rbvH+Uuev3EhMWSO8Oic22OVxu+j05hzqx5WmfGRPSj5hlV2exM/T5eT5P4hmxMref3ZWbv9jcYozVlN4hPq9HrcXO0Ofn+2JsAlRurH+YduwS6iE6UMvwTvFcPKiTb6rtn+ZAcQUj3tpwzH4mwUOcScKgEWgXYeSC3u0YmJl00qYc/00o02oKCv9BXG63n+cI3DgcjiP2by2qDqxnV/ZUPPpqRHsYm2q8tXj2W7RkTFtAoMrdMM3RKIzOiJUZ2TmeiWd2ayWrj43L6aC9fScIYCvz3lA9DZ4jo6uiNU07bnJ2rsNWc4guQy484TGOVvvHoNPy6eS+PP7jJiptEqVODUFqDzMm96FHWsIR9wMICTTy89QhTJq+ggK7jlWlAqtm7uSw1ylA5UYryD7x9M6mOrql7Ke63s6D84poWidq9eMXIElys/pOpwJpbaL4/ZbePPXjBvZXe7CKKiL1EiF6AZ1aID5ET0ZcCNeN6qUIoVMERRwpKJyCuN0iSFZfqIGAG+cpJI6qczayf+/TWE27fQUdc823IuMf72Jp8iTfN0ri/vO6t+h9ONXI3ryEToITUQ7B0bByy+GYI5NYd9R9HTYLFSUHSWjXqVmxyH8ah81CxI8Xk4qFHaJI17Mu+VuO0z2tDb884E0WcHtEXB7xT1dITomLYPEj5zPgidlUNvEWjWqr4p0bz0OrUbP1QBGXfbwFl6zmxu+z/fbvFubh+QneGKhTOa64Y1IMX9/dfKFghVOTU/irpKDw38UtighyYwC2gAun032UPf4ZJNHDgZVvszV/glcYNRAn38w7O71xKGfGQ4egRlsNgoeJnYx8ecc5JySM6qor2PDzm1SVFf31E/iTeFa+DoDD04PDXi+P3atUDdQfcT9JFMl/dTiJX5zBuo/v+rvNPCa7l31LKN54F9eWr/6RY2o16uNeOkKrUbPhqQuY3NUbw3NFpoHpt47xFfLskZbA/NsHocM/kPuGHkH88sAFp0yxRYV/D4rnSEHhFMQjygg0WSVcduFyte4SIvWHDrBr8+3YTPt8bVGu80npejNfbzdTL5VjFDy8es0IX2Dvn8mcch6so35ZIYGDEzCkhfraRY8Hq6WOvA8n0te+ngO7ZhL28EZU6hObNpEliYLsHbRpl0lVWSGVBfuo3/4Lbc++i/iUDF+/0sIDdLOvB8BsGwXsBxo9RzosLS4hArBz+fd083gX48ws/h7R8wpqTev9zKp2/+R7HWvZ02p2/BlUKhWPX3Emj1/R8vaUuAjmTOnP+v3F/Ly5kEv7JjHhFJ6aVTi9UcSRgsIpiCQJCE0WnhVw4Xa7jrLH30vxttlkVd8Fpsa2OOlKMs9+Eo9H5L3VswEdw5L1x7XWlizKVH+dhWh24SqqJ+7h/jhdNqpeGkwbOYdg4PDtL03MYf/2lXToeeYJncO6j+9iQPFMAGIa/gD49BvWtb+HXuMfQK3WUPvplcQCLikOlzPSt7/bqkGWBTSCg8ryIiJjmxdv9Gz52vc6BCv7tq0gvXfrFLjc8POb9LWu8r1PkA9hrq0iOLT50iKnCx0So+mQGM1Vw3uclPG2L/kOt72O3mNvOCnjKfx7UMSRgsIpiCgJCEKjGBJw43b98+LIbbdwcP0HFErv+toSVbeS1HMS+uBISqvN9H9pJd4AWpn7x/U9rvEde6sQzd7zkqwenDm15OydQyc5p8X+8m8PI3dfddyxPOXFB+lV9MUf16X10T/7FfJe+A6PoCND9B671nMruBuXPJFFAY87AK3OQuHnt1AsuWh77WeERXnXnZJEkVTLJu++cgChgpWa7HXQCuLIWl9LxvYXACjBK4biqaJg5yo6D74A8HrmNv/yFqjU9L3w9n/cxtYmb+8muq3wiqKctl1I7dK/lS1SOJVQYo4UFE5BPKIGldCkzpHgweH+Z6fVDu34ndXLB/sJox5J39DhzHtYnVvLJS/PbhBGXrqGin4rz/8Z7FlVhGg+JFp3J2HaV7EeKMO45ze/PrKswiYOBiDds5tNs9/70+PXVZWx/s2riP6wOzrBQ446hU19/kf2uDlknfMD69Ia44KSpULSGoRRpdAPl9QDh3zIbzy33esV62FdRTf7BsLeyWDjT2/gdjnZvvhrQrFgk3Ucro+iLtvBn8VzkjyDsiSxa8ZtBOONWbuu+9NsivSutVafu97Xb9OP/6Pvzifou/0xdq74+aQc+3Ti0IbGc67cs6z1DFE4JflL4uiFF15AEATuvPNOX5vD4WDKlClEREQQGBjIxRdfTFlZmd9+BQUFjB07FpPJRHR0NPfddx8ej/8P/7Jly+jZsyd6vZ60tDRmzpzZ7PjvvPMOycnJGAwG+vXrx4YNx64joaBwOiBKagSh8f+EILhxusWj7HHyOVj4hq/KtdHengThRsJT+/DGrDVc+80+NlU1xv5Eal08Nu74pzoc+2cRpPkFneoAAeol2LfPINGxDIB61ZnIsga3nIjV0+h96bPt4SMGZ2dvW8mG1y9n09wPsT4eQ8hbHehXPdu33Tb0cXqPupL2XfqT0WcE/a98AnlaDes7PsyWwKGUEsW6mMtRubxrfbmlg37jW6uaT0n12TGN7JeHkbLmAQD0uAkTvMIkwvzn4nzWzngAzbNRrJ1+O7L0xwrJx8euVb/4zvmHoFFsDenEluBMAIylm339gg80Xhftihf/0jFPR0KKl/teq4s3taIlCqciJzyttnHjRj744AO6dvUvw37XXXcxd+5cvv/+e0JCQpg6dSoXXXQRq1evBkAURcaOHUtsbCxr1qzh0KFDXH311Wi1Wp577jkADh48yNixY7n55pv58ssvWbx4Mddffz1xcXGMHu1dUPHbb7/l7rvv5v3336dfv368/vrrjB49mn379hEdHX2ip6Wg0Op4HFYkUYVK3SiGBEHC6fprN81jIbrs2KqKObj9XSp0v0BDseQBXZZiimqL1eFi5DOzyLY0pucbBQ9TBsYw9bzjn5Koq6og2vm+31RXQsN7STZi9OxBUHnQCfnoVDmUOj8gVn8TABHvdWKnvidB7kpCpBr2RZ8DQbH0z3nDO9DG35pNoW1Lu5Vu+Z/DkmsaGyM7IAy+l36X3g+Cd4fYLV9QVOTNttN4CmhaJddeaaIqcSqi9ivywgaSUrOaKGrIdO8CwCVr0DURtUliITZLHabAI6+jVl9XTfe8T0CAASWfsu4DJ/1v+eD4LmYTLAe8K68XE80PySMBWBnmFXsdbFtx2Cyo1Braufb7rlGqez9ulxOtTn/Cxz2dsFvrae9qFK4xll2taM2/i5rSEhyWegRBRcn+LEzBwaT26X/afbdOSBxZLBYmTpzIhx9+yDPPPONrr6ur4+OPP+arr75i2DDvk96MGTPo2LEj69ato3///ixYsIA9e/awaNEiYmJi6N69O08//TQPPPAATzzxBDqdjvfff5+UlBReeeUVADp27MiqVat47bXXfOLo1Vdf5YYbbmDy5MkAvP/++8ydO5dPPvmEBx988C9dFAWF1sReXYxaap6RJXn+vmk1l83MhqXn4zQWNl31gRD7QExR3sDje2cu8RNGY5LVvHfz2BM+5sE5H9FdqMYlxWHuOJqIrE8RBK8UsYjnEKz5EVljQpRsaALmQP1gHGI3DOrtAHRxbvGN1b/8WyhvfoxKQskP7I6ux6V03vIhNbWDUZEESARrvkZVuR9+vhFm3QxXzYK9s5E3fIIo/YQaMLmKsAC7I1JIqy3C6LZjF88mdkAA0d1HI4p3kGOWiP5hHEGCHaug58Ieb7I5KJPcVaMxSU4ObFx41PpCu397n/5N4sv6l32D0/EaeoPpiPscDWPlTgCyhXiWh3mXi9gdkMYhXSRxrkq2r/sNQ3Ak6YKbGlUQesmFSXCSf3AvSendT+iYpxu521fSCRG7SodRcpEoHaKm4pAvfkyhZTb88gMrv5pJ7/MuYsgV1yCoVF5PpyCwcfaPZK1ZQUVerv9OgsDtM79vHYP/AickjqZMmcLYsWMZMWKEnzjavHkzbrebESNG+NoyMjJo27Yta9eupX///qxdu5YuXboQE+PLFWH06NHccsst7N69mx49erB27Vq/MQ73OTx953K52Lx5Mw899JBvu0qlYsSIEaxdu/aIdjudTpzOxjgOs9l8xL4KCq2F3VyCrgUdJIgnXxy5rLXsWfEoVfrffZ6iw6g8Btpl3M7Xy7bz2Lx8PA0VKZsu4fBXCC/wrjHlkjoRuW8m9Z7zEYnAIp5PhPZFSvQhVMSoqUw2YbSJdN3wJZWup1C5ayBwBSHuXwgQqrxj/MFjs7btjfS4/Aki9QYiqw/C/IepqhmNXWq02yJegk7IIlDzMyb1avjsfAA8clvUsgabGkKdtXyadh4fdz6Xi7OXMbVqMQDihp/RbHoRNZCacS45539NzoJnyA2M4LKcdkyU7SwLHcg51Uux7VsCRxBHWRsW0n+fd0prrdyZAYLXg7H1u+cJzRhCcpeBGIx/PvsPIN7mLSXwarfrkAUVfet2kGNMZH7kIK4p+QXP1q+pDvMulLomvDsJjjK6WfZTlbfzPyOOzPtXALAwYiCdLdm0sxdTtHcDYVEXtLJlpx5FWbux19WhNRhY+dVMADb9+hObfv2JwLBwLDXVR92/fZ8BaA2Go/Y5FTlucfTNN9+wZcsWNm7c2GxbaWkpOp2O0NBQv/aYmBhKS0t9fZoKo8PbD287Wh+z2YzdbqempgZRFFvsk5WVdUTbn3/+eZ588sk/d6IKCq2Eo/4QRsnrQZElEBoiA9XSiS+D6KyvJn/zDJBFKmzzUMkGHNoiJK3VV+EaINDWhcTE64jvdh6SKPLyT2t4b3M5h0t1j0wUuOeigSdsx2GyNi0mQ9zu1xao+RWRSEK1MxBVsL9XOKJGxToGssQ0kps7fcVZ2zfjkPqC5SJquAizUIrxoj7Y9fXUWIsIj0kl0BFE/3ahULoF5tyFVFGAQ+qLXerXzA6XnEG1+yE0wlR0qjwsgoF92vuJcUGRyUGwW8XHnc8F4Mf2ZzLlkFfQWYUE9A31j8iaQ6rbjujeyRz9DK4p9oq0PVFdgaXEly/Dbq3HGBAEeAOm8/ZupHbuE/SwrfHZ0plstohp9FQfoH/um5D7JpW/hbI1aQJdLn6QwOCwY17XytICoqlBQmBXoHc9s2sK17IjwM0XsedyTckvdDUvR1u/BIDF4f3pV7eTbpb9OPM3AFcBsHX+p3gcVnqfd3OrV/n+OzCVeuNT14d0RSt5aGcvxlq8G1DEUVPMleV8/9TDSGLL8Y4tCaPw+AQMQcH0GD2WjEFD/24T/zaOSxwVFhZyxx13sHDhQgynoRJ86KGHuPvuu33vzWYziYmn/lIGCv8tHNZijA3rQUseAZVaRlCDThJ9q4QfD5IkcWDt/yjVfOttMDbvE2zvS8c+zxIY3c7X9vjXK/h8lw2AULWLR89O45LBXU7spJpQcjAL2/J3fO81qmIqQzVE1nrQ4F23bGObZDZq0slgL28J9wDwWpSJUSE3EWDpSZV7GgCiHIvlx0IA2o7NwDV/F7X5odT6Rn/F79h2Qw0fnLGUHeYreXivlbR6b9BNuettIrSP8HnieM7LTQagPnAdoltA73Hh1HjnGkW3N+6rUNuPDxOSCRDtXF0ym+CcxSwP60WiNRzwiqMIW4rXLqmYQy/3YP/Q50nrPZJ9H1xFT8sKP7t+Dj2TKV2nMbFkDmLOQrpKWegFN5HUEpn/Phs+KaDvnV9zLAq3LyUSOGBqi01t4vaCL+hTOpK+YhS7AoxsM3Wgu80r6uwqHb9FDsEtaLisbB5RZd6aSNnbVtJjrTe1f5NG+6+rAeRxu0hzeKu7bzZmEOOsYkzVKqSKva1s2amDtbaGpZ9+SMGu7X7CqF3PPpx1zU2s+/Ebdi9f5GtP7d2fsybdQEh0TEvDnZYclzjavHkz5eXl9OzZ09cmiiIrVqzg7bffZv78+bhcLmpra/28R2VlZcTGesu7x8bGNssqO5zN1rTPHzPcysrKCA4Oxmg0olarUavVLfY5PEZL6PV69PrTKyhM4b+H1Z5DgJQIKhBFFQgSarWMHhlnXRnGsKPHRUiShMdWh8tWQ2nWXPJdb4Gm8QdOb2+LWjbiUdXj0dQQLVxIp7FP+7bvzjvE5R+ux9yw2nk7k4v5D5/vW8rhRKksLSDn+8foVzWL+Ia2Wtd1yBGfsb1rKO0PWGhzSMOuJAMT276NVQjy2z9XSOPHXt05d+Mu4hxXU+eehE0a7tteO7cICD3i8Ze3qePN5DbkqydBGEwYEMQL2x2MKPOKmSr3s5zXEC6xKlLNSMv32NwqVHJjILzb5dWWgusMpscHYNUKPNPuZr7ffhefxl/ELXsar3OIPZXNEZn0qt9DHBXELb8elkPPJjbVEkhtQCr3d7oPSVDzeZsL8Kg0dOz5NPXB7cj7+i561y+mb+1vrP3oLjIvepiQ8KgWz89cW0X6mvtA8HqEns9+jbT4zQii1xsyqtTNdV2eYfrON4h2HuDTthfQrX4fK8J64hbUpIm57Fr9K6GL7vWNadjxBfzLxNHB3etpj4NaTSAh1VWUar0euejaba1rWCtQkX+QX19/Eb3RSGxaOiX791JVVIDo9l+qKDIxiaSu3YjvkkFQRCQjbphCr3PHYQgIRPR4CI1pvO/WVBwiMCQcrU5PaUE2MQmpp6X38bjE0fDhw9m5c6df2+TJk8nIyOCBBx4gMTERrVbL4sWLufjiiwHYt28fBQUFDBgwAIABAwbw7LPPUl5e7ssqW7hwIcHBwWRmZvr6/Pabf62ThQsX+sbQ6XT06tWLxYsXM27cOMB7Q1i8eDFTp049zkugoHBqYZcOYsL7Y1OijyQEK2FY0EkStsq8ZuJIEkWqc9ZxMPsdtEIodqkAm6nJU3DD75LKY2TQwFXoAkNbPO7/flzN11vLMXvUuBtWO1cj8fuD5/5pYVRWlEP559ehkkUSb51FcGgEosfD1t8/Jnnzc/Rr4tNxS20RhHo2xqayiN640hZjN5r5qc2ZzYTRYb5QXUOndtOI2lNNuO41QoV3cJNElf1xJJ8wkjCqVuKW2yMKHiQpnpXRKu7p7L9CfLitjulpQT5xdJhtoWps4iIi3PnUu/xT9+tlI1pVPeGuIJYvsXDRGQEUBKgY3+01Qlwyz9otvr4GSeC61OeYfuhD4sqW+eoOAdhlHdZbNhOR9Q0/7d9NvSbQt+3ruLE8+sP5RMZlEHH1O2z/ZArd7OsZUPQJvPkJblnNtp7PgCyR0v8CImO93u/c6RPpLjiREJgRP46ni/6HytX4XYlxiBQbYpje9w6qbFZWGdvx1IG3KNVH8F3M2UwsnUvnhVf6nW9n5zayNi4io09jDGh1eTH7f3sHQ/kWHEHJ9L3xnRNe0qU1qNy5iPbAxuAuXORZxRZjRyQE0qQCSgsPEJuY1tomnnQ8Lhc5m9eTmNkFh9WKtaYKS3UVv73d6Fktzclutl9S1x60SY0mJOcbUnO+RZ/r5tAvUeRHDyNu2M1EtU1GliT2b1lG9e4lhBQspKPbmwW4MXQMfWp/J0fdDuNV3xCfnP6Pne/J4LjEUVBQEJ07d/ZrCwgIICIiwtd+3XXXcffddxMeHk5wcDC33XYbAwYMoH9/b6rvqFGjyMzM5KqrruKll16itLSURx99lClTpvi8OjfffDNvv/02999/P9deey1Llizhu+++Y+7cub7j3n333UyaNInevXvTt29fXn/9daxWqy97TUHhdEQSPdQKZUQK3ic3O3r0Da91koS5fCcR7Qf4+pfu/J3dFQ0PBC1Mlx0mVrycpC6TURm8osPqcPkWB602Wxn/xgJyrDqapqpFaFw8OqY9ep22pSFb5NCXt9LduRWAdV89SMfLniH701vpbW50wTvEbtil/tjEkTiCn2Nq3IvUCaFskvvxYJunWIU3TsHocmDXGdBKEtdm1zC9Qzh7hC58HHUlIe0/Jv2AFZXsQqU5QKTuNlQYkFCTG6dhbrs2LNAEsVo1FL0o42wQiH0O7iGl8hBhtnoEIDwqmgdSg8iLj6Z9nZ4iYxAG2x7eKfDu4HDofFNqAGatiXj1lyDdDMDXa8w8lxnA7/EazqhoEFmCBTVmRDmeYE8QVQYV6U+UUFdVRuHe9diK95Le4wwiBQv2VW/wafe3AOjk3MtufUfv60GzmbP1Vnq905uOER1ZbzyPftW/AqAVRPpsbUhG2faIz7buDf++2XYiRYYYErS5WCyNAeipVisQyC9yDBhBLXsYWbWGPQGpvNl2IhNLG39ffwsZQ7C9gjNcmxAXPgEN4kj0eKj64Hz6iwe8HW1r2Ty/D73Oue5PfT9kScLjcZO1bh4Z/c9ulfRuY4G3vtG6kK5cfegXivUxbAjuTH/zTnJnv07slLf/cZtONqLHgyAIyLJEVVEhXz581xHjhv6Izmgksm0KvcZeQId+gyh7oh0xVPnKPsRRQVz5t/DNt2wIPYfONYvp0KRg7WH61Hrj8wJEMxHxySfr1P4xTvryIa+99hoqlYqLL74Yp9PJ6NGjeffdxgq7arWaOXPmcMsttzBgwAACAgKYNGkSTz31lK9PSkoKc+fO5a677uKNN94gISGBjz76yJfGD3DZZZdRUVHBtGnTKC0tpXv37sybN69ZkLaCwulEbf42Kj0mEhsWnbWjwyRrQAAdEuW1C0jhRgCqstc2CqMGTLYMNEIIMZHnoNYGoNYFENVhMGqdkRkLNvP8krm4GoKrE40utALk2vxF0XXdArn7wgHHvbL69qXf092+zve+f/l38NZ39G54XyFcjNN+BaBHoyoiVPsu53e/iTohFIDdQleu4gff/p9HRZBgDEX67nWSpE/pY7uV63ucw2zhYma3uZiusdu43fo2u4I6EGOvJq2umI9iJzBf8C8v4FR7f9WHZG/hptQk+l5yHiZ0SHYPmmgT11qtTJ8+HbVazbikJFIyuxC+/xtkwOI2IgmNUwL1ugB0nqXUpU/FtM+DXlLz5C4H7R1Wki0qwEiQai4uORVRjifeLrGCKAZ+eyUhpkhCBkyB9ffj2fsiX8SO4e2eH5BnTMAgOrnX8wI7HT15NeQOAM7t8S6hbjOXl87lkaQo6rq8RuEHl9DZue2In8GsqIt4IeUGOlmycZkkgrIaPT6hLi0h7nrqtF6BPL50AYYaMyPVy/km7hzeTLyC2wu/YnFwX27uejexzgpWbriaTq6drP34Xjpf8jC757zVKIwaCNjyIRxDHNksdeyY9Sqdsj8gSLDTBcAbE86Gbs/Q98Lbjrr/yUL0eEh2e2OuinVRJDlKSbMV8EPMKPqbd9KuZDZrvh+AWqNFZzQSnZJGWe4BBAG6jToHlaplD9n2Jd8RtfJRSvs9TEqv0YRGxPytU0luhwNBraa+qoJt8+eSv2MrEQltsZlrUanUFOzafuxBGhh8xTWkDziDXUsXEpuWTmqvxiWANv/2Mb2o8r0/XPrgMH1rm9cTA/g9YiBB7io6WXJ5vk0nJpkP0TMy+YTOtbUQZFk+8RSY0xyz2UxISAh1dXUEBwe3tjkKChxY8Ra/HlrA2D3t6SB8zGqxE9FCLe1VxSxy34Nj6De0EYeSlH49O/Zf76tgHeO+hMTMqwhJ9PfsWmwOVu3O4+dNB5mff/QikklGF9/dPpyYsOP/vyCJIoXPdiNJKqTecz4G1Ra0qsYq1qWqMXhsU7y26m5EqyphV0AqI3p/giBL9LDKbAn03ngEWebcEjeP73IgYKeN4VIAPHIUw3rMYH9Iy1NuR0Iliwwt3MAkfQI9a9viyvMv4WFID0ObFETQ4AQEtQrz0nwCVvVHtjlZvaAj14xu9M48sfZjzu+2CsMte0GSqP7cmx0rCR5kZNSylkjtQ9ilwVjFc/g0WcVb6QE8l/0aGdaDdLLk8EPMSB5pf6dvTI3k4dnqJ4kJzkGrcVBa2pl74p/yszHRfogllR8TNP5DJF0wm35+A2N0Km2X3EIIVuyyjtzRn3CtWU++PprHc94hxnSQ7tsuRqdq/E4URr3IrJjeBIsWphZ8TW5FECaNm+uHvUJ2QDI6yYVL1SiKX9r7CleXz+aPLMp8lLWpw3jw15FoEVnfaRr9xt/TrJ8sSWz44X903v0KAYKj2fbDSI9V/yNTc+s+upv+RR9TrQnm4zYXcl/+p1jURgb1+Yz16ydikF38WpRBmSOQOndTV6xMQscuXPLo06g1jZ5USRTJ2rCAzPkT/M9HFtg76ks6DTqxOmAOiwWP20VAqDceymW3s3PJfLbOm4O5ouwYe7dMhwGDkUURm7mOYZNvIiIhEaFB+Ofv20JCWldfnJBj5oW0EUvQCo3eprva38esQD0m8xzShVR+OvCjb5tLEBjQNgFJgEBJorbJZymjZeVlKwgzNE4dnwz+7vu3svCsgsIpRG39RirtEehlNwjgQIezIf7HgIsyZzDGgAVU5y0AHQiinv495mOKbJ51mV1cweXvraLS4+8Bygxx0zk2EJtbZE+pDaNW4NELejAgM+mE7d7402v0kwqRZBNmz0TquRSDajOVYYVE1BvwOMYDEKp5H62qBICv084EoL+5ijfXGZidqGFryCEGlzi4yLyQIMNPfsfQCBW8bffwhqmeCvshNgR3AEAruREFFZLg/UFOcuQTXO8go6iAczt1JTs7m64dOtN+hx5T7fOYNAIeOR61UIUkB1K/bzyOfTXINhFXYT2aou/RaO3U1uux6PznKs26ADRWgaqvFqLWJxM0si3WDaVQ590uYEav2o1b9tqWbqkHAni4/V0ciQ8L7kGXVMSu3eNITlpGbOwuvjxwGwVyOx5q2K/QGMfY8Im8/c5IUuzF9O10PlTnIN+6DIe1Bpe5mCUH95EfMoJIVzXja+awMHgyugav3GF61pUxoP413/syZxwhajtv7Huec3p+4BNGT+S8w6tJV/Ngxp0YVSbGHvoZU8PUSZE6mltDB2A2q2kbdx6TDs2i3+6n2HpwERHjnqdk06/ITgvG8m10t6+jn/fCNKOCMKKoAWDn8h/pNuzSI16jY2Gz1GEz1xIZn4QsSc28NqWFByj+9h76W5YB8E7i5ZxfuocSzxvotD8xuGYr38aezaRDszkvwSt4i2zBCECty0C7wGoqrTv5fPJ6IkLVuCK60LZbF8J3vknmH5aYAVAJMp0WXsH+xWnE3bGQoJA/t+ag6PGw8quZbJ47y9em0evxOJtPWx0RQQBZRqVWE5OSRpcRo+nQbxBFOTtJyewDwIavn6Y4Oo24jv2J/bgXKYCZAMxoiG38MgOwwxjNY1FRZMtLCKz1ZpNmU82IxHjOstmxCgJzAgOQGyrM1/5B5KrUhpMujP4JFHGkoHCKYCnPo06/joL68ehkb7nneowE4l0Z3ig4cdRfCKYPQZAJtvclJvVubvh8O6WWTZTbBc5oa+DMjvE88Hthw6j+wuj+MyK59dzm9X7+Ck6HjR67ngcBbOJZCIhohFJs0nBMVWAHBGwEaX4kQD0HCRV74yP5IeQ8AM4uO4Qq+hvGlVzJVZlnUF/yKkGan1o8Vsd9k/jfxSsJ6zKYX0oq2LU3i07WGoyRUeyurSdRkDije19EUSQy8gIMBgOjRo2i5of96GsfJUCzoNmYIdrPOeT8GMsqmUD1bEK1HwKQ5zZi0fqLI4vOiOhUodctQGXLxLKwC+rICA775AK0vyIIEirB+3SfarMd8bo9nvMOPcIWYU1SYbMFc9ml97FgrZ1AYT6klpBqPcSuLb/xUuxUPou/gP0BKYzq9ZFv/3B3LabNORQZ4oB2EOItwzCp5BdqjCq0i/IhfAwAaqEEUY7HKUajV3mnlQ7Zg6iI1RKSWEPPoiIGVW5idWRvRhYv5+ai75AQeCr1Vm5LvwXj4FuInf8MOlch93e8E7PWe7N7sP0dhLnNnF+5xFuz6auhtP3DebpkNXtNvVANmEqbjN6ER7cBIApY9+6N9C//lm4rbmB9xUH6jr/vuKej8vZuQvfdFcTLZRSo2tBWKgZgXfRlyGotCaVLSJRLOJxPtTi8HzPiLuDW/QJ2MRVH/X1cVfIQl3d7mf51O0i35QGQYPJ6GNs0/JuoqeOa1MNV2TdCk5krWQYLBsodAYSrrYTpvF6yDtIBeC2Fza5MDKOexBgSRrseXoFSWZiP02olJDqG0twDFGftpnD3Tspy/QOjG4XR4UkegbD4BPqNG0/bLt1w2WxU5B8kPj2T4Mgo3zU5tOpzjMm98LjL0b8UTypAg7OnP8ABoLHMll/CAMBXoUnMM9rZqteDUI9arPfbXqbR8E1wcy+uRtCgUWlwiN5rMKXLpGZ9TgeUaTVlWk3hFMBRW87GNRfjMpTwxJoH+Mm5gij1r3zmGUm8UMkI9Vb2iFfzZfsLeejsZGS3m6A26Vz+6q+sLT/yzSRc4+K1S7vSp0MiDpeb8ODjq7Z8LDbP/YjQLe+QKnpz4EscnxOo+ZUA9QKq3XfhlHohYCNadx8qVSFlEVqKI0K4O/ZpsoUMku2lLNxxNUEOJy61kQrr50SZJqOTvD/EuUkmbEYVwfUe2hZ7f2zr3FeivuBRAnpEI2jVuMttuIstGLtG4S63YVleiCpYj6fSjjOnFtkpYlIvIlz7us9ui0lNoO3IAapVYVrWLomi1NyZZ/pd42u/fN9C7lZ/T1Rnb1aaKIdQ6ZqGW04HPMTpr8GtN1MZ0B4OvYKsqmfTgCdZUX8+fet2YtYEsjiiPzcVf43Q8SCySkD0aKh33sc5qRdySCohq3gCem3jFNSgdVUcUsUzpeMjbAnudMzPZPXmy9iz/zx6hDcUNFRVYBD24BCHsr/ud1IDvsQjq5hfn0K/7k50gSV0ya3GqjIwUxjOpY6lRGltWFVGMgb9ilvl9VzG6rSUurzJAV3rs4hxVbMwYiA6ycXnO55laN2yZrYUqNqQf9aLmDMGE6nV8GpeGRpBIN6g5bqESCzmOmKnn0mCfAiAtYnX0+vKZ9m3/nccNYcI2P0V4a5SNLgpCOxG2vUzCA5tzCDc8r/z6WlZ3uy4R2Ju0ECmdHuCYVXreHm7Fbs0GIBo3Y0M7/M8ZYYIhtRsRmOIYOqet+js2MfPUcMoMbZlSsHMZuO5JDWz5b7cPvRZJLUarduJW6sn0GPl0T3vcE1NY5B7pdPErMJMDAmZOKw26irKvaqqBfQqNxqVTJTeQnxiMGWqdPqJvxKnqqJYiCFaqkSFxMb0e4k78DVJkncKO0edgk5ykiiX/OlrcpjlRiND7d4HsTuiI1kS4L98TXtDNGOL9xGvD+OThPZk1R4AZEL1YVzVcSI3thkGEWlez5UkQdYc+PlmuOBt6Hg+qE+uL+bvvn8r4kgRRwqtxME1H5FvfgdZ5ULSeG+GDkscU9c8wBb1DMK0i3nbcwFthEouVK/mgHgp12nOYfnjFwLw2BdLfUUaAQRk5CbzFxe11/G/ycOPu2jksairKsNcU07E58N9Uy0AVnEYNe67idJNQafKR1Bp8HiiQHChFqp4o9u5vBYyFafQ6I3ZtOlqEqz5vvc2oR0mORePClYOjEBSec/HWa3jnF3eH3w34ZQ5PgaOlUXnQoWDCN0z6FWNi4wuHRSBpPZOPfTaXkeo2T+Vvz5AzdrkEOKf0LMwoR9v9Gic7jk3dzWP2j8ntpd/3FKl8xEC9V9h4CB58QFY1GGEZr8NaMgd9CCmunIkQSDI6cQVKFIRakDQeH96D7kuZuC+GEylMQg4KBsYxR5eJyqgwDd+/43VmOwS2aYk8g1xfNzmYjaEdCbCVUe8q4KJlUuoREeio5RY625iqqahUnk9SZUdPia+MAyX/SKqxGUsKlgPwBkD9tGv1uuhNAeoCbY2F4tfR5/Na22vpiCgja9NkCV2bJxIjSaBIT1f9rV/ZignaMcvhFRuw2aMY/vY5/nGLLHTYj/qp3Strp7xq5/zqxZ+JPZrOpD64FrUGg2VpQVEvt9yUVIXGnR4EGWBA7oEigLjmJYyhZygZPQeB8s2X4up7g7csrd8TJjmDebFyEzp/Jj/QLLsW5B4tHkHU7K/4VB8f8qR+TGgA/sDkrCpj7wG3pDqjby+6zni5cZK0jUuA0tKU+kZXoJT1FDmCMQhaojQ2wgLEQhWW4kSao55LU6UcrWaWYEBuASBFLebAq2G90JDkAUBjSwTIkpUNZTuSAxqS1pAPG869MhbP2c/KURQSyQ1SGc9CoPvQWUuhjd7gORudqxskoinjIDb10F4ykk9DyXmSEHhX0j5nsXkOp73m/USRD176u9CRoVG9t5Q1HIAUoO7Wy84yLfrGPzkz1w7oK1PGEXrXKyZdj4ajZrfN2ZRXmvjquHdT7ooAijO3UvgZ8NJxOoXR1Ivd8DimUCtroYbBt/J3QUzGVK4B73qEDU6Hc9k3sqXIZf5jTWpeCMJ1nxk4FCMnvgyJybZ64GqitD5hJFtppq0DfDtObFcHFaGVqwmwXAh9Z6x2MRhBGu+xyF1xyaOwKReRLDmSyQ5xC8g/DCr+4R5hRGAILCpWwgRNW667DGjkaAyXMuOjsGULdORKApUB/nHitTrTNTX6ggIUFMRoaNdgfdzitQ/6+uzYW8Q0btFItJXIgacRUB1R2oTvUsj1aMBNAgNUySl9lS6m4ZgLLXhkb01iWLX7KDLM4v5bN5kEozeqtWrM+M5Y0s5HWz5dLDlM7J6HS3h0ggsqelEnNYrjOzt7qWybRXhZWeiskNYsJEOFx4EATqUNN6AyyP1GJx2dB6vXWsD04gtq+Ty8nmcVbSKuxLuQRVlQBDgrIr1RNlLiKKEJ7Lf5on23ozJqx3R3DjsYaYXVRCuVVNdYm1uYAt84gqi88TPEL+92a/kA8C62IkEdRlL3c65DCz9kg6e/fBMBNuNfelmbywmPC9iENd1eopetbvZGNoFWVDRr3Y75boIDpoa61upJZEH939MiqOYYiHGN1PlkDO5sOoNuq7aR1DHwcxNncj3YjTb6hsfPuYHd2V+r64tnkMvtY3XNt7BpoGPsjuiF9+UVmMVJVaE96HnkJ/pYd7DT9vuwCi7CNM5uLjtbt++GSEVf+o6tYRdEHzV9L8IDqROpSbW48Eky7wVFkKK24NRkqhSqynQalABpZoj3/Y9goDNGM6jve5hfPsLUFVlwzt9EVExh5FsxRvcP5pl9Fn6HJqljWurykA1IWwnk12kU03jcjd3qsKOUp711ETxHCmeI4W/GdHtRJYkVFo9too8sje/RJ16LaK2sWBggC2TDh2nMf6rIgqsOrarXsak20qNeypqoZRgzQ+USSPp52pex+uXG3rQLTW+WfvJRBJF1n/5BOm5Mwmn0Wuy1TSI9pfNpPa9fQC8kq7j62Rv7ZpLa39hVOk6fk/rwY8ar/clxlPO03oTw2IyMP90H/HOn6gN1LGmSxQjNpag88i4NQKre0ZSWQaufBU9vvE+xdoCZQx31tPpgIXjpSZES26SidrQlr1N3oXFZYQGL4H8rJ42xTKvnHkji0I7YNLYsHlM9Kzcx7M7PqDkBa+3SSXKDNhYg8HVsKyISU/tzAg0EuiiwtAPepH6yCq2d3yVKGOx73hm/T2M7Hk1AVoTZU++hcfdtG62SMjEDDTpIWQX76Yg+xqMGjs11bHIuxK5gIXoaHkR4iUxiYRntSXS+BCCUE3WiLso3JRAh4IQ2gbdj6DJJWvYUwiSzJDVtTjcI9AIJTjC9lIYZ6TLvnryI4I50EmHYBHov6EGk8ZDoTWYuSXpdA8vo3+E16NV79ah0cPDiVP5OvnIa5K1cZQS6aol0lXNyztepDAskc/jzyfDksNHMRdRGugtv/Jdt1TiCrZTm7sZY3QKGQPGUuWRuH5nLhvr7by051Wurvil2fh3d7iPr+LOPeLxD3O1czcPb7ofj0dDhGyh2DnLt82q3Uu6+j62kUF3Gtbn7D8Fd7+b0C5/kR119VyVchdlYuMDh0ElMDYikFtKZ9N51RP+BzOGUXru+7yq6cRnJd5UeI3k4fNdD3JWTfN1SZvyQVRfgsR6xtbl81NED94OFkmy51GuVlN3EjL6ZFUAem04krsSrUpFx/AM3hv+LiZdgwdMlqF4M+z6Cee66aykLxvphpPmNalSyaOAeETUSKhoKfJeq9XyyCOPNGv/qyieIwWF05jyPUvYXXSbb9oMgIZlCdWuUPr2nY0p3Dtlsa+wnBxrGdEIqBq8RftVZkJxEgzocPLI0GheW1GCTdagQeSlc9v9I8Jox//OYUCTGkbr0u4iafDl9NDaMc/6CfDGwnyT1OgK+y70Ar4Lbbxp9vTk8l2fkegsUP72NgIiV4ATcsKi0WsdLO8ZR0Sdg7IANeGvqOhU7H8jMFkEskQDjgw96QW1R4wZElWwt0MQ5iANyOA0qHxeKEu5gNogk5H5ACFhKeze8RiiUIHXyebt47BASokECJQHe705UaZK8s1tMetNUC/gcYNGC5JaYEdmEKl5NkSNwIaNcWQ21IFx19agkyUCq0K4bPQythdsYnvWx2SkXsHwdG+hy9KPV6IWJTyAm3Vo6Q+oEb69lfqhT9DlzJ5Y7K9hL72ZsPBSGFLKfGcC8r42lNe2wY2ObuyhlmBKonVY1tZzfnQIAB5jGbbacLp/UYHeXYFn4G60MQmIkoZgqwOHewS1ntsAN9Hm6yjrKiAVplDZyRvvJQfKlBhMtHObSQwwc3P7xpv6ktJ2lNiCuCx5J6/lv0pwbgk/dx+HTidTFBhPuL2aITuXMK54IXFCDd3CGtLP1RBvrqWf2bvSws1F39O/5+cUBbXh0u059A6MoGOni1hYVk3pCv/VGB7qeDtt7MX0M+/CJDhQCTCq53R2BKUjSBLPLnyS6ugYHIZA1EaZYkMsPex5XGrfQb7NQSfrASoIIxwzO7VtCG+SAGaVo6kXBFSyjIgKNRKsewftuneQgB3Bgcys3snei+bQX2Njd8l2isrmcenyn7CpBK6PjWKrXo9LpQJZRgP0WjkVhzGMBYNe4CeLmRlFh7g54zFeyX6FYdXrMElOPoi/kC8iOlKlC0YWAnA7d2G0eIsnPh8SCRSCCNm6Y9cc82iT0LjzwZCOCQuP9ZnKAXMZeTW7GBg/gEvTG6aHD/tDGh4EkGXY/RNsngnFW0BrwmK1MI+h7KKxjppGo6F/p2Ty8/MorPWK8xySm9kRFRVFaGgo2dnZ9GIH3YdPAkmEI9SIOlVRxJGCwt9Ebd625sKogUBbN7oP/Qh9w7RNldnKXV+sAbRk6kVUHq87f7+6nggspAMaHNwwpg8XD7JSWFFHRmLUcVWvPl5cTgdbf3mT6Kwv6S7lAbBT35PA81+gf1w00rZfqFpkwS55b/QvdNQiCwJPWtawW13Oz4ZzcAveH/VLjBaec/el9oVtAEhhPxFmqQQgt0KNvCkQVV8rqiQVntkQXNzyD2n4pxqqH/KwPjoMWZbRSTp0djvpORZKYgyYgzXYDWpkVfMn2Io1arp90eCFMryK3Q0xosDuSzoSOSwXESeyDJ6fQhFkG7ogD1a1EWSINnrFUb0+EGQBS76GwAQJjUGiPkjLtq4hmIsMJG9pFGyyG2RrGarAOMre3Eq3u/rQvV1fZI9E3e8HqV9eRLD6I8yS1xu4pnQfA6IC0Km7IBFK9OrBrPnlZtpdfBXz7QNJMHpjckx6C3TdRwpeb51NhMrNUdQtjwQ0BGjDccvgMpVRuLQvae6lXnsqVyNH30jynmdQiyuxSx0aLNXi9vTA5NxCZW//jKTyrhp8CVoN1Lr09EhuR2JcPELuDgAekH8keVY21S7/+JuEuBo6h/rX5Sm0BpMY4PU+ahCZuW8aI3p/DMAmi5NNluZp6/03L2NLl/5M7OVd7iLSVUOdJhC3Ssvl1Wt4bedD3ocOc8PfH+gM1GNio2YAXVjA26EdmGYBi8pGoGQiwhPKrQmx3FN5iJv0F9Im7BBtzTvp5HLxVGQEhVoNyB76/H4mLxgMvrT1d5MSmh9MEPAA641GwMHE1XcCEAy4tcncFROLFHcV4fVLcQibwbKZw9/2o92Qk4OTqXBYuDL9Yq7tfC2HnFZU6mA0lv3EBycj6QLRqgSwVkL+akgcDoezLff9Dm/2BEcd2CobB+14Huz9FTdqZAR+4ywiXLVsoTM1DRNhRhxcZVpGrFCDart3ergyYSQzi1KwEIAOF13ijfQNrkKf0IXQfd9CVQUMOAfWLoZ5i6HTfgg6vQo0K+JIQeFvoDxrGTtLrgMNqF3BBEndiYoYjrU+l4j4M4jOHIYkSdz7yUI2FlrIt+s4HGA8JjkcIccrjhzocTQEJqnx3jTCgwNOetZZS+x4ZyL9msSAVBJK25u+I8Sowfy/5zBbz/dtWxlt5sfEeOLkEsasTefciO706bwIoy6UQb0mo19QiHnTQUAkUPMzofaZAOSqQuj4mQu1JOBco6FgmpuETd6pi+hudXicapBBpZWo3BVMdImKrfM0xIz1Lo/gVrtxB2rY0i30qOfisEDmz42CSetofN3phxxMax3s6NaTgG35dGiIlQloZ8fd8JBdbvJ6kCwa782/7Qd6SgMCyOsYgRBkISKjFvNvoWS4y1DrRDQmCWetFn39p7gDH8RTbuPQU+vQJgXhzKpBy2bCNKuo9VwPqLF5DlFuLyenPp+OoV0weyajFYroGTqDeV+sILrDxVTHdqaueB56wY4+xIXHpqE2Nxh7lcF3LiaNE60QhVuGOkFFdGVjILpQ741zCarIJ0guola6qPH6SD0IsG7AbvTeph2mR8H8Pwh0UB6pI6aysSqy02hgfmc1bUy/URMYQp+dtZg0bianbub7/M6kB1cSZbASZ2wUWjtrYwjUOAnQuNCrRb7L70wbo5nOYeV0th5g4bKreE47gUMxidQHhFAcl0S/LctJcZdgMQRyZ9lXzGI/b/fyVoev1HnjWS4p+p2Xc17iEFHoolKpryjEQgDVhmQ6OdajwsWzcf3o6kokryqYG8TPuTMugkRbpPd6CVlIdEWNhiJNNFcl1gANHrKIxpgZ7wUU2Gg88ho9gZKE5Rhxflp3Hlp3nvcat1D7CcCo1vNo7/uZX7Scm9qMpGtZFociU4kr3AR6CUQjvJxKqtu/TIQ6uhN47FCd6z9gSCLUFSIhIKJiG10xYUdGYNteNU4upZB4WpoSUyNyZ8h89HX+Y0YWLeReQEoejCpvJZTg/ctq0mltwzIskemnnTACRRwpKJx0Cjd9x36zd+0rlcdA375zfFNnTZk+bxM/7HfRNCr7ikwD56Qnoz7offy1YSQQ74+gBhuyJCO04BU5WciSxIYfXyV191v0blgkdm3CtaSMupXYNsl4Zj9P1UYVdumwMHLwWfJB3kz3LjkwtWwdKmkkcoXIWUu9adLi/E3YACn8M9ravmtyLKhbZMAgec9H7xRo/4j3WggqmV3RYyh0dyZS+pr6ai2d8Wb89FwIB/tL6CKOfCOSJRCkEGKCMhCzd6D50InK6t9fY/LgsatBFrAVG0grbhQSIck2cnomYasWQIDswEx01GBT6RARCLS6SbPW0rbGzNbEGPIK2pBe4Y0tCYjzilhnrRa1fRsq1Q6cUlckuwdnVhFG1Rzs0mXUeHp5bZUrmF/8HXF9cqgx1yM6z0YtaKhyP4aaSs6Of4VVB7+iYEscENDw1wIqmc4DM/EUeYVchUWgY9YhDq887Km3oEEmgB0NweqN3jmn1AVteTpieAEO2yX0WtGBoqRRWJJmszQ5k4tKdqHTeSgKCGZXdyNt1JsBqA/TUB2qIaJhmmV80q5mZkkydA4p883iAFz6h35dhAK+9rzE9p0xVDiDiDWYSQ2pxqUysNzRDzkgiExLOQ/lTuf5dl6B9GDOdEYUbeRh1Q3kh+6irxnWh3ag2lBFmTELQQ5FFmQgl/mGXAiG7xu8IQPqvMIniFLsQjySHEuUO4xKbctZYoIs+7xFAH3K+7AvfA8awcyVdfVcUm8hRJJwNXiN1MBPQQEEu/V8EZKOQS4iRy82ixlKFOGugPaM1MdiK9qAS1ARWrEPDtzI+ch4+AorOuJw4Ma7IHQdQXgIpoZEwqijjCiWMoD25XmkkYeF7mykGxpEtLhJqDvEQYZSRlTL35sWkRnXporuxZ/7CpwCeJwaUGnQNJSaUOWtPOZI7rCex8wrPRVRxJGCwklCdDvZtfh+KnVzfG0pwQ+0KIy+WLyVF1Y0ZqnoBQ+TeoTx8KVDKPt5A0EqD5IsYBaCCGgQRyqhBsnuQR1w8n9qNv36ATFbXidRLqFpichywhlw/WvgrEf+4grK916N1CTvZPhZEdTpvD+658i/0Ku+Akv6HWgrJqKvblyjydLmG9rVfe97LwMbpHiCGzz8kZ3NVO5qDKoM6OBgc3kpMmWUq6IIamehTDYQs9uB7FKR/j81zgeuosJ5AE+ehBBRiS7TQnmOhDRXJnNHHWDHEL4eR7UO0KDSSugGONlmjaPYHowrLIDCrhncs+BL6nMap4PCO9WzPu5WpPh1mGsaArSDtA12C1iDAgmu93pFdG6JfrmHqAoxEGzziqKANm6Kq9qjopy6WgNtNe9T67kBp9QDCMAu+WftLS2bT0TwXrp9JFEWVkb2pDeIyBtLFBmIRFLpfp7B0XeTHrST7wq60PQJ3xQaxllXX09yt14I9eB6Zwr1chwgErXlW1SORkHotqoIkApwi+moVN60a6shh0BHGyQiiK8wkjhwJbbF84nQXUN0nsDaeIkoUxG/DryGsZpMlnp+IV69mypHDA4pljam7exMieDMrY1TZzL+PojDWt4tarALGbgkGwW6OLp61qJR+S9p0y28jP0YaUcVGkSMWDifxQB0YR8/FA6nsHCYV7AKEdwaG0eV0RujsyfEb6gGYdQcNTJDxJAG28rRUIGLWMZqgwm0O7jQYuEMm4OZIUHMCAlmcp2Z22vq+NUUzLIAI3fXVBHrmY3O2pi6biYAmyxTShxp/2fvvaPsKK6171/Hk9PknJVzFhKIIHIGg40TYF/7OmEb44CxfY0zjtcZ4wi2ScaRnEUSIJTjKI00Oc+cOTl0qu+PM5rRIBHsa3+v7/vqWYuFpk91dXV1d9VTu/Z+NocAeGciBaQ4P7uB3/BWqikmE3mGm+P7GFRkppvWOG3tIouLVqZjoDHAuexkFn7SpMaJcBnDJAiQw81rYTtz2M6xOlg9vL5PYn1FMectruH+53eSTcVY2eBjafxR1N62Y8qqLguOEwxgWzKKevz0RNrBezA2X46+9OzXbce/G05Eq52IVjuBfwIcx2HPk59lSCtI0AayS1l67l3c/ewufvhsB5fOLWY4mWPfYAZZhtZ4YbINKwYv/tcFeHR1IvS++6d3UTv8YcZEhB9K1xIgxSf5JULIGB/uwlX+9+UWezVMI4+iqGTSCYxchu7br50SFn00DtddQVN6B/bIKGPmx8g5hTSyv2nS+W2DTlorzHwXir9yzcBulnStw5tzyOsyh+Z8iJLRq4jn76M6/lO8ucLg+fiSOlRfhsw9Ci0vKPhqcrxcU8XpiU6ywzolc5I8JrXQZwWQZEH5olGKpscZaQ0zZ3sSfTPYuWN9kmTNwTFfw5okCfbNjdDhX443sAbHcVAUH0svmsMffTkW3PFBgnKe7536fuYNNrIk/TI5X5Sv95+GD8GVjSU82jnGoOPwNfUZrrJ/jWNIDG4LkeqbnLBk1cE8dx5jA25KNm9BKbbYP6uIC6r3MZxfiySdiyylEEi0qYP0hl5BKutm9tcnCe+L5+kseEcL3peWE+pfBYBbfokS/RtkrGLSzhX0ZhYSmOenZN5ipKSDqznE0N/uonrsK/Rm78LeciPZ3sL24L5zM8x42o1kyhSdcQ5W8Gw0dTMi78dq/SGuiIZZ821K9C8RNT9Bqf4FZKkQEdhZPJe2OQU/k3g+QkCPIUuCxqq/sW7ro+RDv2Kmx2blpjF82WMd5M2sC3PeB1GXXIjWPJ8xI82YGaM50kzGyPC9X5/Lu0Z202DbE4RKAN2qSpVloQKtusbvQ0Ee8heIgs/04bcVBl2J46YlOYLLkik6NZWt7snn02gYXFEmccbWGyA/C6/8OAKdrHM60aZ7aYregz83eR9xWSLgCF7LRmmiMiJKqJQGjvnNthUUZbKu27mSTqoBiWI5yagToIFuMngZoviY8/9RqFiESDBKEWGS5NC4Wn6QKqeHYf8s9Lol+F0yZnwQ9+HHX78yXxlmNIrmOn50pJF1oXteP7VJJl+H95Zdr1vmH8EJEch/IU6QoxP4Z+HAs9+l2/kZAJ7sNJaeeg+G7GHF1x4j7by2pedP753P0ulT86L1fvVmqu0fcMCZyd3yeUg4fEH8GEVyGLjoBSpeQ2vl9bDnxYeZ8+Q7ADCFMiWh5BG0Kc2MFC1Ga1zNonOuZnj/y5T99e1kc4sZMz+MoGBd+ck0nTuaJsN63yV+w7niEWbtqKU6Mem9m9dlTFWaiCpL6TpPz2/A742iJWyqvqZhplTEXItHlRnMD/dT442zOVFJxVV9xw1u2fHr6ZyqdxDabWEm39jwrVWbRFNeekIB2iPFuIquwlcSwxXpJh+rJjM0iyMzbM2CEtLDacb6stSd/i3W73wHf7BLuE7Tucp0M4rDJaS42n+AM8V6RkI6l0cfoe+VMPH2Qt/4q3NsPedCSsMPE/lvF7Lq0P3fNlZWRnY72DmFoJTH8MioahALg913RzjzhUmRwJwLhr9rUFZyJrkDw9Rs+wSQp8p1NbI0VTvIEiWkrMuQMAhpv8VwmhjuXE7ilecB2LTa4junuPjl7/OEelUCi6qg/ksAyPs+QXxfob7q8yqR/Sp+5RUEsEtei4VGizHIhgXTUYqfnrjm/dEanklPtneZ12KZR2LW7igLjTwPebz8pqiYERUWlC6gPboLhEVIgawQDFvHUo2r4kkWZgyKHBf3B2UeDry2sOLR0B1BsWPzkWgMU5JIyTJXJ5JTyIwDdKkKDZZNxi3z8vIiZj71HYRTikvajir1kXbOJ1v2BJ3NHlZF47gP33bM+3eUHiQA+VwAl3uqA/ur4VgSsjo5xSbxspn5tDKNUYoQwBHqpWMQJsGp7n1Mz21lhGI8bhcHtdlkkzFa3GPYtoPLipNRgvjLmzBMi4qRF5HHIyTT5cvxDR5/ofP3wKo4Gbt9B66j/MbSJVfi/Y8fIH3rWEv4lHu2JWSlcM/5TBDl+udQq5r+x216NU6E8p/ACfwboXf7Awz23c+sVbfgCZfRs/mP9AzcSdpb8KGI5M5g4Xk/51D/KGf9+GlereJc6zYYzsvYQuLJ60+moeLYhJTefCeoEBVlQGHwTBIizBjJ3sNvmhwd2Posqae/R216F3OY9KU4HjHaetJPWHzOu2k56ljgpSfpTf6OI8PE3qDMN2e52RMuzBrvEr/hPB5GGbyM5p23UewvkK99xZXMHO3HZTi4jIIloKcoyPaWEvzuKN5cObnH8pipDJLqcKiymqLIYvb2bmVnXyWRFuc1o35DDQGe7zgNGjoJZvMoIQdDyKygl6JYFicj45phMOryssOq5elZl7NE92FtyhKpyFC75qvIqjGlzoHN7yLesYqeHSMI4RCo3okr1MfebBnoDk3aIO+p+xUnJxbD8FoGnCJao2/D7i3hdvkSnny/hx/+9cMYQyqJGTNxz1nPcP98IvI+HEume1MZ9auG8Uol5OVh0MtQFRXDGGSDsZTzNxYiviqWxhjYHMadh3v3Xog+188lJc9R6uvFla6mz/o+leqNKEepJ6vSyEQuOIAY07CHC47Xg3MMfrWyii9X96FPE9CrYo92otQXnn+2Pz7xbI2+gzy28FKEq5VO6WSuHfwIALeXfo8le5vYMKeVdpHm+bQFTBIjgE0ZlU0ZoPJon5bC5Lh9ePv43xJxp/D/4+HeUIB7Q8f96TUxO5/nzr7BKV9YgYwU/m3kdHS3gQzUpCWyK77CE74kIfP3CKcITWonov0IWxSRds5By0awjFa87/kVwrmFzG8/i7fz5xhZDwIFl2eqvtbRxCiTr0X/yF8xXrgXKVyBc2A9vrG/TSFGAAEynM4GTmdSFmO/PIOKkIvQWOE9YDy4tZIhyMGyXPeU4wBYw9B76Jg+edPEaNbFiNQIUvdLOEoQK2UgqSooOgZl+AbWo477ngsBmeLL8F1XyOvnfLqL3J++DQefwCMfwDZVjKarkWeejPuUt0whpscqI/3vwQlydAIn8CaRGe5iX/QT4IYtL16Jh0ZinhcYN6jgzcxg4Xk/42DvCO/8+YsccbSeGTCxBXx07XQuPmn2617DyZh4pEJkSJSyieNxIoQZw+hpBS6dOC4ch4Pbn2d052M0ddzHoLsR9bRPk95wB8tijx5T/ysll1O+9iOMde1B1jxkunegBspYds67YXg/7HsIo/Vx1L49jOV/xZEh4r5ajZ9OdyErST4lfswitmLkw9Tv+hruaA2y/y+4zTyGIrErGuBAUTGl/gw5v00+aKHpebL7MpT8zk04Njm56zMNPJd1U8ddmNkghx/5NMWz7528PwE96z+KlQ1Tufw3NKzdQt+G/yDWcRnZSA7HHkGSA7wQkLCb4mimjRNrglwaJD+L9wBKhprVdxOs3YwkH+sXUbH0TiqW3omZDYGQ0Lwx+vedzV6tUPaxyLPkhM2fi59CGz6DWC6Av3IXZqaIzOAcVj0heKL5RqpLuhlsyDD6xIcQ+SClNd8k0tVN7fYUiZPcpEQSn+Jg2qP8zv4PnuYsPnXnZ3HnC87hWnOW0KhGvN3Hp299gmg5fPuqt/GuWQ+yYut7kO0q+u3fM1L6HLb6CEvGJlWWdwdmMCIkWkY+ip36MAA5fwvXayHSm8+l3Ukzm79ijEjo6nO4cuUkE5MMNNWnUTK3hE9XRfhK12kTx4PGKj5U/3s4ju6mImRKbYMhVcF5nf2tI2ltprtsmlw2m9Iao3ah/EJPYbtme/aoqUgIFEATgpws02C5+HWHTYkyGTG1w6UzyzAniFH+rDtwrb5sysR8tDKQOv5f/OG3UZcoBhR80l9JtqfwlkZxuzeSy1egBzcylowSCRThfc+3cdKfR/eFMA/vIvfzS3F7JsPg85kgipIh71mA58b7EIEI3rePpx857/04sRFy3z0Pr3rgNfsGYIazH47vB44jexCWQKqZj/DXIY/sQIoeRIRqkFrOKmgTcfzNH+GvxgrNQ9Qux9pwH5JjIZlxZCeJvveBiScm2wn0o4LwtHHyKwRk/GcizzkX3/nvn/hd9oXwXvN14OtYPQeRdDfesqnW7/8bcIIcncAJvAlko31s2fSOCQHHvKeHPIX0FN7sDKpL30XlSRfx/O5Orr1nH0cPzT++djXTqt9cpEi8o4+wXJj0ukQLjIfvD1FFPYfxRif37m3LYtMvr2Pl4D0Tx8pzo/DYVIdfgK3+U8mXzGbl1d9AkmUaZiwGWQZxJWz9LfZvL8U+dICMcwoJ+1PIYnK0vGiNjyG3zTv5NWfyOGSLKOt4N4HBZahGEFtL4vPeBQnoTQe5INlBf8zHKxVllNUnUAUMPFLM4oeSwCQ5kRSH0XMn26h5Esx4S2FyMVIlJDoLruEjA/PoUh2yL3ycWeffRNXKXxNufo6uZz+NIjcUTs6AminCEQ6KnkU4Ot7S3QTrNhJqOH6qjVdD8xTCchwHXj58JqYKRa4kkimzdnQt7f52WuUcqbyPwMK7GHQERf1LsEdmkh6awS4q2GmsY24+QFpy6AmuJEI3te1pLs7eStxbwirxPJtYQSTVy70/u5qS9sK1Q3NTXFhXxfeTMdzjx4oG4Zs/vI+XFgvuXCtx9cEPAFAyfCpjnhZuqvoze3378eWLictZPtL1nwhhYcQMQMbdIGN6YyQ6TyLtZIG/YmVURn1P0GdGmCUmCU1uVGdW1qbEjLA4PWvi+EnJBUSs+xlTC9GTQVtwQzTKGWPvJG1fjF/5G0LdyLfnWCSVMbZkVJZ4Lc4NmXhkMBwYyi/jXefeRcdgG7rmpra0HoBEJs6jz15AibufznQpB/zLSQ8f5mudoM86E8+FH57yfDK3fwZv588BWJSftP6lg+fjW33Z5N+5ND73sRF967b/jRrPZoIdhXxsmUOtjO4II+sOtRc8SM68CaGl2bppGd6yn7Ni9hnIvoI5S2uah/atgqVGOIV32DXuI6gC9zz9ZSLO3Qyaa5gz7VqmVc0hFC7B+7VNWB2tOD87bYpvjmW5UKpnwVg7aC5sxweJASTyKJqDbUrkacCrtReCDfs2AhvHrw9SvAe23H7MPaZ9Z+NLPwGAlOpFS/VC72OF0UjmTZtyjKwP6QOP42uah2VbtPXtY8ehJ1DSt5OSz+SqtbegKipqzbQ3V+H/QpzwOTrhc3QC47AtE0lWpuQkM1JjpAbb2Nn2PmwthZovwuu0kJd68TKNqtorKJt9NrKicN/zO/nMI90T595ybg1XnDwXTX3zyrD7f3sbM9pvJJn38UPts1hyYRU3n8Nczv0kRS3+m3ciyTIv/+KjnNT3u+PWM0KYQ3M+RtWisymraWFs+wEyjz2KJg1TYu3EwUfGG6Aov46MdRZx6z+OW8+vm3TGWu7jQv6GBOjDS6jdczWSUDC8g7AgQeTgVygZM7Ec6H2hiEy/G09JnsMzQnSbYRrsGGVbJvcE3JV5YmE3Yw064qLkMb4ctuHh4GNfYcwIIgOPeky6NYdZhsIHl9yKv3LPlDZa2SAjrReRGZpByZwHCdYdPz2DmfWTGZxHwJVFDnaTTpXiWC7cFbsZdRwqNIEQsPfgKv7Q9g56VIfTGnZSPjKGxyqYB58XdZjpCvSGWxkKdKJJgrODJsW2lydiHs7Y8Ske0N30q4LTkxafWXcjjJOQvoWCl2ZMo+HAIVa1mRjjPlO+8hy/v0JwbzCA13H46tYkDc+7sfOT780fL7bZ2tTCTzpueu2XB5Ay20k8cSvIgr7/NhjaewW7284mJwmueeHTaPk8daePkB3VGd4ZhFkmtKlgSpSfNZt48D/RbC+9oU78Vp5Qejo5bR216n+TpJxiZ5Scs5hR84sT16xwvYcB6bM8s/RZyt2voIxb53pya7jwlO8S8UWQZZnc0GZyahmpRIqSfAWu5jAvH3yGeM9H0JVC5NdQtpZVy35DfVkTeTPPoxt/QzY/TCQ4jWX1p+D/zkpc3sJ2lpH1YjZcin71t/jDi19HNjdR7ikkMe7LzMRR6nA5e5Alk2L30ER757x4EXb6bIznPkpurLCIqT01SjxyJ/tPux6hF97VQN9JYIWJVz2DEr2QUy75KppnqlK1ZVv85YXvU+zcNuV4xvSQ0d/JlafeiCzLOLER8rechMczxP9pZPN1aPRhUoHjKkbJdiFd8kOkUClq7QycVHyKj9BvH7mWGvfUkP3RXDlFFZ/kzMVvAeDhV+7Anf4qsXwRWaeYsNaNKlkkzQhZeQVXn/vDf/p9nHDI/hfiBDk6gSOIde5k64G3oRsVLFl1D1YuxfZt78Fw902U0XNVzJv9I8INi445f9O+Lq7+7TayQkXB4XfvnsvqOX9/FurD33gHTcbD7Btu5E8l78aSChOBW8rxGfsXyLLNDvcycr5qVoz+DYDdvnMoOfWrpPozuGaEqWiqJp3J0NnRwdiufqrb43gyr+9EeTSiusTvG3RGXRLt5Yf4glzIi1S2952Eu89EQiI655NUjrVTHDUmtjJ2HyxH2TKVCCpue0pkmbLQ4Sn/Z3DUEWZcdge24Wdw+1vJjTbjr9lK+cJ76d5zMV/uX3vctn2aYaad9j0UPXPc318LwpE4uO5GtqbqqbRldAERp9BygcPOyucomn0/o6MNzNjxEW4NWjgSfGDZg8Rag3jsAjnaIkfoTDXzgYSX/aWv0Bs8yIHSzSAJquPTaWz7AI96CxN90JH47PAPWLSxC+zjbzt5ig3uudKmsqGI2mCcMUvirv4SRLKIu/dtpPOpgsVRLTK5+d0qcaWWWw9/HoXjE+7swFewNvSglpp03izzykPf5tcuDUeCm/c8xsqDT6G4bCQZrKxC8lIT3xYZuVuhYqVDuuKXKFI/Je6P4CAxlvshliinyvVuZCmNI3z05f8w5Zph9WeYlOLM+RDKReUEvQVri0iaGNF+hh9aB9ERTH0H9bnnUMff6S71Y3jWnMNghYvBnqum1Jk0ggT0qVLX0Vwpyxb8lqqxEURiBH3pObzU9gKDnZ8l5Iq9qfdAyYaY+9LlCFNn5IHfcMQHqmxBArvpi6TCh2hf9ufjnmvE5nHKeXfidXlZt/2vDEa3I+VfotzTMVEmZ7lwq5MWomiulBXL7qGutDAWGFufRH/gijfVVoCMNR39P38PkoRcVEHuj7fA/oeRnCy6EkXRbXLZEI5eAVYW2cnguCoQRc1IoQqkolqQZbR5pyMcGxwbrWXhm77+veu+Sil3vOnyx4PtyCxfuZGwP/LGhf8OnCBH/0KcIEcnABDv3s3mg5M5wCqdq4nlN5D1TPoK6LlKlp/yAMIVoL0/yqz6guJrPJXl5b2dfPHBvQwZOkHF5PmbziHsf20l3ddty81zCUndPNWxgpcb1mJTyPpuKTYf63ma0op9SEc5VCfELBL5b3FE6M/BIS3lUYXABci8uagfgAeqVZ6r3MNbMn+jvcbP41zAtfyS5VuvxD+yEIBY+fMg38Hcsakr4Mf7plF3MAH9CvkigZYRUzR2AHavWMKQ51okJUnJnCcpnvk43Rvew+b+5dgSzDAUius38PTAYp71HF8zpdqSeW9oD/WrfjbF2vRaEALSo00MvfQh/iZ72aNP9l3IlliRV5lmKniP2mLa4DJ5wWOBW+GTy/5A97YSvFZhm2a/rvJyYhHvT7jwOxIqEmktxvqm+5iRauH5+CoGj3LCPcu1naR6Nzf9yUbPT23w8Ll59pRXE/DNp3LuY5jpIlR3HEmxOfzoV5jh7KRFeoT4oybYEprPonJ5jF1NjeyUl/JI2UIOli5FdWBe3Gb52F+54oG7iHd4ya5ws8H3TR53CXa4Cve8NG3w1Sc/N/WZXHgJZfv2U9a2j+JZSeRZ11Oif5VcTEVWBanAGjLZT4JnK0Ht6zjGWlK5wnbXoD5AuVGBKvUQcd9EMn8dhm817hkBcn1t6AP78MibcStbUKSpTtxHo1f5AG3nr8aK3/CGz3Mg28jbz3sCWZZ5btdDWMMfBwoTcH9+CUg6ql6Hnd9Dtafg4DyYrcctpWjsvpzy9loUyUCJP8rwuskt6mBdFt+yKzC1LKnQhRyYdROq/vqRaEeQs1wk1LdzztwrCRW1MJYc5OENX6PG9cREmaFsLcsX/ZzmqhkAiFwGY8eziMQwIp9Gm3saasNshONgbn0KtXkhktuL5PG/qTb8s5A1ssiSzEutj9Hd8zuqPdsnfjs42kxNqJuuRC0zio51Bn81MqaboUwpkhni0jN/RFFR/T+1rSfI0b8QJ8jRCZjZJJuffjsZ797j/h7OnoIs6TQvuAG9tJnTv/4Q/XmdgGxiCIm8mHTbk3H443sXsmT6P+acuPvFB5n75LsAuL31cnrmtGCLghXCki3eunMzZdOuRdV/TVbuIR64lPDQWRQi4kxeHRl3BFsjCvuCMllFYn2pSk4GtxjBb1nMTIBH2sVs7TmKSw7gvCq/pdY1D/+2Kylx13Cg6C/UDj7EjOCkU6oj4JHembhSFjXbC9acXavPo1+aQf3AHZSNxolPq+Kw+2NIukSk5TmKZz2KouWwDS+/ffxbvOgqDEGqgGuSLv7oN0jIAiesYzUFkDIWcsxAGSgQxZNyKueGDlC+9HcIIUOiBrm4DdWVwrFVRqM15AXE912AGJmGavnoVWzu9Rs4r0OoVmdVBlSHQ+OO2KH6HO+ofp74dh/6eMd0+QzWja6eOKfFlLk4raMg0ac43BXIgwSqKmOZDueJNM3T/kBR8lK8l57EAwPtND77Z2rbTwG3n1DjS5Qt+BMjreczsrvgN9N03ufQAwWB0JHWC+CFIubtuRfJmmx8zclRAjU5hIB9/kZmpdtJDbjoeaEIYUtsXXg9vZEWfhHMceS0oCPxi7avEWoteP9Gl5Wy3fclKvteZNaBu3GFTBrPHWbsgI/BbSFkzaHxwmFi3IIhZpMq2YErWYOWL+Zw3mSfM8bZPj+q46VI+y5e5VkADKcZXT528sxKJXT7V2KJYWanXpk4LoRKh3oTpe85jz/v+ik1rsexHIVBcy3zApfTZM5gZP1LdKz8MigGef+XKI00kui+ZqKOhq7bCKvV6HVBzIE0wrQJXz4NO5Zn9O492MMFH6WA8nuS9ttxd3+U4S2TRFnzW1SeNwcbLwnzfRjuBAcX7ycUbKI2pZI4nKB/1jcQylS9n5FcBfXuU8hb92FLLoRiTHwX/bHlVIY3IY+LUUZzpVx69vNo6hsnkf1XIG/mcWkFpyNn3G/Kdiwe3fQ7ktE/YBOiRN+DSzGOOffQWAMnDa4m0nUWsern2FP/MJJiUOyJYdoqh+L1NAa70Ma3R48W8VcsWD73drxVa/6p93OCHP0LcYIcncD2R69j1PUokq0xu/JH9HbeXYhAcxQa3TfQdPIHgcJg8r5bH2Ndz/E/l1q3wafOns4lq45VqH09mEae0cFu+u69nsXpwr5+3pnNz1qXkZhXgiMKg5glm1y6/WnKpn8L+VWSdAP+Vu5pGual4DLedzhFkSG4o76WaUmJDp/M+jIV3TH4TPs9XNabJVHchV20n7yu4ckn6a+cqror2Tre6EyckTK2vDyIbGdpCYyyqKiPMndBFyduuHhqoIWeXJCZMwaZuT5GptuNPQP6r3MY3nkZ0QNnIkmFtnrLtlF32q1T273jMr7efzqZ4ynsKRK50ytAkZHtPI6l4n62ILSnC7gkrdNgHbu1JBCkJPAKGFYEW10WezV7ghQ5ARWn2I1wKygDWaS4wfGElK16H1f5H8PrlpH3TE5mvcEUTw6dfkz5U7MqA4pgv25jV3rwCBtjwGBxXuFD597A4Pa3EW9fjTvSiXAUfBV7KVvwJwAS3YvpePmD9KsOVZZMsOQg9Wd8Z6LuzPA0oi8spn7Hg5QPH1+MD0lM+DZlan283HQLD/ps9us2AV0hZdgI4POBl5gj3Ue2wsO2nmv4a2I2J6dsrn7hs8i2Tem8BMO7JsfC0nkJxLwq8pnvcWQLSnCYXMV3aI5102NdiGx9EI/8AsX6t47btD2R+YzMbEAqeQvJxE5Cei/dodNpGsuz6Jkb0J3CPY3a78KufTc4HqzhLM5RCtQAw9PuI9r4yDH1V279OKGRGUiYOISYqtFt4pFfIu/MxSXvxK8+TNT4LOz8OLHDPhILVII7CtdvvFQir5xBSPs9UfNjZOy1gIQu7ccSVSSLu0iV7GTQpzIq9TPPN0JG6sWyi/H2L6OxvYa4q4po47MAWHqcve5hhCilPrS9cMxRGLTO56wVn6Eycnzl6ryZp3u4HV1zEUuNMhA9zNqFbyGaLCxKSsMFq7VpGRzo3cPMmvkoikL3cCeSJNE7eoiRWCeWncfrLqaiqJH9ez9ExDU65Tqv3gI8HvZHm5lneahtfT+qMVVroX/uL0hUvTTlmCveQMXed6PmI9glrViGSsDXQtUHL+OfjRPk6F+IE+To/20cnQNtZvh7VC++FIB4TyuecCW6P0LOMNnW1seH7tpKzJ664pseMJlZ5uHtq2dy0uy/32S8/cm7aXrxUwSZFPazRCmt0jd4fP8rZGYGOPJ1WrLF+dufo/XUr3Fu/ySbGHZZXLsixKDntfOMfaB3H5f1OGRa7iRbtP81y4VbL0PpWEA8O0Zf5jCjuX0sjPSxtLgH97jSb85Webh4FqG5faSNItyHI5yyb9uEb8zwZw3MukJ9ZrqY7GgTqieGt/QgAEJICEcmH6vnxWc/wz0BA1mC3IIi9O3jIcSqhDUnyIK+n2OJw1zYOoPnV57K+ub56JtGkGOTK9tqS8aQBBZQa8kc0mzSr9EVwiXjXaATTnXTXruwcNARKJ0p1K7CMzhirWrIDnCd8Qu2swzfocktvv7gGM+NnU7OfG1hz8hCKBoa4lBfGXWmzCeX/Ax/RcGJfKT1AjTv6EQEXS5WQ9ezn+DPmos2zaHaknlHykXTeV9AD0zNZp/oXED2iW4WbTtOXP04onUuOk69iAeHT2aDuzDp/wAvPyRHOw5vJcY5Z38R4Sh877H/Zq9aIBE/3P5npne8fNw6688cpr/0TPTMB0Bqo9r9GZw85EY1JEWQj1xHipMJhD5GJNtDa3g6yBojniDPt6xkiXMvumQet253zmb1xsk49oH8z7DEpOVVYYSgejdIJjma2LXqKWzX5PdS0XoF5X1FhLUfT/gyARhOE5aowKtMnbyT1kWYooHY0/eSj2nsmPM+prf9EU8+Tt0ZI+TCH6dY/w7Hw4jxOXJOQbHcdEUxPcNIQsYbr6VY+xpuZTuWU0nOWYBffYy8M5O2yFsYnHM7B2L1TCs5eEydQ7wHr7uM2Ng6FBEnpHUjkPFpU8U+B7MNRPRedMUsbBPKCUKu14j//wfQk6giZwSoDHWhySadiVqaw+24sqU0rR/vD/duNP8fSHqK0fs+gGx7yEZ24xBBt2tRUwLJEUAeCRsHD4mqF3Al66n5j8twV/xzk2WfEIE8gRP4JyMbG+LQK99jUCus3P2ZhVSfcSkb93XhdWnMbZzNi3vaeefvjx5YdRQc3jXPz+euPJndHQNvevvMyOdQVQ35qKSTu56/n1nrP4brqEkjZV1A3HoPzzccJt3hZsoKWEBKC/P9GQF0J05DtpP7K6fx15owGVVi4ZhFfcZiTIODQZvTh+KsEZvpr32ZKqmb3mk2/RtLsfJ1pPsLg5Ss25QvGCU/5iHaFiCkbSNj78Z0VHyqwbsbtxPSCyvLtKOxx1tL/1yVpK5R3lrN2tGdDGwK0Xm4QIyylTpmXYG4CEdG842i+SZXq0JI5KKNIKB929u5JzBOcspUlndvYHPzEqSsjTk9yOm7n2TBfolArpbh5jrm9LWjOA7PLZqPtjc+scXWe1Q+pzHlWHFLoUgItwKOQJ7jZfnmW2jpEXjzf8KUHR47KY+lKWRnXkdveR21g6/gGdrPWf1uylYcxOxawdHyA7Jj8cmZj/HL5Jn01tRiywpaawxlpNBPdrGL6YkOJLIcoowRxSF+eNkEOSqZ/fBEXY4DXS98kN3CS5tmTtzP824THv1aoXzDc5QsvxOAYP0Ogu+H7ryPzIhJaq+Df7ebRKMHV3ExdqKXomU6OzctmCBGzTUBlvZIzEShHYfuXBFWzk9mcCbDkswRjZy/NV/CZ44iR0NfMIncoaD1yIy2Bmhe8yjp0NNoOZOuJ4vJjo4vFCRBw/m3kdfmM+J8iq2nfA0m/IsGOUkcBASVA3kCqYKTezBlMVTiYrDURflQnh2zAyxoLRCbMtdHsZxaJLKMuLyUmR0o4/3v4xnmvvgJOlv6kG0XJW2XUK59El3vOOa56/JhdA4fczwrzcBnvUA+Xpj6ksEmUoEGPPkd5MY07IhGSvfgN7LHnFuk/Yj+/AJk0ujGKC5rO5Lk4NW/iSoXiKwq9+OX+wFwyfuYGfsJoWd+QqhxHVtlgaqY1IU6J+os43bIwRu5KB7t9H0kIu8fQVusASEkAnqKTDaAIcv41Ay1gX6QxoNPHIWFVhDf/ncQ6Tob2bWBIvU23PYIpKA8Bf3VLzDinwaJtZRkHsftfhnHayPbOpFkgdj1VLrRPAqyTxC3F+Bm3j/c7v8TOEGOTuD/atiWycDOh5EVFd1XSjp6iENj38Q5amVWO/tmzvzq32hLF6wBy0sd9o7avNqH56//uYT5TQVT+JslRlsfvZ1ZGz5DHoUevZFic4C0HGCO3YUsCWL2ctLmZwALgZ9fNCuE1D2kXGX4MJDGyZGEREINY6gZPrMwAhQiPyqyJl/Z/VcC4cfJJiXIeSn31TJo7SdjyTivBGmLNhy3bY6h0L+pIDRZrKe5umkrlqPQkQ4zPThJap4pX0C+ZQifFaP4QD0LtnegdgsOjZVhpgtDSE6XSb0lS6p/LrH21ShaGklx0H3DhFvWYaRKie69kETXCvoUh80uC8ado+vkXub3HeZAy1yi4VLOWv8ITWaOXHUTOaC07DB1dbsoPryEwMu9PLTmApwSF+rBBEKWkMdzeglFAkdg1/sRugwS2NU+0AqmpLc99jtqjZmoIZO0P4DpcnFmXxZtuIecuI3Rap36bg2huAmsMJFVEzs/1TFcsgWyJ8Oc3T9merdMNriM3tqT6AkWgxAUl2a4KHcf3qoRNvR9lYwMnX0nkXwaquf8FW9xgsxwA507z0dKzUZyNF4JTN3a2OKyWJJX8QmJkY5TsQaW4F/+3/grCjIRiitNoBq8pR7yCyqoKjmEJA1j5QIIx2G34wdsnGovFxg5bFUwXZg8aksMKnDwgf8m40ox6p7cNNjr0ei7qJay9V3E32FhVQnGrrUp+5pMqs9FstdFoDpPrN07SYwAhESmR6Jy1rUMJ79MonstsbpCqhFbyBQNzGDmXh9+9bEp9xiJW8w4VPgG064wz6+IMHunRUk2iS4XhJ4qx9cNKY+Kaju4DYeQ8gcq9v0IcIho30OXOybqHIp4kLEYCgSI6iEyRpC62BglZoz+BkHSXULtxrl4xn4OIkDWHaEiEMbVuAZGdpCPqYSkjeyYvoDq2A7qewoEKaoWU2SNIkspqt3HaogdwfqSBSDbTI/1UmYUrDqKFKdK/wB6+xcp6juN3oU/YiAbIpopo9Q/QNCVJGN6kCRBT7wGVbawHRVZtqgO9tIZq0OSHcq8I4RcBQK5P9qMR81iCRVNsvDraWwhE81FkCUHy1FRJBuBxLTwYSyhoGLji85ljiuOpcdRjACyKqFli/EOrCLccwYAjpxHdgp+SZLSiav44xSnD/FqUf3KoTyVQ7uB3a/qhcnFXk1/QRLBRmLEef3kt/+OOEGOTuD/OpjZFGMdmzh4+Kvkjl5lHZnvxzmPLzObukU/4f2/2zZBjAA2DsvwKr+ec+rlCWL0ZrFv45PM3fApdKmwip9lthZ+cKIgQdI+nZT5UY4IRm4oSfKLlipu297BQVctPjE50EhCIq6FuK7tu/ym7gsMelTWDGdYuf+7DO42GKRyomwvcaDiuG3SJBtPbYZs1E2gOkV6wIuckri2uZATTVfsKcToqfo56GXdrNxo4k+lGTtoMLJ70oRtS/DsslNovGQ3mi9B74MfQoxvP5a1PMPh0k3U2YLRZz6FZQTZ4DYnrBoAckji5LEBpvln8+4Xn0DqPYhdVo2v0cQfGEWWHerrC1FH0xt3Eo3W8MnffZdnFzVxcOnZJPwBFCtPzWAPJYkM7VU1REMhwrHDzDr0Is7ATmZ0hShKSti1LaRCOkensLDcHqzagpBdTddBZE0nVV7FjMqCurgwTTgqbF4WEmmfwdzhJgwFlJ4O1C172bZwFZppUB9LU7ms4IxcU9xPz2glrbrNyaOr6X1+0pFbpeAf9ZTHZEQRCFUif0oF+itDWBmbW0M5ak2ZSzI65PyI9V/ksLeNqoZdhJufR3WlUPQs3tLJzOmqO0ns8MkMKAVCF/bFWXEgS+fqnxDIBmHrdQyO/9bueBCSiaTJCNNhSBF0eM+Fr/8U4cgceujr6P5BwrU/Re+W6XmhmPC0NGNtXiQgOU3gzLcJ/Vkl0e2haGaaoHoPtfvfR9OhNELtIijaUXlhyixT8P2ZOqH68jGCqQi7F+uUDvtp7MogC+gvdzFQ5kJJnIQrWc60wXV4nS6qXG9FkiZJa2+wgZT9Xnz9i7HVNOniu8hXvYRCkl5gONVA8eFLqBtYQVC9i9x4PMGuuVfyFW+GZd5mvnignnziIG7lFXzRi2hraaOt0UtRzCQeEETiAebtSSEfR416U009g7XgVXsQksQuFNzZCPNbEwTSNrKUocz1WZLWRWgbbqZOtojVPIsYNbFdcah7Es/wPGbvfyeWK4Zsu3AnGwCYK+fJ+3uRhIqeqiRVuh1/5cu4ovPwjc5BMQMky7agmAGy4f3omQpk04vsaLiSdbiTDeSKdiLMAIrlRcuWTSy4HCWP4RnEnaoj5+8iXbqdVPlz+Mx+mg87BLIpjtrxZ8v8ILGQRsVQnjn7X3tr92j0+YsZlhqp0o616v6744TP0Qmfo/8rYBtZDjz/XfrkO163nGRrRMzTmHPat9G9Qd75/Yd4cVBCQvC1s2v49fp2DmcKk/v0gMljN11Mx0CUhoqiKeKQb4T21k347nsrZURxhA9T1JAUZWzBh4tRWqy3gphFly/BV+fCvDEvf6otbJFtevBS/kv+FA3+kSl1RrpylAWep65+DdrgYrbE7iATm2yT6jWxMpMkTw8ZhOqSuCMG0YNBTgp0s0AZPqathiqhW+MRNVoQ1bHZUDGTVJHNoBqhuTPHqR2b6HqmGCs7SRR2N4YQZ7gJz+9H0Sw6dp3P0L5L6NAcmkwFv5BI6mMEjAhDssOf/XlSR3Wh41NZU7ubD3cWEw4NkRmaxiPaTryBYRYtPjb1CcD27eeQG/BSfLCV4YjCaCBM2WiaTKXKwVA/p2zTEY6KoWsgBJqQMN1ujPJ6/A1Rpk9/GVU16WmfjjeUIpfz09G+CHuc0MmyRUPjNqqr95G3gjyy6yxKkl4kR0XIFjE9RumSOGwpxTQKMglKKoZ7oAsnWELp0mHqGwpkbl3PKdzVeiVeBP8Rd+MSEtJ4Mo2oLPhNcNJiZM4N859P38ZjSy+kv3syfFvHZlXWxdK8igTkXINkvD34HTdefxeyHiMYjqFqEunBuSR6lvJ9f4G0Lg7t54saPL54I/vtmTz39FJsJN6XcLHJZbHDZWM1+NG60whbcE1CY9bMR4h3rMLKlABQVvM3pr38OK5DU9/9wa8WtkTLvqQh2RIVy2JEmo+vPZUe1Bkz30rUVNF6ejGdKB5fisC8UtxZlVDwWSQZ9lafRF/jYZBtcBSKOs6ntO0tKFIfQvhwCFHqug6X1DFRd9Kr0it9Cf/owmOuO1qxnpxkUN1/Boo0SJH2bVzyfjqfKSYz6OKWC7/N82rhvr58eAMrWv/IjMv7QVboqHXRVeNGMwVVgzkGS13kXDKRUQdv1sbwCPrLx+WmJYn6rgwN3VlGinQyHpm+Sjd5l0IgabJ8W3xKu7L2SsbM63AIH7e/joZEFoksDlNzMKZKt6FmS3ClqhGyiaNm0QydaN3ToIxR0tdExuUHx4PtPUS67k7CcZNAysJWJRKeCJlABkeSqBrIoVoCIUE4bqJONZZiS7BpcZiMR6E4amArEoYm0diVxR+TGSmVOdTsQcgSCFGIDTg6XA2FFcsfxO+f8Yb3+/fghEP2vxAnyNH/XthmHkVzkR3rZ9/LXybqfvL4BYWEO1dHsedMmk/6GNpRuiGDYwlO/tazmChcvzLC9Zeuom80zvO7OrBsh4tWzCT0d+oVdR/cgXHvtTTbBX8Hw6ll2PgOgmP1SixJcNUqHx3+AuEImjkueea3fDnxJz4YuIUmd8+U8v5+ien2oxxMlhx9g9Sd3kdkWgJJAiOpYuUVPJE8SAJfzqZiME9j97E+FEcjL2k81rgQf3U7eclF2vFR3ilxSud+Rvf5Gd4VmIiGam0OoLxFQa8ZYkxI7M8prI+7OWXzl7nXo5GXICDZnJ7yoAtIyYJ1HhPjiPuUKmHX+XHVCG48/GemTVuHoxXaN7LxGrwzHscbKkSmSbaOli1GcnTywYIVcMvmC8lkIpT09VDf1cPhpkZk4VDdP8juefNwxn27ItEoY5EISBI+/yiLFx8b6QTgOBKZdIREsoSqqkltq56eD7N5sIfidAgtH8Z0xcjJOaT5ec4MPkAmE2Df3jWk00VIlgmSxNKTHsA9HtGXyPu5Yf3XEeMCkLpi8C53BxvNMnYb4YnrmLPDvOXgOkqyUbR0ll9NuxR7aOpK+zwrx9zUG4vojckOvwrmkSS41tfJ2ubneVv5p7AlldqX2xhOeKgPDjKYKSJnaUSm24wNuSBmcW5GY54xdTNBkk1aLrieym8I1FEJq1SQPs2mu/pUYodPYa70DcL3FwhG5bIY4XGCJASkB1z0dAYRHa/tvA4QmWVTsaDgs5O03kLOmU9A+RtZZzkyKULaXQCkrPPojcykzvghnrzDSERjQP4Y4d5TcMk7cGnrQDLRbANLVOOIEJKUx6/cjywVtniEA/v+UokhXFx14TfIjr+Tl8aH+MAz36b+rDje4vRx29lf5uJAsw9rfJtWz9u4DEHpaJ7GrmO/r5RXoXWGn6Rfpa4nS1NHBuWo2TZtn4HhTEOREsiM4ZJ3osr9SK+RKy2vuXCZBUJtKRI5l4ypyQRSFqr9z5/GE36F3TODyI7D9MMZimKTluy8LrFnZoCxsI7kCFRbIDnQ1JnG0GRchsNAmYucSyEzspDll//unz7HniBH/0KcIEf/+9D+0m84nPv6G5Zr9nwBIzdCw4oPoHuPfba/f3ob//VkwQExohps+tLFqH9Hmo/jYeOf/pvFu76KOm7y73Rmoho3IwgQ1yD0qoCdL81181C1hmbZXLBvBy1bHqJBHuRsqY3ryr9Nk94+xSdbG/Xw1sDPeODQ3MLfPpPmM7qZkczQMjjGvmANSb+K6dVQslARi1OfnirWeNBTz+6aUoTqoGUVghmD0RIFj5wh174E3cowg2205DtID+r0bwxP+BVlvND/bpX+mTnuieoMW5PWhGnDS7F638ZO12ubz52wjjk/gqI5rNzxMi32GGcu+gOSeqyuimTrNLz0NbRsCaO6wgvVMRqm3YSXDMKR6OqaR3f3XIQ4+pmJgoOsN45heKmt3YU/ECUUmtoHaqqM0W4FPElCDcduDwhbonL3+7k7cBrx0d9Rki3Fk6oh6+9BIBiZKXF52e8LZR2JwaEmerrnEgoNMG36K8imB290DqnyzdzW/T42HliA9BqTl1Xt5aLhDZTLk1akXM7gb6vOIW57cL0yaelb6RrkpMF61NdJ8npAs7nfZ+B1ydwvp1i3+rfcrBScu6eP7aV7Y3Bi6hUumSWVg7RaZeR6BE2mzFvSLuKSw/qKDoxkOeekvQTdUWpm/pqg3Ua23kP00FpGWy8GwOM/yIqnvo+cm2zT4WkCOSPT0Dv1nm2fwIkIhAZ6+1RLVNP5g7iCb7z1krAuZdfiXiRXG7ZdzswN76JU/8IbnncEA6MRxp70sK3pND43/8KJ49Mtmx8+dCPyoibqWzK4la2vWcdIkYYr7xBIv3F7bVli06IQaZ+KnrdZvi2Gy/j3nHItWWZvfYReTzWeYDeqA8VRg2mH0lNI3d+LnNA58LEDzC/+36WQfcLn6AT+16B3y19elxhV836mn/opQJqIDBuOpXhp+x4e3NZJkVdnc08SBBNbZwoO37pszv+YGO156ZEJYtTq1PO4WMN59sX48fCVOW4eqNGQhKAx7VCRFWwoUahN9vPR392BOzO5HVFVksCKKshyoT2SUBHYIAks3UWDHmf2pW04uoTbn2fptjShXGFVPDPRA4lj2zaglFNhD5Kxg6xr/yZxfRDd0ImjsnRaK1J/itOH70K39uOYEskeN2OSl4HNYQBsGdavgZ8vU0AVWENH6SIJaB6by4zOK7jXW5gszNlh1INxJLMwogoJ7MYA87O7uOpHf8LQdQZaZlAyLYqkGqjZItIDc3A1FnSelHyQ6m3Xc4f3GURA4W/TzmTYX8sFI9/mHcXXIcmC+oad1DfsxLYVZMlBkt949BYpP9Vt1xAYWkbzeOPFAcGQayujy36O4jVxMm5Kdl2DljqJ5+pHmD8yLlBp+UCAJEnkspMOyZIsqKg4REXFIcS4ZS1y6DIcxw3lm3lr4GEiLsHDtWuQh7Mo0QIRtKs8nJbcxaV/+yv7583D35ShsWkrmUyIva1reO9d3yOcF/z4XR8j1i6hjObZkC9nQzhHkWuMs9x9uHoWU2RLxGSBT0ikJMET/hwImRXeTroXf5/98nlc0mNQlxbc1VLBf3mG+LITBFswt0bhM/5H2Jeu5kucSbtmk604yCOyi55MZWF28Bpcmi6mY9unkdQ8YueRKMoCsqlp9HyggurbB1AShftvOigV+lYTOG6wygXRD1sko/MZ2nk5di6I/9QtVEefp+KBgsWo7akyKi9NUSS/vip1UP0bc7dfyO7FUZbssPG+ihil7Qg+peAMnZO9WGj4nTjd+Xm85F5O8/Cj+IDW6iUAtEgKbcLmkKJgyArqnkPsX3keJf03oUq9uOXt5J0ZyFKWIu17yFKakujUVc6QKGOQ2Rj+VSTSArIhfNIWlrv/iOIIVm6JYagKvVU6Ly+LEEpYlA3nKR82UG2BqUhoryLPtgSKgL5yF3lNQctLIGSqRpMcedX3NgeQcbAMH8ExiZwdpM01i3rfK6h6CtvWyNpF6KaDFBlhsNSFagl8GQtDl8l4CmOMK+9QNpJnpEhHNy1K6KRp31RL0REczn+TkNxKsXb8nI4T74UTxCMncIRM1GyieiwB/2Ry9K/GCcvRCcvR/3H0bX+Q7p7fEHDNY+YZNyMrClYuTWqwjWDtPDIjHeza+HEy3taJc7yZmehSKX7vTKpnvxV/eSFRYiZnMBBN8N0HNvNIxxuv7G4+o4L3nL3kTbd1yzN/QREO89ZciqKq7Nv8NJlnf8ji1HMAPGkv5WV5JaeXzaGxu5aYBhec6ievTK6sKxMjzNiziWU7XgQE7uI8RkKjdO4Y57naMJ7y8vlFt1CnHkS2XQjJQsg2TraML7tvoiNQzkCtRHNHlrLspD9DR24JaaeYIrWLEauBUbOew/kVRNRe/PIwKwN3oUtZXHKBjPUZMwkpg3ilMQa3hRg7eKwOSdIruOF9KnHfZPslIVGUqWBGYjaLOtdgihB3BPKMKgJR6uL6bbeytWU5T648Czlh4lNSrN2yjgX7dzJa34wVjAAOKxY+jR4cYE//h/mh3+JHo31UCYdI59l8o7aTxys1HCWAqbfgymzA8C7h6fVjJKf9nlTF5jf9zAByvcXM3f1tFOn4JNiRDYRko9iFbdRfN+ns1J5iWk8St+0mPLqQRLgVRzHoLnPxvkGJVw4/hzuSp/GcHlRP4V1zJer4ae5bvFyi8nH568y29rDtgTW4Bnopz9rsrFvIYEkRp217jlEvGMEI8vQiFi95eCIdSl/fdJ6MXUHl0Ai+zi0MVs7jgYrVE/IFx4MqWVjjau2SAt87+fOEXEm+n7uJt79k062M0Fe9hLfwCjdWXEDazvCr6H2kGgu+XZ9/8VsMpI+/hfyWlE6TpXCEFAkgKgu8QsIjJCTFYPpFH6H41ypqv4TR4uB4IX2ajV0CvS+/n2T38uPW7RcHWLL5RyhpgaPBK6srsUrWQiJHtWsPI14vlYe2k3PrLK/IU6H2HFOHEPDgwFryw70MlZdRFu5DsXR6h1uwSlKUBoaoECYVDyZQ0oVO/vL532SDrnJySGdX3CSO4Ntb/8y8rpfJrLDRll5OUe8F4/frYOlx/FY3QfVOLKcGQ7SQs5eSdkKkgz2E+704Y+2o1UsR+RSS6kLRTUL6p/GNh/YDDBfr7JoVmPDPcRkOeV2eknlZNxwcubB1BhBKWFiqhGoJLFUi7T2ycALZEWimwJElLFVCMx3yLhndFBiaROmoQcVgnrGIhi9tIyQoGTXw5B0SfoWsR6F8+FjL7dEYtZpIiv/EZVdgU9jSt/R9aPZvCMpDBJQRbKGyw7OU9uQqxuxq9EA37nQxcj5IvqiLs686m9Lmla97nb8XJ7bV/oU4QY7+z+PAM9+hWxyV0VpIuHI15D3dxy0fyq5iwRk/m+I7lM4ZfP7OZ9ndn5kSdfZaWF0uqAy5+PI7TsXnfvNS/s/d9S1OPfgNALqlSpJKhNnWJGEzhcLdvvczzZpDVbIBVUjc3ujg2n0r+YTAnc8iCTGxKeIuytF4dg+ukFnITI/glPVx+p4K841Tv0qVegDF9OLIJkIxyVnVfMW4Ed07lfRtFWuJqtPZqC2nussi5RQGMK88xlUlH8MjpxA2JHrcCFsiH9cQAlxBC2FLDG6bqnwLEPVD2g0/P0/hQM14ck7Hw7LDb6E+2YyTKziI2gge9Boc1B2ELNE8d5gzNm1GySTJOhJCVlm6bw97Z0wjV1VPUVEvpulmxrSNePxReu0Gfpn5Fpf3WLwcPEh//meMeHyMVX4dpMKzmdd5KwPSyxRLJ1MiZvKDvYsxXVGykf0kKzaiZcqRbQ3DN4DpGsMTbwbJIdC/EneiCUdNI9tuJKGyw3uAzzTeybRcE8sSRczONLEgMwNdTL43cQ0uXONlSdt3mTs4A4REydAqYpFdWHqCnkiaj49cQsiwiBnD7NX+TGjNVvR0Bcnez/CBRTUA1Dmd3CLdwM4dZ2FuG0XJZVAdB1NRsPxhlNIm0m6JWbOfpaRkctJ3HJlXNlyBZblI6y7itsKiPTv56uXXoW+dqnJ8PJw3Zw9XVP8cPdrMd81Psmh/Qb/IoxQTnHuYoieCZDwqzWc8guktbDnu67iQbx84e1JXelYItT2FlLNptOGK5CRxesZtsnk84nCOIXN+xoWsZQg3P0ekZR224cPKhVC0LL0vfwArU4yQDFySjBAKpapMnzk57ZTGX2HW4TtR44XtaKMM1DGQX2W4ELLAf1GQOs+kkOm+xCysF+Ioby4NGgAjZTO54aT3MywJvhBezyPxlWwVKlePDvP2Fwoq31ZEYKwsgsYGzLHdaB0mgbL34VYWkHOPIkkOrkwFslCxhveT3XgbmFN9ldSqxbjmXIITfJwSeR1+ZWp+uaGgD6HaoDhEYiYICVtS8JjHF8z8/xM5x09bbjUbjbez1u9Gsfw4qUHyA8+iRZagFreQDR5mX/1d+Ep78A8vQrZ1ijrOR82HEQgU24MQDraWpuidcwnOqvuntvHEttoJ/F+FsfZtAPjKGtnz3I1E3U9NLSCJ4xIjd7aeeQtvJVg9E9OyeXFPOxISv3m2lae6jwy0xxKjhUUWHzt7Dsun1/DCng4Wt1RRHvn7PiThODx328c4bej3E8dqRT9YhRXhBmc2O8UMXCEvh4OXs/ZwYSW2KwTm3jvxDqeYe0oPfkMQHS4uJF6qTFI0M440nqRUOFC0tQHN2UI2pqGOr1kkoSBRSP1gKQqDySokJURIHSBpl9DNdGZ6nmax/TRn2j/DKNd42XUyGbfgvNizAOTjKocfLXtT9/q9y2RemSFNrGQjisM7Dr0Df/8yvDLknIIk34Di0Ks47PXk6R9PEaI2qCxt78YOh7HDYRTDRhsbYvuqNQiXm5ZpG6isnKoS/Nv8Z/ni9ihxs5vTeir47LIfMRZROf3w00jGDpK6jCuVoj6/gr2RnbzY9B4uU37MJzuWcfLASQQHTnrDe1KsApF+LjLIZxfWYGrfY1SS2QAo5hCa2cm80UF+sHclu3zdfGmeB2/ejZorPAPNCCMJBcV2Y5EAO8Fhv8ySMYUiVwWr+Qgdj7dS7Wnhc4uD4xE7GbrkeuIiSF39TnbFzqLY0DFzcVKhI8mABdOmvzxBjMIvfoTY7D8gR0ZYufKPjI7W0ts7C1+ijGdOO4/3PX0765evxZdJs9XfgnApOEWuQu65aB5kiYbcIBe5CzpD3WNzmJWdnLBNK0abT+GiolngH5wgRgCzq57F7X8rqaSDy6Pw1+3DHPYG+CxZ2hXBkGZSZmp0K/YEMQLYozvMMmwaTS/RfecR3XfeMf0vAQidI642RxMjgOHQCqJLZ7IgfQvhDUn0oWOqKNTjSKTvT7LlPUuoT3tptWspeu6ZCWvQEdghgRKfesxxCeS8RMJfy8vTr2FYEugIqkoHmKVvZevQctpDFXRXn0rR6Mv4xgzUR8eASRXqfMkv6fmciZSD8F0qacmDK1kDncdPwmr1bcXq24rnlE8TK76W/fL9zBe/Qxv3LytLvNrxW3C04Oi/Aim7mIRdjqCQC1Ig0W/Moo2FuA2LhMtHNl+Kr2I3jZE8pyUtRGcvqa2/QWQLfWFKT6PVnIRrxvnMzX8YbVfxRP1OJorZ9ST2WDtKpAmrbyuUVzN0bo4g/1xy9K/GCcvRCcvRPw22kSUbG8Rf1jBxzHEchGMzvP9Z+jrvY8y9bvwHpRCyC6hGhOUrHyHeu4PejrvIM4BfmU0wPB9JUgiVzyVQMxdF1fjbS3v4xqMHGDKPb/GZGTA5Z3YZ1120gs7BKC3VpW+6/Zl0GsuyCIYKlhTTyLPzqbsxDjzNSbEHAXjRmcs6aQ01ThcmGqNSCQ2zlpAoDaDtjnD2QGFwe6rUoGfnLykv76fu9D5U17GDnhCQG6nC7JnNsugOarS95OMqO5+q4/eXfIwitRMtH8ZR8thqlphcw017v8yj5b8in9fwFu3gSv0WiNrYpoydk/GV55FVQS6m4VgS0f1+Un1Tc6cdqoCcDnO6CkPxlmkSbZUSL6wRzPE4pB2Jcs0hYUssis1BffkaMmqBYPQoBYffo/OhCcBqCXLJ4POsqdhNae0OUPMcbD2VgZE6wuE+KqsOUFIylfRGhy/kDt7OKXufIoeFBHhL1rLLvZvqvi5cjoth9zClucIzzMk5NjaX0Fp1JqHBr6Pn99GSrcWSHJry1Vw5ejZlZoTDrl569EGCtp8hLcmuYJK2UJAOrwdP/NfYaiWGZyFafh+SyJOKvBvTPZkTT7Lj1Hd/gZX9SwgbYQKxGbhz5aR9nWQCnXT7u3h48XXMiEW5bv8YJ8ULmlIdXokrT/YRGPkBruxWsr41vLcozgpeJh4vpf3wEvKGl0ikj3BgkLLK9olrlu19F5HuM0mWbqFv/k9hXI/IcSQ62hfT2zubnnAJeV8NH3pyPZ3Zw7jzOYYiERxFo6esgrqBPkaqi1l57iNkFZX3SXdx4/qXiduTaUiG5hTzoeEhDM8wsfonEV0lyJUphJaja8u7eTKv8dZkDUulwjb1W1xpBvM2IChxxYjZASxLRWjShE+ZJuA9CRchIaMCHrnwTqSOM89LOAheQxJDspme+CU1W3aRKfYTK46gjdl0V12OLzfIjP1/nCgaf4uF73kFdbhAgvaeeTb91nn4pW1klOm4fQPUV9+BnQky1vEOxkQtllSwBexxWTziMXmvPoIjt6MLlb/m5+N3NK5I6Mi2QWX0WYKDj1M58vq5x46gvSKC6VmMK7sPIcZoGJz0I5Q8xbhmXoRauQBZB1l9Bl1+mlGjgiqtFZeURpMLfoMJu4a27PsJyL0IeT995kx6zWWEtH0MGDOo0A/gU6IovjHG7CrGRhYAEmG1F0czqZd3MduzDiELNmavIJpvYFQtp2HNt7BNH8P7z6fYG8dbswMl2oiTLaKEMHqmHMUIoGfLyPt6kYSMnqlEGCnST92MMI5vmtOaz8RJDWIP7nrNvhFIFP/pd5TPXfqm+vLN4sS22r8QJ8jRP4Z4125SwwcwciNkMt3EjA04UhbDNQCSoF77BOXNZ9O+82eMKI8jlOMPMJKtETZXE5r5OR7aOcjp8xteU2jxwQ2t/PaFNjaPHvEZmQzjCikG80s1bvvg2X/XNtkRCMfhyV//F2t6fs5WMZ3gZT8k1bmFldtvnFJuRIS45+3PMpg3WdrXzuzmJiJ1DfzuwB4ObTf5XGvhPl9RD9HZ9hea1vYRaJ6a/+jor82zfTorExtRxkUiTaEzcCjIrgN1rDvnrfiVQVzZEmw1i6WlGZGr+fRTtyDO97DH38g5Iy+SanfR/8qbc3SM+eDW90C6RCKoCDrjMlJawigW3FCeQ+pbQrJ7SUEnKFmBu7iNRMcpQGH77HmPweajSJ7QZZwiF+XhKG995k8El7uZNuuFKde00sWoR6UQiXScQ+nBK2l39/HelQ1ctONBQplJ8lZJkK2+vVSmq497D6+UvkJH9QWMhU4GwJXZg636cCQPrsxGhOwn5z8FxexFsUaw9ZnYigs9u4VA9A5k5/jidZZaQd63Gj2zBc3soCHRwJLRgi9a8eBJyEIj5x4iGd7HiGuEJ+eeRtzfAsDc0RG+vsfNLbNcDMsHSKS/OVHvMv81vDPys9d9Lua2JTRHP8oPp7uoyjq8vXeUA6E/ITVuRokUJtmxsQr2tp6KbetkNBfb6qZh+OsQkkx4rJtQtI9INk1LcD9z5j7LOvNy7pHeznteeggbB4EoqKxXtHDB9JsL10Xlp30fYbG7nzVF9+E5dB77d4Q5y38OOX83sqPRmSnhPSET4pNbPUKXqa9N0tTbzjp1IXLK4uS8xElZ93HvT5VtKmY8wZB1gLbiItzCg54IsDC9lc7uTyCEm4IL95ELjP9Lmmr9aeq7j4YDz019bkHYv+RCBsWxFqvXwoP+PPtUh0+52xmhoCU2bEzncTvER+NulHGZRE04hPKHkRMjOJLO/D2/nryuDP1VCsJUSYRWM1T1lmOu4011M3fPt/Fnx78ZRcN78qeQvCXIrsB4KYdJUdLXjkJ0JBOh5hGSjekexZWqJR/oIFW6AyUbQXE8CCWPI5sohp/QwCpsNY3liqGYPhAKsqMi28f6lQnHxurfhhJpLFg9NS9mzyuYPRtxose3iv09iC6oZ/UfHnvjgn8nTpCjfyFOkKM3j9G2V9i//2ay7jaOm8b8TcCXmUt1xTvRXAEcx6J8zrns6Rrmbb/cRFaoqNic3+xiSUMpsixx6/Md1AZV0obNnvjkltmqcodb3rEar0unOOj9u8QZX410Mob7uw0or3NP3aKEF8Ri/rz2Bl623ZTkBVkthywEtSk317YbnDZUIDit8XUkiRI46ymUcGE1mOybierK4CnuQghI9s8mvLeG09R7kMavOyhqWR86jeUPP8Q6azH7T1uDLsVwZcoK5EhPEpXK+dA9PwJJUL4ogZWRGdnnn1S85dW63mCUCBJXWozOLlzHa3tJ9c8lULMVWbEYtSSyrReR2jce1jwxMRVq6lBt1rtN+tWp/WM1BaguGmJ19EUq13eRbZnJ6mUPgytJYGAZyYpNU8q7440EOtdyFyM8ULqHnG81M/MrWbT/GXRHp9vXTW16akoWw5bRpTy6ZCOEjjn+nLeUbMHvXsDm8mnkVAXFHMJ0z8JWy5FEFjV/CJBwZTai5fehWgOT7bDcnBlfQb82wpbgnuM/cAEXdJ+P2/YgmV5KRpcSUvoYJcRY6RYsyeL++gfJ+VdhK0Xk/GfiqBEkx2Hlwa9hWSambNLr7aXYdTWfGX4e19zWKZcYawtiplUybZWcHfg0Nyzy8EJZwbLx7naDjx/II3AYnn4fYw2TE8voSDVtbSsxDC/HQjB/znM4xSlutH/Ch3YOkEpux5ANun3dNCebEb5aFiz5KSHi3Jn5Dx71nQ/A18SnmZE0aNjwJeJV6xmccweSrdP44jfYLBw+0VyG1J/DKXJxUnQLK7c+jdBd3L30bYyN5+o7RznMvN4kXn8Qy7QwvAlC1cP8krl0J2oQx/H71Usl3tmTpyR7rN8bFDbKbSY3m0Lp/Szc+hMU28F0abyy+MsYruOfezxkJMHPQjkk4COuPSSkAvl0W9XcZlXxjqROtX18p/3G9ocIj21koG4tcvnJOLJC/xu4B6lmhqZDv6ZmYN/U4zXLcc26FEnzIOk+hHDAzCCMNE5mFElxgarjJPtB0VErFuAkepFUN7Kv4FPoZKKIXAylqAlhGyCrSNLkCCCMdME7X9VxEn1YQ7tRQrXYIwexY51QV4NsBjB3/OlN9V3KW8nhhvPRrCyzDtw95TdHgsGiEJF4jq6ak+mtOQ9vfoxIdB9DTbVcftMlFFcdX7X/H8UJcvQvxP/L5CjWsZ3ufb8nZ/cR9q8kWDKHYNVcPJHCC5yNDbHzxQ+TUffjNZvJ6G046tRoGcnW0c1SivWzcHsqyOcG6ZVunyzgyCiWH80upqbkGupXvHvip+6hMb7/4Gb+djCH81pm9lehSDW4amEpn7ni5P95B4zjuV/fxKndtwIQEz4CZCaIUkbo/EBcS92sxfw5GGaTu4Kfbs6yaMzmMwvdnD5kcUHfpP/FQH4nqfKnsZfvKBwQgrKdJcwY68RB4bC1GI+TpVrfjS7nEMAuuYW9egXbiuv4fPd99P2lhAebziK+uA6FcdP8uJEsLhXxn/cca4XoXOogzrfQS8G9SypEDDUJ7FKBXQRGspT04GwSnSvJjjYX6hMOipMFVeDYLoRyrMWtQ7X5k884ov2IkCWcMjcXJZ+hefdOLI+HfFkNjtfHsgVP4Q4NcDi3gtvy51CV6+eGbDfF+TCuZC1Pk+VrixbhqGEAvPkYze1fZ/XgagzZYF+2hrLQTipy4wOocLgjvwwJCY8yykqnnTrXZNu2F23ncPAwAvF6C+4JqI7K4pHFxxAwANmV58Gyp8ipORBwfed76BYFTYTwyAI0K8R097Psz53KSPmLIDk8XvM4Ka1ghRJSkHToIuqyfiLDT7FwXK15d2Q3eypKuO2VpWzu/SsAitvGzilUe2cQCtcyzT2PnREvH17mRbZGcZQwSApXHG7nk20lyEqG7qXfmhDABHBsmVS6CCFkEolSZNkuKHrnPLjcWZ4U59LRcyaz2ncggL2hvST1JMuHlyMrLsTSPSwV2/mw9hvKY12MeYIs92zjvdIvCkrgkj2xAAr2raZ013v5hf0kD598NosPtTHtwHqqShaz0Glmr5rkRncYOVn4DqqKB1F1G9NQGUkUYZpv7NYquSWuG+vEnX9zCsqe7DANHY/SXXM6qcCby3F4BNtLO3nSLONcLUWFsnfieNgJ8wNjGnMDCS6M5shn649Riv6fwJMdZsnWb6GbU8dQIUvYleXIQ4PI5pubiiV3CJGbjFK1/H6UdBppfCo3wyXImSSK8ea2BN8IXVVraG+8CFubSshlM4M/tpmcpwzDP/N16zj17aXMPfWfm3j234oc3XLLLfzlL39h3759eDweVq1axbe+9S1mzJh8qXO5HJ/85Ce59957yefznHPOOdx6662Ul5dPlOnq6uJDH/oQzzzzDH6/n2uuuYZbbrkFVZ38kJ599lluuOEG9uzZQ21tLV/4whe49tprp7Tnpz/9Kd/5zncYGBhgwYIF/PjHP2b58uOHjB4P/6+QIzObYuTAs5j5BANDfyXpfW2BM19mNjLu45ZxZ+upK/8gkqRQMfd8ZM11jNXGNnLYZo7sWB+ByhlTMtHf/9IefrLuIIdTCvZRhKhcN/j51ct5bNth1u0f5UBKQ0IgIfDINlVeuHZVA+88Y+H/vDOOwpZHfs2sV27CKxUGkTvOuZ/Q3qep7Xic3a4WfrDoWkpkL3J2mJ3hRm7Yl+MdncdfKmbtJEMrv0Mu0gWA5AiqW93MiPYeU9YGDskhtvgc3p6c3Msf3etnaEeQH570Acob0khi6rUyBJnX/SBLXyxYQgwdkldapBf5MDJl5OPV6P5hHNNDPl6FEArxjpOwMkW8EYNISYL1bhOfkBiVHXpdFhlReEZOWCdSn2NOspWTnnieTChMdjwfWcA/wpz6fWjF7QxRxued75NRCtsrsjmIJ/0CmiMTK7ochEBxbMKJ5ygee5I5I42UZ8sRpPlt9jROlQ5Qq/WTtCp4XtRxt/4lZsnd5MZUWntruanlQ5ylHSKlTB2k02rBsbXD38Hh4GHKs+XYkk1TtpZys5giK0jUeoMlvoAifNhCEB+XOkibHhpGlwISqwO/4eXk1YwW7cLSk7SHD5JzpWj1TmZ+l4TEud3n4rUL7UupKR6v38pNg19l4cgYicwQnck9lBfNoEWbBcD+gMwNizzE7PUEo79EkqoZqv4SyIU+XDMwxi27VBRtjE7vfaSbtuAqfv3Q65+PfZPqfS8RMkOM6WM87R+iVAhOHZsJCP4yvxIpv5mlY0uoHRrEkE3+tnAV3/N/Cp1C3fkhCVdZYWqo3vZx7OHpPN37O5JFYVqqy2gp7UexvBR1nMcdYh+/cZpft016QKAmDRYNH2BldC8/Xf1W0pIbZbhgXZU0uEZtpbR/UlbDm+4n4yvkDJSkLEK8tlq95dmLVrwFOx7FZWlkrFmo1jxsJUQulCXg7aJm7l18bsenSWXcfCrYw4gxGWKvCoXf5xeRR2Jt0/O8d/8jJPefTE4uQ3cNE1dnEg3Nfd17nLn/dyAgWjyXodLFx/wu2wZF0VaKhx6hevjYceHfBaYsM1w8m/bGKzFcIYTyxhHArwchBOd8toFpja//jvy9+LciR+eeey5XXXUVy5Ytw7IsPve5z7F7925aW1vx+Qqm1Q996EM8/PDD3HHHHYRCIa677jpkWebFF18EwLZtFi5cSEVFBd/5znfo7+/n6quv5v3vfz/f+EYhTLq9vZ25c+fywQ9+kPe97308/fTTXH/99Tz88MOcc845APzhD3/g6quv5rbbbmPFihX84Ac/4I9//CP79++nrOzNReb8byRHyd796MFSEDaar2gK+YCCA7Rj5pEUlVj7Zg4d+D5Jz5bj1qXnKglKi4lJL2HpY8ctA+DONlIeuJjGVR9CUQsfygu7DpPI5GkfivPQzgGylqA+rDOtzM+ChlLOWTINyxH88IENPLB7lAHjWMuEhs1/LInw2StPmXL8YO8wYZ+H0vCxKTf+GRjsOUTbQ99n9UAh+myLmManF99Ma7AWt53nwugB/lQ6dZVzypDB97cdfyWm0EbH8p+TCRfUjGXLQT1YwynDOxmVJA64dHa5XGx0u9jldlFhWdwyPMpswyQ7qmEkVNJDOvH2wjf04fO/zqmh3eDYU/wuDLxU5qPMOeWPaB0SZpMgOTqX3pc+hGOrSK9jgXMQtKsOaVmwwWURVwTNpsyivMqDPoP8a3Anu9LDO9vuo3SoB8sXxCiuwPH5mNm0g5KaPUfVL/FF6wfkUgNUjTxKvTWNx5ovIqP7QFjoRh+XtK0nlu/HZbuIGBF8lg+BYCCrcu3AQ1xT+VmM8SS8V3av433tD5P1e9hVvICe2hWUxbbyQHWAIrOaeiVxjE/Km4Evl6LxQDvBXIL+mgraq5pxBMivqiqfheL0DLxWCR3hfTw14xfMHl7E3OHV5HyFSbXZrmC6KOOl4EvcU7KOqnQdC0cXIgmBGG/bw7UPU+P6MD/e3TKl/kM+mV80mTxdFUbL7SU0dMtE2ghTqydW/kWQx78ZIfjbC2lqsgKBQ9S1mTHPQUa9u1HDMYTpwaVCkd1CZOBcPlk1xpKOGDY2D3lTaCML8IQ3s9zx4LN8rJ++nBGXwiW7XprYkh3w5anw5zi1/AGy21Runns2RYEGPui+k3Aemtd/m1HHYI/7ADUrfoutF0i9mgsjbb+aO7Mpni5bhiFpKGN5hCUoUtLUG8O8ZdOTLO3cS1Z3sXfaXMqHuvGkE2gOPDBnDb+bcT5ypmB5WlG1ibVKN0nNQq6OkY67GM2XkDR8NCU1Qm1nHvNMXeUbeLRS4tBgPS3hQ8wqPkBKBFhb/iwD2XIeHLiARSXbuav9bZgjMgEE1wXa6TdHQY8gGzEcBEm5nj9nCnOH15vlPdPvZGHpbqK5MD41jfHgBYylVpBzF1MUbcWbGUKx86gijbt5B4m3xBihlPxmL5X5EQLbGuhznUki1DTRVk9miFD8IAhQbBN/cgeSGEGxNcYiVRRHxyiK9ZDXQ3jzBV+9IxP00a+oAGzFhWLn34zhFAeZvBZAKCqJQD2GHiDvKiLtrSDtqyyQIPn1rXyG0sop7iqGzCLajdc3q8lKBo+sojoao5EDXPyRs2isbHndc/5e/FuRo1djeHiYsrIynnvuOdasWUM8Hqe0tJS7776bK664AoB9+/Yxa9YsXn75ZVauXMmjjz7KhRdeSF9f34Q16bbbbuPGG29keHgYXde58cYbefjhh9m9ezJ781VXXUUsFuOxxwr77ytWrGDZsmX85Cc/AQqkoLa2lo9+9KN89rOffVPt/1d1bt/2B7GtLL6iZoLVs1Fdr7PiyaXJJ0dwhytQtMl9g3wyyuDeRwurbd2PbWaOtfo4CrpRiuqEqSi6nJ7Y7Rju/uNcZRKy5aXIOYNI8UqqF10xQXYA4j176D9wP6oaIFK1nFDNXFR3YcIeiaW44bfPsXPIwBQSaef1VxNuycIU8hQLEcDskMmyuhBlQQ8fumD5/8hf6PVgmQaKovLKH25h8b7voUs2rdocAuYotUz6oGxkBpefcivWawwM7+p7kMbMGBcdugAZnVTJBlIVz1Gx721kA93EWu4iEc5NjFx6BqZvS/GCV2Gny8XV8SQtR+mWDCoK5XYhSm90r4+hHVP9JXpb6vnA3Ot4l2czkmGCNt7PtoWlekjHprG8bjOucA/Z4WnE2lcjbBtJdnE8WAh6VIdNLosO7Y33CYRbwS52QZVOg6uLtS89iZ7xYLu9uCIWdVUHKaveO+Ucd7yRW6WLWedbxJm7fkl9so5R9yh7InswNA9pOYok8qwYWkF1ZqqjdbflY/7W3TRLI6hWGlEhE9qeoH3mMvqqVyIJFVeuGFnoGPoYi7f+gEMLM/y48kIq8mGa7DRCGIRUBddRKtlekaScKBnhYVAqBUli5sFWqtt76a2pRTMETe37cefzOJLEpjkLyXi95BWdhs4OzMg0hksvAQR/mvddRvyFcPv3bP4yiaKdU2aqWruYaaKcZ9VWHKA/rTHTXSCgG0o30BMYIlPxCy7od1g0ZvNCqcqjVRoIE1/8L3gSjyFhUZYpQ0ZiwDM4Xr9CzruEZPGHQVK4eVeai/qmPkPDTKNrk+Kd+/0Gvwr9mRmjZQglz32pJXxCf5SX7BnIkb3UpevJeDwMe3XqR+NklSyecSfdp5oW03zgy+yddzHR4FkISeIknuU9+q+AwhZbNtSG6Rs88nKBClq6nC0vn0Xw0H4W7tuPN5/DkhVUx6anuIwD9ZVYssAKl5CMFIGigHDQRwbQh/uIhhu4s/5i5OT4dyKDy2+ST7xqjJEEVxdvo7xtdeFdVUaQ1tzF9/a8H8d4c0RZAb5SfJjhtEGMJJuLt1KfqqU0X0pV2Mc9A3Npf41w+jl1B7jEfoaEFMFnp2nMH2bYFeRnnvfSnaxGylhIWQvJAaFIeBdK/HDHTQRfKKYvfDoD5csQ8tR7CibaKYruBSSynhJGiudhq5OO7Xo+hqEHkR0TzUwjJBlPdoR4eJJoBOOH8GRHyXmKybpL0cwU4GDoQRxZQ0gyjnL88eHNwCuZzJ75DLHZD9Mp6ljSPgf/ofPYlYGELQgqUOpPUuOEkSWJkZp1yIE+yva/nXjlS7hSNSjTq2m64lhi+z/BvzU5amtrY9q0aezatYu5c+eybt061q5dy9jYGOFweKJcfX09119/PZ/4xCf44he/yAMPPMD27dsnfm9vb6epqYmtW7eyaNEi1qxZw+LFi/nBD34wUeb222/n+uuvJx6PYxgGXq+XP/3pT1x66aUTZa655hpisRj333//cdubz+fJ5ydX/4lEgtra2n9657708HlkPeMJLIVEmXU54eKlxEY3Mua8gG6X45IrSLIL010Q9ZDsI5YVCdnRsJXsRKj7/xRqvoiW8s9TufDiCTLy4p52bn92L9sH8piOxMWzQpy7qIH5jZUEvIWPs2Mgyq6OAe566RAbho5PYhQcGv0WWRNyNiQtBYNJa5ZXNmnwQ2tC45JmlW9dcwZu/X9mpn0tJGKjtP7p69T2PEg1ryGWMo4DTjVtZg2fX/kJ+oOVuC3Brzfdwc+nL2BXsBlLUvhs+6+4rKOCnHMSDkUYnj46Vt2MUI7dohEC+gccDkVlHvIX+u+7QyOcms6RHnCh+S00rwOSQFYgesDL4NbwxPl2QJA52eEvzn9xr6eIazyvIBsmYpwwS/kclsfD4dhKVmUK/ScAQzLZo0nscFkkZcGSnIpbSKQUm4xis1eRsI+aNxy/CgLk9KSvFIBV5+Pk0Rep628n5/JS33e4YClqqKckPMrMmjaccOeUczJWMV19V3JryMNoaCXzD9/Gqp6aY/qm19uLx/JQZIwLR0oGOctHrwhh9+U5yVuH7PgQ0ignv/gT9sxZRSJw4YRVY0o71e2c9twd6JYxkQgXoKtYYWf9YvxCZfHeHQRzk6HUeU1juLSUA9OXk3ctRDNDyE7he7MCr6DaHUzv2E1bKEIopTJSNQNhnYJqe3GwuX35jZjjz/yyXZ8gkg8y4NuFWwNJmdpGSYAvOh2XN82op5d2fztbS7diqZVkQheT965Cz+0gNPzfU85bGJ1Hc3w6UNge3FKyZYKAWWo18dJP4GjlXNTRwfS0h8v6vLhfNYc/HWnn5vnVnLH7LurSdURsm/naw7yY+Cp5xcehkvuYli6d0q9jvmHceS8ey8eOCoVR36mERJQlh7cjI/PQ/NV8IPwNGuiYvEdT55EdEptKZb5ULuG4M/gOXsQzbToVB/fgkl0UDQ/RXVHCSF0DlGhoWo5AYIRAYATL0hkbqyIWq0DYAn1kEDsPv11yJVbX629/Sm64bvGvKO/y8phrJusPHbt99VqoROYm3IRn/ppn2qchJMGjNY/SlGxiRnwGRW4/F2dm8LAc4AeqgZk6ti3+8hzFpUnio17iUR/iDdx6nKDG2xb9jZP/spFgawVdjW8l5T/2G/l3Q5NLpsabQ4scpr3+Fe4qnckz3SejHkziFLs4c+YLXC3/iaL2C9ldu4e4aVAd6KcoE2Cbr4T9YgYi7tDhm0aDc5gV/TbXvPe7/9Q2/tuKQDqOw/XXX8/q1auZO7ewFzswMICu61OIEUB5eTkDAwMTZY72Pzry+5HfXq9MIpEgm80yNjaGbdvHLbNv39SogKNxyy238OUvf/nvv9m/E6Y1HTkbw/EMgSQY0v7MUOLPExqFJiOkmRopI5RJPwL7VaHvkq2hmhHC8koq6i/GXzoN1eMn1rWN2OBWeo07cOQ8mhlBcYLUlr0XRfMRqVmMHihGdXlwHIeuoRif+N0LHIwJUhOWn8Ik8fvdGX6/uxVoZXrApD8NyYkyk8RIxuHKmV5ayoPUlgSYXl1CU1XJlPbGU1me391OSdDHgqZKvP9AeP2bgXAcdjz7Z2KdO1HG2pkXf4aV0vFDtQG6nRJ22i202dNxiqu4p3oG/cFKvJbgyWf7cNlX8N+bLXzyw+jyPpLWlWRomDh/pPlB2kybkJAoVgQC2J+T6TBkOhMS+9AgILhhLMZ74kmEA90vFJHunxribKkC1SpMUMnzbWJrNXKxRhI9S+ntK6OYHJKQp8T9S8IBbLZqFo2KQoUtEZcF9/ptkkdZTF7yHE16JidB4VYwW4KsHljP3D1b2d88j4zmwaXkKW3roXowih0uwY6UEVAtkqGltFS1Udn0Z5DtKWvp0fgq/ph9Oy9UVkF94di0rl8xd/D4A9QRa5EkHIYtmYfswsrfaxp8UDdRrCMictW8vPIbIDlIQkLGQNXGMMzJ71y1FvLouR/EcMcoGu2lrqsLl5HHm85w+v49uHJ52psa2VleRjCRIFZSTDQwD80I4clW4XrVZKYmVwArOFD2NhzJYCCQQs9HxgmEIOrtx1RMFEfBlm0G/R2Up05llXKA34QldCFYMNaMpRWGUiPvo8SsKAjmeXqpS9eyrWQbqtVPcPTnMPrzY/pn7dAphNOTrgANqQYaUg3E9BgHQgfo9/aj9n+KvGcpj1ZexIN6hO/N0fFlUxTlsjiSGye3hVh4FZLxJJF8QdohlIjzcsnV/OLsKgxNoqHvLXj676I2VRDj6/P2kUzPYLY2hg3MGjL441KFsza1jkeIOZyzbxu3z3kvNwduRkbg6gzz2GgZf5j3Xkz3NL4Y38Xn3V8j0/QoS3NvYW9tJb2JUnr0OlyuNAtnPIGuH8sgqmvGx2lbJ9q9gAM7ivj40z/gwVkXc0ivJZBP4pZNTh7cSFmik8PhFh4Lr0Xk4Mcvve+Y+pq1Ia575T5GIkXsLp5GqWPyeFkjScvH2ux+3qYup1LxYWspXjJLEZIgq2TJaBmiroJydc6wSZZu5ZLeM1gjHK4Jpxnyl2I3+fEdGsXqs0kNukkNHitZENaznL1/AwHVRduMJp5z1cKYiZwwue/FC7lv5qWcc94znBf7LiNPtOAJXICtVGAqaQb8Ayh2hmASEHlskcRvlSK5Z2Or/WS9bcRUqE0uwbE8jLkPUyxrlJjFJB0dtwwBJ0LUyQI2ftlFQNLxyJBzBHlh45IUSkPDBPPlqIAlJAw5RzbYTsgKI/yDYOnkQodJl23DdiXodY3RZk/jx3s/SH6bjDaeuFEZzPHM4DI2Vi4gX+Qnd/gc1N7CYsRsDiDHDJTRyWe+O9TIZWf873BbORr/MDn6yEc+wu7du1m/fv0/sz3/Utx0003ccMMNE38fsRz9s/GjA2vZN3Y6c8JZFhZ1sijSjs+zC82J4FXn4sjFeBSDQNFcMvF2Mtle1MiplJRUE+t+glj6FaLGNPTgSSysL2d3tpzfPr+fgFulc2eC/tQmyn0yzSVeLlt+GX7pYnqGh1F8YSojfupm1mFaNi/sbufO9c+wrudo4+B4/iUEQcUkbh9LXA4kp1p2ynWDuWUubrpsGU2VxW+4FRbye7ho5ez/cT8eDxsf/g2Z3Y8SyPXhElkWcpQOhwRx4SUqggyaIdxmhof9q9jinYHpC9BTXEkwGWMsXMJoURm2rKAIizs3tOKyG8crUUk5FyA5F0257iulz/INezvGsHv8UgXlmKNRZZp8ZSTKilwex4auzUVk+48dSFVLQsiC5DkOh6ouZ+zBs2BcB7stkGfWuIO4JOQp2i+SgKwEdwbyeB2mCDF6FZkiWaJfOFiOQIR0BKB7JD44PERxvJfpO2ox8j56IvPwJbN4sjHiIo3fEyBfUcF0l0qkfhOiYgc4MsgFSiTlQ+xIX86wWc9zIY1D4ZkQMtEzm5CtFCt7upg5XCDICg5P5FookhOcoh4iJYfwOyZpYfM3axG+RIYfbPkhh8JVSHUnocjTAAtNiWHaJQVSIhQKU7M+hRgdQSA5E5JgKzk66kDIFqaWwtISaEYIxXYjJIec5kN2dIKTgT3k1Ax9kRRFGQWv4UE3dY58E7LQcY1bt1DiYIeIh7dQninn5MGT2Rvey4i/BwmHntH3c/a4fFPKdwjb2U3IEsjpZYWDRhjN0UCGd/Sfxl1VzxxzH2ujM5kZX8mgSCIkKBrLIGdsRqoLGjhhI8zy4eXYksUzlc8SZzOubCGnXNZ/Oo5SzKC7ASHpKIqJmrmbUPxFAlYhJ1i3v5Z756/G0Ap5vDqqivGMrMTyv4glW2RUCb1fIeiqpjNwkKAZ5J0bn+Roe7VipGjqh68nv8mcod8TM308vfwzE78fDM3jnvh/8u7grcjz/sAcXhtapgwtW0ym+KhtWcWgqGETDYmLaPMv5OxDjyA5R2lpAUJ30RI7yGJfCVu1BZO/KRJOWOf9+54hnNnPoYgCxKkd3YKE4NKxHVR4mjil/HLk8Zx6h1ruJjG0FIgx7B5GoDDsLkz6GSdLR9WTBPvWEMHHA3EfxCHfFUWWND5YYrI/LiPLDgEtjW6blEou3vvi75jdfQjZEymQ4i3wWWBrxXS+suZ95A0Zhk2eGD6ZV2qXcPLVGzgj+ns8SRcuyUf9lhbkcBR/qJSgz49SY2BlHXxsJqvZ5EWIquFm7EAKy92JYgQBCcO7H/9IoT+EPEI+0EXe149suQvq50ImoKWw9CS2niQR7DxeXmoG8LHPmIErnSYqlVAScLE/sZqHXlh7TNkyFcZVS0j369BvoDK5sNcOHSsW6UoalBU1HXP83x3/EDm67rrreOihh3j++eepqZk0EVZUVGAYBrFYbIr1aHBwkIqKiokyGzdunFLf4ODgxG9H/n/k2NFlgsEgHo8HRVFQFOW4ZY7UcTy4XC5crn987/XNIJPNIXfs5pxUO8PDJfw5MItf6POAi5kRMDmQVBFIqNi4ZYew3sBIvomckIF+fPJMZGZOWG280jAZccRZ2uTIIxswYMeYwV8OHu3/USgnswMZgcWxeh1hxeDi2WGuOGnGFMHFkViK9a2d/GTdARRJwrAFF8wp47qLlv/LtsGOoOtQKwfv/w5SxRxOv+oGpOOQrxfu+Tan7P86r45FtIVEu13BsAgRN3We8K/iqflriXuDOEiY2tTn3V8+SYZnpg7zk913E05/HIHD0Ix7KDl0GYo1NRrqZ+X38WDkuSlk6Oh/647g6kSC68YSyLZgaE+A/h4fekJGSIL4lTZyFvLTJEhoyGqeqD6PvoPvxG4rmqhnh27TrwjOUHLjR169ZSOh42AgTyFGX8bDWlsDG0wEr3jGqOseQMunKQ60oOu1OJ5yxuofJxs5QHXJLqoBNVtMuHstQskRq/kLtisxScZkBwOdZ9Nv5w/us8gVF/xSJCeNf/RXhOMbaEo2UZuuJWBO+k3tzFeytG03w54wP6k+E4+ZozHRT1O8j690/pKWeC8Jf4jhqlUY8rTxs1RMu2T8ji10KUNeFFaaipzCdiYd82UsnPFvQLHHiacDquWH7PG/fYGFJFvgKLgtL03DU5+vJBlI2DjCA9oIKcXEnytESY2VbKIhVSD6s2KzeKr8ecSrvit/uhlPthpJqMhCRZVyWMKNlqnA9Hfjydbyo/b30uAcZJAyKozTaFV62Ki1MUASJPCkLYR1KoY7R+PoLuJ2nGhZoV8VoXJe3zm0lmxgZ6AQDelJHUu2EDA9XrDiu/HwgzPPAuCq5xM0Dpo8ssTPnllLOLy+FFkkaDLDNJUXY/YZDFY/hxbTJvyPtpRswcFh2cgyGgcO0DpvNTvKPkNbtQ/FMlnd/RyB+H5U1yzun3E6C0ZHWVD8h2OapCcrKT34NnyjcxG5LH1WD2nXGTSE3VDcw/CMwjkV8/8/9v47zpLjOu/Gv1Wdb76T82wOWCwyQBAAAeYgimJSoiiKsl5ZmZRlJVuWXttykhWpYL2UrGhZIimSErOYEEgARAY2YLF5dnKeOzd3rvr9cQc7mwFIWIffB89fu3O7q6uru6tOnfOc53ye7plbOWncQ1yZpD8t0GsOIDNFZnqOUE8EN66tsGf+M6x523h6z27edeg++iarrBRdrOsEtlOgsrIFG4vxaIRx1cVA2otfPkEtM8PC0ANky7Msz3YM2LnMHJASGU2W3CX6g35aaYFnb/n3jM6/jtLCXUhl42xkR/7BcsR9C39NM6mSt7oI0haGMBnb+508tvsEi7kAtI2TQiGWXPfUU3zi0/+ak3vfwe/ccBfzTajNeHxx5nV8PvMm3FFNUnC4/p0HiVuj+JkMp6rbSWsaNOisiYgVop3g7dV05wRG4vHG9B94yHkda+ZN3Ckf5En/FpzIZ6wQ0hajLDFAhMMejtCgSCFa56nj1xAnFmPjS8zLYeRcQNC2CHJZjJnLFzQGMGzJLYUqi/nThG4vweDN9D+9hmgpqvHzhmxCvv8hcv4wfdqmTp0bwiGq7hxjrLB4EK7f+e1XvM7/aXhJnCOtNR/60If4+7//ex544AF27tx53u/PE7I/9rGP8d73dhRDjx8/zp49ey4iZC8sLJzNKvvjP/5jfv7nf57l5WUcx+EXf/EX+dKXvsThw5uS5N/3fd9HpVI5j5B922238fu///tAJ8w3NjbGT/3UT/1vJWRrrfmzn/kxqgudVE2F4LHSrTxVuhEtJFKndEXrVK0iiXxpRoctUnbkFdcO5pis+Dy+cmUPjk1Kt5PSl5G8amuZb79lB3vH+rHMS4uc/e/A8UNPkP30+xgRnUyvUFt8Y8cvkrbX2b3wWSpGD2PJJH2ievacA/F2VoIysZVwNB7kia7rObLrBlZ6Bi97HVtFRNLmHcv3U0hbvHH1W7xmpc1h+UFGwx08WHyM3xn+C3Y0d/Hr0z8DQFO2+ZFtv8q6Ve/sROtNfqDeoDtVzJgGeaUoKoUdl3FkE5OIMwe6CI93Fm3laha/bZDjtV9Ap+aGdozGsH2SIA8CJkzFgqmIgafcBA38mHeGQK8iogRtb3j6gjbazdAc2k040839OuWOxOBncTFJqIs2ZUtjxDnERnV2jSbKLFDZ9gXqQ98iwqJOEZcAm+hs2rZCsE4XR9nHjNqCVjF+4vKw80ZCYeO2HkQLk8HVg2SCM2yrjzPUHkKeE24VQDbO8Mn2OB/WJ+hpLzL6rfsQSUfbJ8g5HL3+ThaM12NF54ZhOyJOpvBJzknVNoXPtaU1RtUWqqliJvcNKivbqaebBn3GO0Zg2qTCwIxzJH4XWioso0lJVGkkZWLtoPX5BrIjmpTNWRbjK2uzDGYe4nev/QTXLr2W3rBTwuSrw1/l7Uc+RIkGfvYkZuog63dgqM4zN/FJ6NyHEhGV3sc7fdIG/arIumxha5N1uVlXK9OKcZqv4ch4DifWbF1ewcuf4bpjp4kqx3jyNa+lZSiE7tCsIneVe3ueIDIClLZQRgga9tS3sa9yIwBTPdfy1V0ZitUnKK3fT2A12bd4D/e+6vsxooBMs06z3IdWy5RaFt/zVMxcz8doqRglNU8F76DoPs7+uMZYa4xEpnxl7y00jSW+48gE3oZhmpLy6Og8S70/xl+f/iaWskjNNpn13YjUxowLVKMWTwY2S5bgG9darLuzOGqU/dMKt9TinpE/xCtu0gxMvxsr6CZxK8Te6uYDCYocfORG1IklXCwCqWjuuJat46cY2fbkJZ+hUCZaboaal4Ixjj3+WgKjxT+M/sPZ/Ue33809i/fQ25Oy95qPnT2+PPkWKpkZHLdB9+TbKSxuVpZf13U+q+8n319h264DeJk6WnfCsVGU4cizr8Ov53j9Aw9hhil/+Jp/zuOFPsLg5RNQ0q6BCDZ9fcozYIMHJ8IUpECE/5jrJRjZ0+zL9TFd+u+kcrNorhdqAgss5WEbPbSYQ19BRNdK4C9e9Zdcd+2L54e9GPwfRcj+iZ/4Cf7mb/6Gz372s+dpGxWLRTyvMyH8+I//OF/60pf4i7/4CwqFAh/60IcA+Na3vgVspvIPDQ3x67/+6ywuLvKBD3yAH/7hH74olf8nf/In+aEf+iHuu+8+PvzhD1+Uyv/BD36QP/qjP+K2227jIx/5CH/7t3/LsWPHLuIiXQ5Xa3CPPng/p556nMbqMgsnNytIp5bbyT5LOmGTtdwwFLrpSdbZtWcXzuAWjq0nfGHBYN9ADqVSlpsx4yWHD9wyxGB/D7XFBfxGHb9RRwmDdPxaqq2AVhBTyDgcnlphS1+BrrzHHdds+V9iCKk0JYoC2o0qXX2XLvtQr64RthvMHLyfeOIhRNwmbq5xXXyIvPCJtcQSL/wRf7j8YT557bvItps0cxcr4w6Gy6ybRb576cvsaU3whsqjjAZLSDRagyJPqK7jOfl6Plma4MeWvgsLk58d/82zmjXlpICnHGpGkx3ZOm+swc0rq+y/QrVslcLMkRLt5zq7TP9axdQtdzA/+f3EdLJk5DmeoATNFzaq2Z+LfbmAVyVHUChIEnhe+ytsg5NhcXQ3/+bkyNmWnhw9wB9uL9G0XXI0uZ2HudM/xJRXYgtnOMEePsYHyNPgJLtoifzZa+V0nR5WmWILWlxsaAvVZtv0/2DfimKofXFZF1NLBrRgt3qWP1I30mj18KZoBKE7oVrDWqZkzFNJR0iTIlKfvxmQRChsCu4x7nH2cZ8+RNocxJVNMsVFLKebFXOdJ3LPIjKL5OolRpf2I2p3XvIZ5I0l/LREwsXeYYOILZkHybiz1LxFTopuBsU82dikuzXKUnATq8lWYp3BIKI88lv8xlibUNf59qm342wYPw/3P8zI2o3cMvvWzbaNKqGMMYyIKib37/hrmk6N/Qt3s2/1ZpqFY6Tm+dpEQoPXlpiRzeme2/nCbQUiM0AjGakY3HQ6pJlp4jsRrz7xIK6VpXKJ6hxllUUDDdEm3VigJvq288B4RGHtv12kleXKH2NmpDN+TutR8mt/CEiq/b9MpjJEXzvl1NbcWW2D7oU/5E2TGUpR6ZJjDrDkLfEP+27nmoWdvP/AKVyRIaUbU8CSucbDw1kO9f8JSk8izpHJTqxRZLqOtL6dX69NY+/8+mWvcXas/TJHDr6FSqWNzGS46fqHscsXF6o+FxW6cAn4Cm9jYvpmbp56lvsH76fm1M477uaVmxlI9vNt5h9z4qYxxplEomiTYY4RxvUUwyfehVAWjYHH0TKmJQLi/ComMb6CvAGBklRTzYClCcMMM9PXYh7KcevBBczV0/y77/1FHhcD4F8i4cYWnK3QC2AKSP6ROVMy7NSwxASRYOaOkTR3ow0LodoIGeOZJjr/NCI/hbRqKEZRag3LPP6Czb/g5ZXGSmH3uuA7bvz3fM8b3/NPbvNc/B9lHInL6Ir8+Z//+VmBxudFID/2sY+dJwJ5brhramqKH//xH+eBBx4gm83ywQ9+kF/7tV+7SATyZ37mZ3juuecYGRnhV37lVy4SgfyDP/iDsyKQN9xwA7/3e7/Hq171qhd981drcJ996HP4T/xPdv3AHzD33BHu+/OPErYurMD88mB033UIKekd28LN3/4u8l09L3zSBtrNGvOnDzO25xZs59J1kc7F0uxpznzu18jUJwjcPpRbxvBX2V17iAKd+3uy8EbU1tfSte1GVJoQB23Sb/421/pPIi+zu3jW2sIP3PQb3HTmSX515v+jYHbCSm0rw0xQ4ky7i4e2vJpPXPedl1zEu6Iqb1/9JiPhEj8y/XG+kB3CUDAW9fP5XD/fzE/iy5hEpNjKJJYJgYj41Zmf4NbWtTydO8xXen+H1zVaVAyDQz0ed7kx7zjWJJteWXBPK1jFZvGxEuZU5/1denM/z+mfQ0UOx23NFzIxJSW4ITIxNOSV4CvZiLboGE3dCKpofgCHiWtnGDs1RSQSrFQgZMe41bGPsDyahTGKAxHfd6Kf39q/yGdLt7BzaY7AslkqdOFbzln9H0uHxMLBTiIioyOs2dVq0HJcggvCjUJrti3Ns2NhmenCEkKsMLZeYaw5eoGHSNCvwFIun0nGmcCkSzX4YfPLNGvvh/Ty2lSCmLw1Sz3ees5fFePlRR7vPcCtzd1c197JA4WH+HL3o7wz0lhaMxivMORPMOWO8NveIHetvYri6lbiaAxTVrGNFmHcQ3qOUVQwFtFaIqwKfZmDaGeN3+1ZYqoAUjeJ7W0k9igyrZM4O8iIIt3tCcKkj8CYQEWdzZyXWHzbzHecbfdg10FOFU8xUt1Nf3MLZmoRmQHdrWG620N8/po/pG1vLrpvOv6jjK/vIbXX8b15lNFCqCxNczuHxno4OWjRthfpW/gLEjok5WrvLxB7+zuEfCGwY8WNkzOYus6NCxMkXH7KXskV+YcdPtlax/thJy5bKvtZ95ZYyU8jlcFg8ENU8pIg+VP0Rl0/JbKsD/4XlNkhc1vBEYQKidx99Cx+hNdN99AddojzkUz5h33Xg4645/iTlOICT/Qe4OCOD7JzcYiJAQsnCtE6wrfXKKz+DkZavWyfO/f87/j5hya4ZujT+FvaPOK/juunDjK6toA9YWFZI6y/f4nUOZ81E2IzzwiTtTezOtvFs4P9NA2bLY1JCkmdqcwYx/s7WYB2HPHdT3yRR3vvPWsYveXY/8NKdoGnR790VkX9wJY3M9c1zpb2AtoNmRaD2MFhYmcve4x5RLqOGx5jrTVJYO8g8Cew4qmL7kkYJQazg3wwd4x6klCd2c3Wr+fomT6Ggc3Rse0slXqoqAy2p6kUSpSSFieGx8it1FntdVnq1WxdOM2Zcpv9h7JYpuKxG26H9L5OMVjhYDCJNJZJ9BhCKYRsIXSENF6+NWeLrXhtIWXavpvF1GObPkbSmGGtZUAuYYspGXQjtFFmLs3TbSTsMmZ5WLye4XiW4tRreN+P/NLL1h/4P8w4+v83XI3BbdbXiX97P2UapFpw6M4/YO8d76K+ukyruo5KU0b27uO5B+9n7thzVBfnkdKgPDhEZX6WxdMnL9u2YZpIwyRTKlFbWrzscZbr0b91O042x/DuvQStJqZlM3XoKYor32J3YZmy1aZgbJbKmFKDzA++icL+N3PNHW9HSMnS7AQTX/8Ttkz+LVWjl+3JCWyRXPa6LxZz7QIz7SIrmW6+sutN/N22t6HEi/dw/fDsp7h7/Umua57ATmp8pKuIrRXTZo5HMi+sd2Irix9f/G7eWruTVCQ45Z9hoL1ZIT3GwDqHlrqxRqFSODrbTZiYuHt8kqqB9fnNUJCyNadufTOz1jsBQU0o/roQ0rpMlwzgt8lwMyYxmhO9U3zOSumtTFIxWnSlm/o1OgkRpgNI/vbme2hlHYwIvu3I4/Q0Nl3eLa/Es/2D9LWaxNLAxGTr0mmEkEilUM8bqMKg5XVDamImczjpC4/bzsTk75NuJijhhSFlp8FrjMO8SU/zaPUn0Sp73vF95gkMERNIjUw9KsmWC/g6KX7/U0RDD7M9jnjOFvy9PUevKvK21gpVEbFkGkxZFgumia00+/QwTxuLCBRo2BoOM2+tkPXzfNvMq0m9eR7uPU7bUFTNiNiUKJkDITAwIb2yxMO5yKeKHzkzwKSxKVK66J3i4YGDVz5PZxhKNMetDpcjy7txuYvAErS8Ig0nJuU0ZjzXqf8WnbqoDY1NJ+CZEDu7aBfeQWxvB2HgRG3uOf40pVBysm+YhuORmDYLeQ/Tvxev0ZEyuWbxTl499S6mi8vk7AWeLj3DVNf5WbJd7UFq7iqp7HiYYucm3HCGlJWzx9R6/gVSbuW2M4fxgnkO9a0QyCXMeBq05PrKfrqCLha8BY52n+7sGNCdZ3QBDLYSZ27FUQVkeBwjeoq21cl0CjJ34pg/xGppM0nEDVOyQUJfTbPcralmbL6DT7ObozzAG3hU3IVMKritb2JG0yjpARItHaRqoYWDEc+TiQ3ccPJsyReA6+dez6un30kqEj5+w3+m4a6d11eNPO8etHDQwkaqS1eofzEwZY7u1CKNe2jrM1hJSi2r2TOjOTYqyPqd77PlvXSB05cD/ZEkm9rk5TDx+A4m1Bhzxm6UdXE0ZkjPspujKCRr9FChi3lxcYKToRP+0/Q3+MEf/NmXta+vGEdXEVdrcD/3lf/Jdzzyk+f9bYFeamYPGVXHUQEF3eBY9hbCgVtw+ncQVmYRlQniANZqJq6jyA8NI908au4ZXFVBSxsnWkdJi9DpRjYrLMq9TB45TpCa9DotNIIwNWglNkOZOkNeg4LV8cRsy1XIW1f2hAA0UweBJmtcfOxSkudr5k0Ix8C1UnJhi2+617FidzGulrmxfZz99eOMOlUAlBakWvBgsItHs/t5bOttHC3uIBO0WezrkPmzSZt/Mf1XfHzgbZzOjF10TUvF7G1N8MG5T3JEHeJR16Q/MZi2BHXjyq+vAfRKTa+ZYmrB7vZe3jn7PZSCQTQKs/hRBsMvveCYJIng5PFuOHxpWYKwx+G58R9kPX8dCs1JS/GFbIQCcsBbsXmQmCU0GQSjCN6Hgz8Y83RhjslCgYnsMB947F7QCcvSp0+dIx6aJrSslKzqeEfmSr2UfZ9MeHnpgn8MUpFi6E0DpksGnPRtvqZvIMDh1uAo77fvJ2sVONV8K2nUhzjL6blU6dvzYdiLCJUh9uo8OPo53iYWeNhaoiUkvhQkCCZfIAGgS5lU3d007DGQLkY8h9AxUtUQOkILCzSY8TSCS4QuXgC9qcHt7Trvrze5t/ZOKt5mqNgJVzEHP89flcdJtY/UwXnn5pTD52dPo4HXj12sZ6MxEVy8wfCiPNct3MOzAw/SuiDc80JQIoM2BjHjBfRGIdX9C/dwx+S7+WbvMu8z/o5FPUC48ha+uvsvmSkdw0xt9i/dys0z76LuVPi7/b9Jcgn9rk6nBYbqJTYMJJcXmfUSj0QkxDJmQwnhRdW9O/e4yN5LmL0NKziKFR5H6BAtHISOSM0egvybCb0bcVuP4PhPoIWDHRy+YvMXQipJvrqf9x3/IUrGLIHKs2zG/O2N/5VERi+uzxsw6CNlGaElpsqQyAghsijOrzighX1eSPGfCo0gsbdgx4to3THCHVmgbPRQE1l8s4SOJ9FpBalapEY3qdmHmywQZu+iLzvMgthGSc1SM3dRl6WXrW8X4ppTz/JbGYMb3/++l7XdV4yjq4irMbhKa97w4BNMhwkfOf6bvGP13pel3ZeKSBvY4uKFwcfm09k3cLJ/KxWryIPlm7m9dpAb159jR3OKexpPY16C+/McI/zx2PfwiS3ffsnQ1oXIJm1ahnfFEg9CK9609gg/MP2HTMo614QRpnA4YRmMyDGubR7ngOuxKmIe8xzuzXhnyzJcCgNRmRGRst1rcVMmpeJEXH/qA5Tn78EvnsRpjCE3jIvUqmPk/4SR9n1AZ35e6HcYWA45RzaI9YLJauIQfCmPuXjxfft9GU7v/HaWrXsAOG2mfCYboTa6OYzgpzM5RlTEWOAQbvgEoswSP/2qmOf0Nu4+eYAta5uewKpdJQkK9JybtacVU1aTsTSLOMd4MRCcKh9jKjNHIcoz2hyjL+xBq84xNavGsrdMy2pRt+o0rAb9fj+mMun3+zG0ga1MurXJfnGK41Lhtm/kVNTPuKzzN2o7XWmdH7K+SIsRZLgDv73nLK9oEx3Dh5gmsAAAsO5JREFUSJDy6DWfomd1K9uXN3ML17vmuH/7SSZ6PIxwgihzE9evfY5ZPUNyiWeaUZpM7lbmzVHcZJ235CY5ttTmjHjxnp/nYWrNNWHEnX7A9ijilJNl2B5hvF3jmuY0pk55zHNpCYGjNXf5ARL4zI5bOfbUdQTFAka7QZrJI6OAX7b+P6SARbuLKSfH04M93JsdoV5b478sTnFzu6OmfZ81wE+PXF7ja7xyLf3NcXat3IqVeCgZY6Y2q9lZBJKat0LNXWEtM8tU13Mv6l6dJMNNc3dz3fxb+FQ54RfKv8fj7c5zKAUuZvUWBgqf51rxHPfW/jWhTLFIqDoVDg9+g7qzhqFN7mwYmGtv5sHxrzLZdb7xIZXkltm3sG3tBo72P8KJrkP4buVS3flfCo04W4LlXPS3+wmNkKbZBAFhMMAHn/1Jcun5WYtfHv88S70Ps6e6h1JUIjRCVtwVBv1BuoNuzuTnKa3vJR/voeqeYTW3SE+zzONjXyY0L/bkK2Ocuxfexl7dheOMce/AIqfdZ2m1D2BGZxCkJOYQQsck9jgyWSF29xA71yBVncTesuGFUyijC5lWEKpN4mxHCweECTrGSFbQwkIZ5c7fLhqYDWP8Ur9dAUP+HE2dJdeK2Fe36Fcu755NEE3FY0pxuHyMuW5JxvexUwMvLWMmEV7QZmJsB21bM7o4y52nF7n2nfu5853veknXfyG8YhxdRVyNwY2U4rf/7N/xZ+Nvom7m2dOa4K7GMXR+hDed+ji31p7iYyPfxUp+C73BGjctfYPRcI7epMoJZwtNI89N7cMsG134hktTZljxSuTjNo8XryMwLLriGi3pcVflaa7zLx+GAzhjDnEmM8yy2803u27h4dKNLDmX5yXtaE9x6/ohFs1eThXHmXEHMXRCes6H5aqIYKPu053rT7PNn2UkXOaT/W/iVGb8ku0KrdjVnmJne4rt7TNY8RI9rcOcMH2+kMtc0ei5FPpil1taozhWi9dY6/SakvWhFYQq0DX5NpQRkansIVO9uNJ3knmMvP5TuvX82b8dXS8TH3agT1G6sYloCBpfzROOg31KIH1BnLU4Nv4BVntuwAtWCe0Cqdnx7mg6NcseOkeEcS+SbbsWOZDtY6J3kJtqJ7mmtUyfqvN4f4ba8iivPnMCoTZ3lBL44sg/cNfk28ibIKIQbXcMugVSnh79Mt+x/CbG/CEeLDzNwfLhTjX5F4AX5cjGNqvL7yaJ+hjXa6R2Dc+d4XjzTsK0+7zjyzTZJuf5Nj1NEu4gCrafVZVu2wIr1SigyzmNsiP8aqeQ6gPXNQiLX+BE/kas5HoC2yE1JG07Id98kEL1E0ScnzpsIrnGEZyJLIw0oiBd3lgUZL7x82izjVOaJV4fZ+tb/h1HWlvx55aYMJocsR18KehKU5bN8yf+H6jV2bNhEBVUJ/n/ufwWzuzTuPYmFyNObdrNbsanQspRk9lsDw3PIepuo1bHeXZiK9qycecmCIa3gdb8SPTnDF3g3TnjDuOlAQPxGqGw+Mbgdbx5/in+PvhxjrdvwU2ySG0wUzqK0JLh+k7M51W6pU+Kxi3PI02fZGkvAhNFitwIQ8YyZLrvAXaICbYbx3gka5BPHMZbvUitOGQXGAryXN9WPNl6P0rEfPvIv2QuHuDrdMKCpk4pLd2NOCe0uTi2DKQMTA8yYh+k3zrBsP0sbVVmJd7GkfYbqTg+lcw8TW+JsbXryIU95/HQAI4PPMxS10GqZgOBoM/voxh1Ct+6qYspBb2tIXKVPXhhF7XMElJG5KyI04VjnC6cZt1ep2220WiUVLiJi6lMylGZ3qCXRW+R+ezmNysokUhNKVDcvnQ7heT8OTwlRSIRCBa9RR7pe4QoGGPP5Ht5Y20MRALaPOf4iD8feZrr8mfI+zY9Qe9F31HdarDm1uhvdzGXnePQBaVkLgVTD/KdZ97Od/rXk5UGkxnBdKnB6bHHqBXWOdK8i8QQBKnNyfym59zQMdc2j2A3JMvFIktuP7E0cXTIbcFjlOMqi5k+QtMhxCGMMmTiAKRm3SoxY3VCXNv800x428moJjvUSSbYwc1Lj3JN8zDTxhbqtSLbpiZpZ4poPGLps20hwpO7KFkZXl0cwZOCFbNCIhS9cRkTg+VYcbDl02e7ZGVng5loCLXGkwJbQN4QSK04Uf4q3/nL/+XKA/US8YpxdBVxNQY3rNWY/c8/SinzBL+z7X38+fC7zjMsLgc3DQk26t9InV6WgyO0IpMGtMwMaE1/tIalE3qjChrB3etP8rm+19EV15j0hqlYpYvauKVxnBtrhxgJltjVnsTUKZ/sfzN/O/C2i441dUJPtE4ubbOrNcW/mvwTdrWnUAjahksuPX+hi4RJzcyzbHfRNDJMeUMsS0EzPsy6CHjGcViwLh6PspCs60tkq2mwtUkuzfL25nXcvPUh8FooIRFSneeYcmtbGX/s354/XviYYpqc8TlMMYclZ5BiU71Va5g9UaT5zCZfJs1rRATynGqsQS7Pk/t/kbpboiY1fak4W4ZhXSoOZlKeMDuG0bdh8mO4fHHvaRrT89hpQsMrcrR/ECeJ6W1U6a9XMC749PYlI/z10Gc4nZ3iLSfeQc6yMVoNUi8D0qCZZPjKzr+6aIiS6k2E67cjRIrV9RDSXkVF/Whlo/wx4urNsLEgFmixVSwwpfvJiJBFXcZE0S3q3C2fY4uKsKwGZtzNYrSfmjvCQtlkrWCQCkiskHLd4vozEUX/XLE+zVf3nWAt+4fUN17drChiG8M0rD6M9jcJL/BImlrzPS2DXGYLhxa38PbrHiDnNWmtj3LiwLtIq2Pk4tLms5QxxRs+Rt/Wh2kFXehmjjQBkQ2xGi5b1ypUiEHaJG6OTBxTyXowtIIQinBpF6un78HL1GjM3IxKLaxMheLWb9G9+8sIIyUJcjRmbyFq9HN6bRepPQlKkTtxgNb2a9GWTZ9xije5B6hbGZQQ3Lh+AnODm9I0PL68/Tqi1jDfO/f3SDT/su9f4a8OsW0th5uYyLSTMdjMnqHuLtJb28drtvwGNzc7tSSfyl7LIxP/9qwkw7lG0rnIyhWuy36Jk8k1NMId2LJBQ3WDynKN92VeVfxLfo9/RsBmssVQbBGvvbrzzGTC93f9NGuihy+vdCoHvLbwhzwb38qq39EC2u3ex2oyxlqyWcvLkE1enf0YXeYcn1//ZfSG7lQ7dwbHbWGKhJx2WZBVSmkR0Rgmji4/vwpnHVWcZFU20Buen0uVjgGo2BXuH7ofREf3a0tjCzetXT5FPDRi7o3HqXgLqPo1DBLynpaHG5VJhSKx1xDKwoqLCARLuWmOioDv0IMkhQm+VHoIQ8Bg1Eeu0YNxwXM4XD5MkO3jrtW99KmIXmHR74/wR72P8FjhG0g2Ny522sUPnvgB3pTuICMF8jIbwoYJuQS0SGglnetVks7I2ALWUk3JELRVzHy0iudAGARUwiq22UfGGkBr8NOAjCEQ6RxFO4eFS4hmPXHJSUWkBZWkxoidI2fkaHdofJhC4EnoMQUFU3Mkc4rfH/gYc86m13anP8aPL34Pe4Ot1IwmXyx/E6EFqUhpy4BYJJjaRCIIRczuY2X+2R/9x8s+p38MXjGOriKuxuAGc/NMfeQEeWMdS36VyDrEA4PjPFW4Bi8NGQsWGAsWqJp5jmW3ciy7jWzqo4VgOFiibbgczu2iYhVpGR6JMOiLKrxz5T7euvoQu1uTODriQH4Pn+19Hc/ldjDr9DOROZ8IZ6mYVEiGg2W64yqjwSI/OvdJvDRgX6ujKp3qMn56M648hCk7L35Lesy5fTSMLEoIbmgcw9Ln6Ghoi6esW+kOr6FlHeIrOZv7swFNo4FvhOwNFfuijpjguiE56DjMWpfgkGwYPUNRD2/uWeea8jqtWNI49G6ywXZOuse4q9mHa1n0pIqFPR+n3lNDCPAqu8it3IgR57HavQhZw2kOI6MhLDFB3vw7HPk0kjbiEqHFs/cCTDfz+F/oLFatTB9W0sSONuty+U4ZP9PPye3v4VRxkE/mI0I0/anEdk3mdUKabC76P4zJzdfcy0d7ryMzGbJ76fJpxhlt0/ZqrDprrNlVjmZOk8oEmWZ548Sd5M08srGGdnJo20HFGT7Ru4ZV/BpCxmjl4JtvwXe/nawX08huCCdONSFRqG4XvUFuHa7Os5rtJrQchFLsWF3nrtXHGA3P8JnBt3K0ZwuxIUEIBisJiyUDvZHObSWabYsx10+G7FiI8c0qQgtado2l/CTTXXXmi6dIOXPZe4WOMZQIwXe1oCdu0iuKWGMZ5r/2/6JTG2SC6TRI/PJ5500MVqkVKritUfbOWrTzZ8iPP07PwFEMmRKs7iTfdxyvsDl5ryzuwpaa1spOkuoo4epu0jB/XrsdD0WEVA7CaSJiB61MNJrVgRrp6kMYPUWMdoPM1HH8ke0k+TKy0ebOt38alZpEjX4iI6FnVlIOWhwbLfPw1PeSnWvz5sFPc7d/iC+XXsOj6zcjAQvF/lRzVDtY1RtxumZ4ff6j7G5PXjReR/JbOehdy7HKO+ifvdiLcTlod5UfLf4kn5Zv5pjeieG3kH6TuKuf/fooC9nXsKrG+OHkFxlJOp6YLzT/JVPN11yyvT3uvWx1n+BEuosEkzvsrzIRvppA5VEYHAteQ6w6715oV5DKxkouzlrUJJB/klLYQy26uEL7cuEkVadJl3ZAxzSkQhPiyIRM6qIMHyU0iUg4WjrKjvqOs6KVAFaQI1VNnHbEtNNLqkOy7RaVgkfk5NkqK2SDXgq1PSg07fxp/A1PVGF9H85GNl61fIjYqZImg7hpNzVzGo1iVHpUzSUcZeHrF+ayDad5wqzNfx+9D5WcT7o3U5v3nfkB7mldjxCa5dw0batOKhTPZk4xHPXhKZdj3gTbgzHGw0GWrDV6khJj4SClNE/FqJFRLq52NvT6zze2UhTGOR4+jaZhtMimHgYGs/YShzMnuam5l5zKEImYe4uPkU8zFNM8E+4sny9/g6p5eQK6tZH9e0Voyc8Uf4wfevePv+CYvRS8YhxdRVwVEchUc+Ivv0GycIZiozMBGGKBrPE1lA6w5SRKD5DqPkDiGvdjijUSPUiqBa6cRopLE/eU9vDVbhI1hhRVcsZDgEYITSRMYmHxcPlG7qg+c5FHB0BrQaKHaKd301avI9Wb2jUGy5hihpL1p5hiBjCIdRdzRg+Lcit/V5zjsWybdSN4SYTF55FJXbqTEqUkx7ev38Ptjf2YQjB782/id12gqaFkR59DAOeQRGXsMXLwg2QqNwAKQ6xjiDVMMUXO+CKWnH3BfqQSlrpdDBQzBQ/noxnMNcFC/6s4uucDeP4KQwvfwAnr1Io7mBvucIlmjZS/zUeXpfcawBuEya4bD/BpYx/XzE4xut7J+HHtlO64jEgNHO2QkjJMif80/lHWrOoF9+5huz/N6557nJxRRtUWMZwc2s0Rh4q/fu3bUesRccZB56wrcrr+qSi0Ul59vMXW+SmE1syUjjFXPMFs6fIaKLf4AW8U/QQ6QfhLrBqKVcPg5iBkyB6jusMn4zRoN7sIF65n+eB3YWoTsyem0bQw/Q5rZLE3YKsMyCM4wkGEgLa0CdUd7Fq8lB5WR2BTWgEqcUFfzA/L2jBbjDnjpAjT7qQfIlguOUyYkElaeNJmcEXRM/NVevsctGlhL8+y5fQpJrfvIOobQTYajJXfRkNJlhKD/Y061tZvMGVZfP25Ae5efQBDp4ROll/a8iWEgAeKt7GcjBKrLDvEEbrVCl1Jla6kk5oeC4P3Wf+WstHkd8PfJaPOr0f2zcJN/Ib+ORyZoWdB099SeBpcJbA2PsgVqTjhBfxO6ac5kW7lXu4CrfGmT4DW+Fv24BDwffZn+B/D38H3nfkHPsObuUaf5G79DB+t/wlu0NnIPHhbnd6KZM+pjpGzzXuAu3N/SawzfGrt1wj1pqF5XeZznIn30ojPFwV+HjnnOO/I/R55Y5Wm6qGdlllJtrPT/SYngrt5ovmdxBvtJUabyF1Fph0vuhaqU2cQQd5pM+9Nn9e2o0087VBTMWaaxYqKJFYdM84jlUM7N4WRuBiph9caxdwwpupuQlh49GyJHDvowWteg72xzidmi9Ro08pPIpWNUBaRUwGtEEIQINimLOZleG7940tiOC3zrRHBw11HsNuPXZQkIJVAyX/cMiy1YCjqY8laYzQaIJ9miUXCc5nTZ39Xl5BQ6YqL1I0WyQsZNhsIvZtJrUH83Osx4zns9hO4zQcRF7SttU0kbkQLAzOZQ6VF0nCQP9l6J699+7v/Ufd4ObxiHF1FXBXOUb3OY194NduqKzxZegNjR95Jb3ppYcQONB0fRsd9aohFbHECjYegjRAhsdpJrEd4XkpwEwmQkjW+jiHWSFURx/gmhohIdQ+JHqeZvBtLnkFrk0jv5vnqtwe9E/y3sT+lKMH2e+nzB8mpDKfdGWadRRIUgQzxLyiCeyG6DM2wIUliD1e5VFSCn5pklIuhDYbiXl5Tv4E7W9eRuCv4xVNYQZal3Z8iKnRIjH0nX8vAfIH1wWeZ2TVx0TVkAiPH7yQ//zq6rd/CklcWfQOoZh3WuyRLfQ5CQzNrYEca3RakQlD4vIH3mEQoQWgX+fLtv8KEa9GfSgZSSYTmQS+mJTWxZ3ImidDALRi8H4fPEGEBr8fiBkyODc/zKzv7ue7MxFlvkdAwV5zmke4nzvarNypTN1qEG5mAGpfY2IUyciSZbQTZO7huyub6qb8hI8tsj3pZF3UqVkgrbPDx138/sbmhgKsVW5eaDK1p2o5BJe+gpCaVCamwsRNNaAnqGYnvdArZvup4gBcnLBVsajmD1bykr54yvtqmr/IIpbYLWrCSnWe6cJyGs0ZzI/PwUhBa8+ZWG1drbgpCBuxxznA72dI0+ZEDtIMifr0XUe8naAzgL9xA3OxonqUSKv2KJJ4iSCt4coQnx4YpLEywM57AUDFScJZzBTBXtVgevI19oSSNTHprCbWBlEApBpYdsrEmdTSGI3BTwUw2oSBgNVRMNo/RE53C8hzsnEfVh9QPWTS6WDNK1MwCjgp4a+NhzN4elOMh/Taji3Ve2/ceDvkHeKanDWnC1EJELEwaZh5lFlh2+wlUyHfVvkoyvAWEwFmc5qaeU7zFvHLq/8PZ6/nVxveiKxG+4dIqFHl78Sm2i3m+u/X1s4ZSw8iwZHbzVftWDqXbONQeZyEoo7UEASPuKg/xYRbo5Y/4fgCcxWns9WU00Np5Hdq0eTv3so/jfJTvp05n3htmgeHsEr/R/0tYuUk+f+jHkSh+PvOX7Jy4tHZVIsDcWD1uzPwdOWuaI8YgidHAdSfYpVa4LlnlVHAnDzb+H3xVvqgNRzS5Pvs55qL9zEX7rzhOAF5umUpmiqb08VQGuzGEjEqYF5Crr4SFnphSa4VmcdObI5RBcfV2KnmD/iskC4bOYZTMYcY9G0ZbA2WYaNFR4zaTXEc7yohIcnPUnc4GydCSEZ1ntpDy+cEZWuoZpNrMaLscmfx/F5J0CG3libNbaeffwUiQ5a0zdXauzTGTy/KpXaMsW8uY0Typ2UVq9oIwN4ji529MvMjnJ+cO8XM/9KMvax9fMY6uIq7G4M4sHWXoo7djaIhMQbVgcbR/nCTeT+qYVOuj2GaNTNjESfJ47T6oj2DGBcraQyuLltK4UuBJQa37AKvmOs76TqTdpGI0SK0mI/EApeYWjHPcypdCRdb444FP4cuQFavCnL1MImPUP8L9c7sH272QrY4i1ZCVmqy8tPNCzt+EqG5F2Q30jq9esj0j1ex/9AYK8UksOY3WglDtJzEkWiSYKkWrMmBgiVNY8tJpxKkQaAErZZeJbS6BZ4AGEUD+SwbmkiDxC+ROX5z2HppZfv+un+O+Uv7s1NSvQSjB4gUyAXdIxU3XHmDF6eI9cymzPVPMOVlmMpJja9u54fTEWR6RBM6UTvFk+fILY2KNUuv9GZS5GTIRWvPBr00hrYewZY63RjcwIZc4YS6wpuYQ1vuZ7gsoBuvsns5QbG3u4EPDx04dxIYB/byrveJN062hgsXpnoPYicvpnmeouytsre5AqwxH+x+5bD83GmM47GNUrzCctHhLs4EWgp1RRG/a2X1/dehmPlt7HwfCbeRSeE29hRtJROIiEZzJC7AFh8yUtgWZIOLV0cM43mbYNQ0iDPfyGV4iCnFW5viS92oW3AEKCHwV0xOtEjt9BGkbEOSTBl3xOr3hKiPJItKQ6N4BVObyIpUXIU3JnnmOe8rfzlB2BwrFn1tfQxsm7twEht9ExNHZL8l3ciRbdsKGcKdIYurzK4zv04yxxN3+M2c9RQD/Nf/9SDRfXbiZNyx/nXC0Q/7ONBQ91g0EZoIVWoRD9/Le9pcYjNcu0cmL8ffpGzlo7MesV/Dmnt9sSKJyD+HA2Mb/OkGXc/EevsSwWCBJTD5jvLXDYbQe4d8M/ho3HHXoaXSe81pO8fj1IZWC5L332rhRZwS2OY9yV+FPqCcDrCXjtFQXbVXimH9xAdMLcUv2ExSMJR5u/DO00SQWBhlrimGxTGStYyibqeZbSFQRTUxqRBhp5rLcpAuRt2dZK8LDYwNsmTYpqqdIrRbu0hRh1yDasilUruWBa4ZpZAx2zUVcN/XiU++lDumyn6QSecTsxRAb87JdpVY6RiQ32xJasFdv5WSPzaKXcrpQoG73cqqwoX8gXVABCIvOTJIikzWU2YftP4MdHAAESuZQaqBjkKQp0lpBqhbKKGCFp0msIRAGlv8cQidEmeuJ3Gswwym0kSE1B0itAUCihYHQSUeHTJiwwXnt8VP+9aOnWGaKmtykGxRVhtjbzf+4foTelYS+Zsouv0IsUwZaNbaGipQyC+YqVVlgpejwkZ/eFFN9OfCKcXQVcTUGN1k9RuWP76Iv2gwHaTqRolQKlBQYqSZwJb5rENmCSslGC7AjBcrgdG83AgPHrD7/juKEKZElSXyFbCl0t0msbI6sd2O2+9jV2MNnnKMctecYtQRNEmwEJ9SlP3BTa97ht9gWJ0QCns04LDsmM9oABDttTclKuTmTEGvBsJWydd5HKohNSfd6hJFqvCDFCRXKENTyJmfGPNpZk8Q8f/dgJArPTxmf9cn4KVascQIXKdqX7N/l0HBtDu/PdiJvQnTG1RCgBc6zgsyjBuakhVlPuVI1kkTanNj1vXx8y4084Xbc3MKAS1EJMgJ+wI45dOMsWw+tE5oWj2y/Fqk1A7U1BuoVuludRS+VKd/qe4Rlr1MUWQmXes+H0TLb0eJJ15DJGlq6BLnXkg8ibjkzQ2wqnMjimsk8Tw1+nP2NMYSQfE94ByeMeZ4xJ6nqWfqqb6YYdrINU5FQc5c51fcgJ7uO0dhIp95SH2LdqVO3W2drHgktrlj/6EJ4UQ4lU27yR3htu5vd4hA3t46d/T1FcsYbYtrpZ9ru4dF0N19bfxV9QZ0u0aalHSZVmQtjsCYpORFSxOdOcwL7CtqfzvMeuDhCqBR/ZAdsyBuIJO6EOJIYbXQIwfb6Csp2UKaNclxkHKGlgfKyl72GkaSkxsUWfprE5GdOYYUB7xr7MNZGdubH0y/RzJ6jLq4VIk3Ppvpr0yIRAnNjWvWmjnPA2sFTpRuJZOc8A81r0oS7o3UyrdNMpxO0R7aBcXGiQiIEs10DZDM72BVPsi/4IuPhabYEM+dxAZ+Hj8Ovqx9BSxNv6jhmu4FpbEF4NxI1P4M/uoP0+bI7aUpm+jhJvkzU08lKzYiABpsGZJ4G3yG+ym/t/iD3Z1+LNELev/IZfunMf0eiWTZ6+O/t36O0fuVN2pFRmwf32bRtkzsqB/nQ1Mf5eP572HJsC8bGd1oy5nh3178hY9ToDF/HWFCYCBShzvJXld8gTjYFCU3hc0f+fzBiHyIrK0ihEKQ0ZRZf2jzt3cRnBl7LlwdvJZI2150J+bZnFqh2H+gQ7U8eJOwbJi734bYHyPjDLNx0kGfL4zxRuJaupqKWkRgKXneoza2nQpqepm2bdDUTop5J3hr/PbK0wKcH3sjO9jSvqj7JdFzisXSIwvw/JzVstLNOvXCKRG6uC4buZNIlG7xIT9skpMQipU+V6FV5ijpD3dAsZAt0JRYzWZd2xkHHKTPZlFBruoVHb6T5Zq/JoidAa4SGkZbC1z4uDkOR4IalmEe7AmZKeW5bTikEMJ2T7KoHeFFAvhEQmRHK6yLfrFLXs1SMGuk5E6mtbJRIz+tzSIyFQXg5gWAN+4tdvPdffviK78hLxSvG0VXE1RjcqZMHee65H2PrWpvh1Rny7ZcuQgedgFkoBIYBLS0QGkpKnQ2qzZkGpyyLimFwwHU4Y5mctmw8rdgXRpy0Le7yAxKgJSWDScKYThlPEsbCmEKS4lzw5DWd8NN6ySJwDDw/oava+ZidSGG+hFuJTIEyBGaiEUpzJa3GltjLM7cssvPoCF31KpacIdZ9IGJiS9N2Pda6Y2I3YL3lYh0zEItZlJ/BjANCL4s7G5JdrV/UdiotVnqup50ZQKqE2MrSyI3QzA3zrYLNN5zOB/0eu8m3bf8Gfzd7M19qdMI+b/LW+FknYN0N+H939HLDoSmy0aXT5lMBk7nTHOg+AAJSo4fY2UG78B1gDJHKzQV4y8IsxajN8Jpk71SWTNQhVNbdVR7c+ikCZ5V7Fu/BTgUfiF/HGbnMffazRGmdr2x5iHxYQglNzV1GyZdWVNIJi1hhH9qqk8iQ3sZ2cmEZKWx2Zk+yL4ko6Cpvb1xaWO+UM8p/Ee/n4cZugvT8EiRjcp3X25uhirqymUuLZGVMogT91MhaF/fXmZvArK+TFLvRpoVMImSrwWz/GOXaKqV6BTdOaWYzhP2jJIWul3TPaM3Gaou9Oo+zdr4mTWhazA5vR9gOvdVVstUVZNzZVOwSI9y45f1nj32m+SjP5FZQ7qXDOFprsmeeIy71Enf1YTTreDMnEIBr5OjxxqmFi9TjNZSbIeoeIMmXQQhEHCNDnzST2xRRPEfraimT5/DYLtazBapeBoeEm+tHuKFxjMFwlVBbTCxvIZt22slMHCGvxoi73gMIosbfoNIlUi+HtmyMdhO5ES5uj+85z6tm+i2QBslGWaHv5bM4dkh3WsVME55lNwe5hht4jus5wr93PsrQ1KZESMsRIGC2y4DuKe6QX2CLP8d4sMBAtEqEhUPMcW+MvxUfxpvdgRdpEGnnvp/3aokUtAEoRuzD3JX/MybCmzmltzOga9yV/0sCVeBEcBezXg++4fLA6Fa+MHozqYRsqOmpp+ybjti2GFNqK+rF44TeEmZ1FW9hmiSbwx/bhUwlXSt3IDT0e1+nNPQs9w7dxLbmPOP1GX72+l+gJrqITM5+y3asGaokbF2K2b4Y03Ik810GtYzA9la4IX6EGw7OsV6/m0j0E7mg3TXamQUieWXKwuWQUy4tEZzlOvWpIuuiSZ8qkgqFT7SRJZbQFiE57dKlcszJyllDR2iBRGAiL2/UXICttWX2L57G7DH5Zv6trNqX92QOp10syHWU0OyOssTlGj/w869kq/1fg6sxuJOnZjj8B1+lnMQYe2aJtn6R7bNz9K9EWImm5hnUpaCmJaSaHVFMiiD7v+ExKO0R6y048uiLPkdrE0WGWG1BCEWie1A6jymWceQhpLiYCL55riTV/QTqRjQWAp+WuY3Tmc9jPuMQ3tkk2emiTH+jgv0mnMOC3H0GzvHLC1AmhkulvJvEzLLcewMCTa2wjcTKsGQoZg2FRLOW1TxnQhh3rL33dp/h1M2SJ7mNHA1+c+YrVJyQ3+99Lc00T7na5jUnD5OJQxSaitvEVhkC0yA0AhrmMhO5Q4RmZ7KLnGtolH6O8elZbl6us2Mxj5mUUEarM6EpTcupsZJZ5sjAg9SdNVrn8HpuWbyecX8HQ1GOb1OvoipafMp5FK1S/m7bZ853xmhBV2M7fnMPlpZ41ipdcYbu+g6WVBcr7grbuw9yo17htcFz7A3XaRhZ1o0CWdVmMF6jKT1y6tLPrW5k+VLmDtbJc194HU/UO3WqBFAUgl4dURYJvXKZXuslCjQqhTtzEkN77JxbZKa7wEJXia56nVc/d5SudtDxuorO63BsqJvJniJJtkCSL5HkyxhBC6PdRNkd8rSyXbRhIOIIGUeYjSpGu9HxNLE5dG4UI7XGt63LamztWlhjYM/7Gey6nlBpHCmoRat8ee5PO+u3EKSZPH7PIFEmjxkF5ObOYAQtlO3Q2t7h0BjNGs7SDEYUkHpZ/JEdHSFVY9NtZtcq2AuTHamOMMZKFb5l0uruJewdPo939TziJCY0bQLTpjdoos2N8KTWeNPHyYbbIP8GEgF1qSlHy0TNv4NzVL0tOUqq1kiFT9g7TNw9gNlYx52fREuD9tZr0BsaUnfyBG08DuhrzhOCvVYf4808wK9v+THuz99Nr5jFEAnXN4/zruV72dM8wxQjLNHDcbazRok2GSxibCLewjd4uOcuKme+g1LrysZ+y9EsX3uUD9T+kk/k349YH2Ro8sVn8sVWnWrXARCQOXMUR95FEjxBc9sI2rLJ17bh+pvK5kIlaGmCVpT1s2QGZpn1yqwG++hZyr9gWK+Sk3ziNR59coYdzQl2PjVFpvleNAotKkROnchpkcXDSQ0aTpW20Tq76ckmGVrmS/Ouv1zoSS1KSR3HnefYcD8ni1s5kttOKgzGW3N8/+HHaCTD1OyIhdIAp7oH2BE/SxA79IUrXO8foz9d55Czg7Edb+PN7/jel7V/rxhHVxFXY3Dry3Ue/v7vZzWXZc/kBG5pC7Vb7ibsCTCjEnOiTiRTYhFTM5okImUk6qOYOBzOfZ1QZLklXCCrA+oSVkwfS/exM3HJ6ARfXkuXPUccncAW62wJlrDVCyeQaQ2x6RKpXcTRXaS6j1DtRZMFQiQNTLFG3vwktjxBqrtR2ChdQuOQ6h5ayVtJ6QMgyE8ikwxCmSirhRGWMOM8ECFpYMkpDLGCICJS15DqLhR5wCR21whzs6wN3A9fX6Tr0U113eagQ3sshwgUuVM+gefQkgkjy5vCfW2vj7bXQ2zlaWcGyLbm8b1enh29m4mMR01qUqFZkpoZS3XUqvVmlYKz2SVCcMvgKmdGBtizMEV/fYXQdHl6bA+G1tx16iBevBmWrFl1Hhz45lkj6HwYCHEz/WduoC9K2akjSG3u3/IlKpkFyu0B3CTLUu7Mlb09Gt4z8Q6EtLkr2MUeRlFo/qfzDSKRMmQ9zTeTG8Cs0RKCb0sk7xafomFmKaUNlsxuepMK3UmdUFg4+jIlIS6De/O3AIKhZIUveHdxOrmJvF+it9Wkx/BxlSRMGlSNNg0zQcnz3zzpt8jMnCDOdxF1DyDSGOVmMGsVzHYDGXYWZhm00NLi9UdOkYmuvHP1bZuWY9PTaKKB2XKe2a48tayHmaZkIkU1c/mSI2aqQGt6mj7XzSwTmiaG0thp57rrGZfp7s7378YpLcdifLVGuv1udm59LwCPNRNuyRoYQvC1ub+kEl2+tuFwxcdKFcf37iDq3UzGSBEYF5BuZRJjrS5gr1/ZsEy8HFHPYMerJC8fixRRgLO6gN00sfPvQwhJLgc5Q/CMn9DfXiJqfgGIMd3bMd2bUck8UeOTcIlcTGXZtMd2X2ScydBHmfZZA89WAT8m/oYucT6buUqej/DDV7w3gB/hrzlS3MbnMu9GtQZZyDh0MYkpTJ7o30XBT3n9U4KuZufbiQ2wLujumT4TmUYMrwtMtfleChWTbc7TKGgqfTMoqTEaVdyFGo/0voe7qwfwvTOEA2NkVZudRyzmu+/pGEUvFuEZjHiJ1OpDG0WU4WGITe9ibMCfvKlIJSdRhmCsPceOlSO04gJGy6Ss2qwXsowtzrHY38dM9xC7ZiaoZgpUc3l2zMygHUHXepPR+gr1gks+GMIT66xZJqFIKacWEgtpNvGlxXouz1g8R7uRZ90usjDg8MbFx0iiAom5ysm+LcRpgZIKONbXhV1V5OMWZ/pGWPOynMqPdzT6tKavltLVULz6uM/JIZsndjiE9gtXSoCObt8fPfGXvOMXf+/Fj+eLwCvG0VXE1Rjcpw4c5O8/9QVMM6ZrIeL6px+k3G4QeyVMr4vU6yKRBpZdoNC7GyPXj+EWOmnF0kQIgVYJqHSj0Oj52CxA2kGYmUd7R4i9ZZThY8caoTxsVcGXW0lFFru5Fac5dl7ZCa0VFeuLtKPTOPFeSpnbMFUOqS+9yGgUUW6OxexzrMgJ4qUhkmovxfXn6FqeIbEcKnsHGRzbzsDsrWC6hNlFrLBEYgT4Zo2Ke4jW1ARh0yAKW5Tm1xhd7kymtcJWivXL6+RoBMt9N7Ew8Gqe6d1JxYCcEhzrgukMNAyB6nXRtgRTom2JLtoQpohIQarReQu0RqJRZmcs9s5Pcs/JAy/4XCdzkxzqOkR/lCFu7aWcrZHELRbjXmrt7WwPLGRmDcdZZCE7S9VbfcE2AUbX99LTHsZQBqX167jBeoIzbjciTfjB+E1ndUq+YR7hpLlIV7rGTe5hjjqj3Bkf4kywldN6DNKUMjWG9AK3W8/iiJgEg0lGaJBj0ehiKhigpXvRUpM3TcrqGHkvIZDbWY1yRI2U1LTJmCUsrdE6ZV6so4U+q3l0KXT4Pxq7soS1tsjehQpN26TpOh3lXzdLwY/YPTdHwY/wbQsnTjCVRgDz5RL+4C7ybR9zdYLQsvEHd2L27iEM18EsU3AG0QuPMzRzDNW4mJivgGrWpdgOAY3UHU5abEjcpLOKKstjdev1rDgpFVtjSQeRJsh2k4zVR1Q9SmRKvOJe9vS9hu5MR+piNlL8B3w+JFyutQyW/RrVA39A1i1jzj1LNZdhPWPhJCli5J2MD70aVwpOrT/C0+4Zknz5IuPCqizhLM8hzgqfCqzMWxFGgcR/HK1qaNXZNFzIF1OWTerlOh60Ug9Go4rQCrNewWxUkbKIlftOzjg5xjOS927wpZ7QCf8jCrmnqZHASTNk0XbYHwq6tCZufRkVn0EYPdi5dwOauP110nSSqGsA5bhoIbFqa1iNdcAk8Vz8sU0Seo8/R79awoma1Iw+Thf2nO23bDcx/CZmu4GybJJ8mXRDm8vUMbeLZ7iHR88r+nwunrau4/6lX8KNOmOpBCwWY9rmOnn5ALuas8j1iFI2ZZts0pgrUy/1cqrcxYpXZkNPEem38GZO8Xj/d/GdzgDVoE5z8c9p7tiHNm1katEXmJTbkFmaI1usUjG6aTX3EnhDmHGd1FzBUBm2RM9wY88XWcx3o0yDsWiR1cYANNqc6Xs1RxvvQnB+CHa22+D4sM1ju1xSydkQnZloErPDSXXiTqapBqSGxPxfW4jWSQOuXVlm24Jm67SD7Qt0uopKZhAiT5LZzuG9Pk+O9TO6JCm1FJ6ok6tm2bUQ0yzWWCo4aKHpWV2n765+/vl73vSy9vEV4+gq4moM7iOHn+BPP/E0I2ZnAk+0ZDnsYTLIYcYhbz3xTQydsq8ySW+7itzIKQII3DJSK4w0wEwCEq+bqDRKIhSoBHd9FjusE2Z7CPt3U+i/DcPOYXkFTMtDGBdn+aS6MxGSBKjYZ2X5UVpzj9G3cv4CE1gWyz15zN13UR7eTrs5Besmi/FxgrCCFTo4LcnW2QnsZHOn//zLc+GnO99T4vSWEYqNOplmk6HVGpkwJRUC3/XIBD61XJ6lrj7+4ab3cXh8jD1zy+xcepLYyVBqRhzbupetiw0SqXlo9w5O9WVpmgJtdUKS2jPAuQKj9wUwtrbIW599FAnMZGdY9pbp9XsZbY2iUEznppnOTWNqk4ZdZaQ1zLJywVmjJSDr95OVAYFVZzV76Uw6N86xd+nVWKmzUdBVUAi7GKrtIhApvT3PULInEEZK2JacFNsAyK83+B7vXYRKYwpYkTW+YD95diKVOsVSIaHx4lOY/6kQSdzJiolCDL8jDGc2qxjhZphm79wq42t1hNYv6M0MuscJdtxJV+9NZM3O9xekbfykSdnpu+x5flxnffUAImgQ+EtUZUh3rUamVkEX+okKfaS5HrJeP4bhIb1uDMPFtXIYV6gL2FaaVHdKHjyPuSjlT9KQrw5KXlVR/JbwEBeE4UKlWQojipZJ0Tz/fTyx9jRP17+GsjvcHZEmyPT578fCsLYirDEGvB1scfNEWjMVKWrpJu1I65g0PICKp9GqjtYR6Bbnw0DIHNLahZe5naGMzTZLUrzgfj9JyO/qjufzRmHwgzisaMUn04hbWwJHCw45mnmrowL/mraBla6RRodRyQroAMPZh+FchxAOWrXx1b20hvLn8aMuhDs/id2IQWSBCHSMVjWUYRIMbztrJIlEkfUTEhtIDOywBUkdoTRb9BJ3FI/whHktR7zruGb9WcblGqYoM9EeZCXOEaDwpYvOWrRtg/NocVpjrS/jrMxxKH8zP1W6i6ENw/FguMqz658gGN6Gti6TLak6horQinQj4cT0fVLbRhvnP3eRpHjrLqVknLy5SiW97qLmNJrUTDFkhIgyZ/92bqhOCY1A0yj6eEFHpb7pmGSNCp5okIZltExoFtsYRsiEO8rQskHsJGTDpHNuV5M5a5DxeZOuuEbgpihl44gmaZgn28qgZZvEgiwNTOUTxQWiVIMOSKNjpOGFWbcCMJDmCELmUOlK533QCTpdAWKEMYCQHlqFODf18ZM/9wrn6P8aXI3BPfn4QT58aIlCc4Gx+hzZC7LFasqhpW1AUFFZZChZVzaFMCTv17FUxOtOPUJiWISWy+HyGLZKGGssIbUikha+6TDSXGH3+hTF6Px4dGx1skaCXC+pFlhhgEx9nKiBQJMYBke27iJV8FTXLkg1GR1xw8Jxrlk6g4AOeRiBqVLW8wWmBobxwpBKocgX7no9MwND3H7waZQWfP3Vr0FLkzsPPosWPgOVFXZNTWCkKV31Kos9fRzcsYeVcjdCaw7s3kc1//K+yGacdCbPVoPX6BMsFmu0DINJtiF1Qq6aEGOzbhTpa1QZX1ui3KqRjTshp+nsNMfLz/G6+q1MOQsczJ5Ao8kol4wSZJVmzkwvX7X8HGSiPLtXXsWO1ZvJhSVstYzIHUCoUTR9uJmQZprDEi0M+RjLop9Unu+tM/wm26tF7i6/lpVE4UhBQQq+WPksS2VQ3vnp6GatgowClO2SZnIXTe4ijhBJ3FmYNwjlSaFrk6OiUoygjQyDs96B5zO8jEaVwuIMcRohLpwqtMaNE6xUUWyHjK/VyFhdrG2/kUxlHmd5AhmHpE4WNbAP3bsd3zKIDEnO7GI4t6mSnGiNeYHRsZ4oLCFwZSeh+XLlFv4piLXGuqBdpTXzseZbYcxn3JgpW1HcsUQl2c6/OpnwLvPyUgMAvtZMKsXejQVzNmzSilcJVUJTuRStHI40MKXHkG1gX+K+lrWib8OwOZ0kPNuOiZKEVBp4WGjVBOHSGZkYkITSAAtu80y2bqS5KhTPGjOsyQavjfchEDS0YkUnbJOb91FB8Z8JeJKEIoI7MJHAMyqhreHmQDKQdsKCNWK056AlLCvF7nZKMa1QLx1CS4FIYpSTRRsSs14hUy1jO6+lKWJO2x0isN7o+Yi/QMY/SOSuEvYPo62LveXnwlmYpivMEIntKBUQpyeJs4Kouxdtu5c+KU1xlmdRLZ+G8FhxBnl98Xbusc7XXfpK+zTry58m6uon6h26SK/nHwtnYRGrVsPJ3INj9ROL4gue0zGAU4S8dBag1vqskf78En72/8pHqyrCGNj4fxVUC5XMgsyBDlHxFELmQRjodA2VLCLNTghYJZOX7VfOgiCVJOqlJYIM3Xwj7/uF//CSznkhvGIcXUVcjcE9fvgQb1iJSDZitbsXp9k3P0lfc/0Fz1UIJJqJTB/ruQK52KdheazaeVQMwhTkdcBaV4k4lazrDMVKneHGMnU7g5dENJRD0YvYPj/NZN8wZ7aM0Sx37k2mKSJVpPYlQmdKI5MUZXfi7EIp+tbXWS6X0VfYEf6TEStQGqMdoxyz4xWyJMQKWY9QJQeiFFmNGGzW2Gevsr18hIZjUTDmGTBmCPB4hluY1mMYqw4iNCi0qxSCNj3NOl5ysZteo1EoJnOTnCqfoPkiSI+FoIeR6m4aToW6u4YX5+huD1EO8+T8YYp+H+Wgk2asdEqUeZxmtr1phLwARBhg+U22Hn2Ovmt+kt1OH89ECQVDsN0weLi1QPbA7zA9NEijVKRcqzO4uMLwWiebS9DJmms5NvMDfaRosm0frTo8msH1BlKDlSq8OKbqOayUixTaPkaSMFfOE1kmVc9BGRItJeK8SdBA4NLTVozHGeJA40oLmR+ETA9u1yg9ud6XZMQkWnPYT5mNNEVDsMORRFozEaUcEyFSQAOLSTPljtBkuzQYsCSCTp2pwQt4D6nWBApcCYYQtJWmnmqyUnAgjPgWij4hOGUojhkpjhYMCUFZSIaUpC4U98uEQGtaAtKyRbyvzM+f+gU+svOXEE+mjDQVb0lsTsiEcWlQ0oK7DJNhIfmUjvh9GaKBn0gdvs+48mJ/Lg7Ea1jCZJ956cUzRLOOJtYaX3dCia6APiSrKMbOqccY64T77GeZkWscKJ1hojfPvzi9mzf515/nmVgVdSSSLn1l/aevEXOClDyCt2PRfY4Y7WlSppXicOiTVwIPg6ZS2IagZJg4huCQkRILMIFVNPMo5lFcrw2kgmpUYXt7il7XByNCGQbSEEiVIEhRuU05BhGFyDjskO8v9PJosJVBJFNUEOFXoW4NcMzuYcwqY2rNzyqDktnx1HzVOkhRZXhVupNUaz6drPBwMEsxmmOcNdqGS0UUyGNTcFtgCXTTh0hhOZBmC0Qiw2rTxjUKSLmCb0C3UFi5878Dd/Y0VqOJMLo7hokOAAnSQ6droBXSKKCSJbTuzEdCdDbSQhZQykfIbOdYEhCZjndRhwhhIoSN0iHoF6/PdCXY0qPLHaPbGccyu9Cyh5zpIdHU43XW/RPUkwpFe4h+dxRLSupxA0tmkDJDmNaIVYyQLvH+Sd75oz//svTrebxiHF1FXI3BffDpp/izydM87W1lyd3MHsmFPmaa0tOsIrXGi0O6mzX6GlUyUXCWHPqS+u9mmC/1sFjoouFmWc0VCU0LU6UkhomZJmRDn9iw8G0HNw7padboaVTxwpCedo3YMJkr97JQ7CaRBjUvi7oc4fN5/g4g/QSVNUEKRDXqiC4mCp0xUXkLpABDINoJ2pIYywGiFSNijahHnd8aCSVito2cIdye4b18BmNqK0faQxRUSlYqasrDFjE7xp7maLnEwdat6HWTKFFIMmSDBoWgRS4McZIYhU9ohARGgEazlFliyVui3+8nlnHHKBKKJW+JVG4aTVIZZOICkeETmQElv4dye4i17BxbK9czUN/Grlo/sbp8uEejwV3EyTzInNV/NgQmNvR2kKKzG9WdUhdmq07PwjTdlSa+6zKwuEhvvcUTu/fyuh0fwpOSj6Yhw6bkHdpiNk4IvvkL9Dc6Ypax6bFc3sb00D4iqTDSNsXmKl31dQIzpWULItMkyO0gNXPE7jhKN1DRUbROkEYPKlkAFMIoIWQJIXMdsSdhA4oyNoXMLiwhKFgOOUOSNwTuFThIrVRjCM47pppo1jbEIiWQajieRHzT0JywU1akZiAVlJSkrATHrZTKJfQfLA2DiSQUmqISbFEdrZgZqSgrgU9KICV5JVDAgqlYMBTpBd0VMsQQfieIoUwSncXQEaYIMIwGYVeIP3AzasDjmuqT3Hv45/jOvb/Iw+W34h15Dr10sdozgCdWKfR9BW3VaM68n1FR5vVY9GpBQUhuwyCkY2yIxEdEVYrhFLXmUWquBpXSk+QYy+4m1gmG1c2+3N7LjvWFSHTCarLCU5l5Fowqp+zT3Hvbj6CNPLn6E/zUU+vckGyhVxc4ZExzwljAxuBd4W3k2fRSpChiUlwub9g3kxoZI498GTwsEzpmVkB7I491HImHIEYzgMRA8ZB5itPmxSWCHGUzprvYkvYxqMrYmCgUksv3KyHlK9kn+OjwJ8jGDv9++kPsPqeSwZpOaAqBrzVjwiCDoIZiAkUTzQ2YZIAQWNsoOjyKQQONpzvFW6uixWPmKWaMTf6hGSc4jQa59SqmFvhJnYLdg0CQs8p4Rp4+b5SVYIZExRjCxDNyCCFJdYyftnBkhkj5JCoi1QmJjnFkhpLdSyVcINYxRasHU1pUo2X8tMloZjc5q0Q9ruAYRWwjR87MMe/PIRGU7F56nBIAjbiGwqRoXV4f7KVAa83nh77JT/z0L78s7T2PV4yjq4irMbhP3Pc15u57hJaXZ0j38jc7+3gyX2LBvXIdrGzoI7Wiu1llz+I0yhAIKyHXjuher6OFwPccEArPjzHUlR9bJE0slbxkHexQmBz3honDTnmqOBaUY0nBCOgyqrhGE0ekJKmJIRQYAmUoPCNBpy6PNbbzXFok0J28nLxQKBTdQpG3m4w667jKJRAp1279Foft7ejJAsX2EpVsL2G3TT2bIWvV8NMcVb+PrtY6bSsl0z5Fxl+k4q5hK5vACKja1Q3hfU3LbL1k3R+0YOfqzdw+8yZyYR8aeV4V9LIxTaAL+KoEQKIWENrEMHrRWnVKBaglgswsUaZGbG9ygEQc0rc0yR2PHiQREiUkjbyHcFO0r+lttpGxiZIGK/kiTddmeWAnt498FyXTpKU07y6G9BkG/7NqobTmgdo6frgKWiDdYYqmjS3Ak4K8IWilmnAjVJSVgmiD+1M0BN0bpM5AQag1LdXx3KQaskYndOfKzu+W6NhyF4a6Loe6UpxIFV/XMc+KlOFUskMYnBEp6ygSBGtSEQmwNVgIlgxFstG8ypod49qSqG4HnTHRtoEIko7B3eMiVwOM+TZyPTprpF8WZqe0DonTqT9jaNJul2S8gC56532LIq3htB4D4QAxqTVC7HaIxG7Y5Mknv4cgdnmmezf/fP9/RqQ1iov/CSdaxgpGcXSVrtVhVgptVkeGCXOvAR3jVr5B78FrSZMinmqSSVsUDJP9a0dw4rWz32bqZqiMDhJkBE7qYMUShcIUDoFaR6iI0mqbYlORMwu4Ro6cWSJUbYK0hWfkiFVIKmDWadHs6SawYg5nnuTQNT9I7F678a4r3vDkH7GzPQhAlNZ5cOBhym2X26uvpWgUKaksM8YqATEIGErLbG1nsZIUT1kIIZhqH2e6fZIonyeLx43mfsZz1yDF+ZsqpdV5hlM7qdNO6mTMIhmzo+weqRBTWC/awFoRdc4Yy6yKOqFI2J+MMa56kVrS0Al5YWAISapSjMts8s6k09yfPclnxz5PM7MNZfYyunqMD019H9cmI3jGy2MUPI9V0eB+69nzFKafx43JFjztYCKJSMlom15dwNAdDXMbk5iUHJcJGV5ltHXKk6LCgjVLQkJbtlDaJaMt9kVj7KFEXaeEwmBZ1ljQEUVdJkAxIjqG7gKLZG+Gd33XD76sfXvFOLqKuDoikBP81Jd+iMnSGoaW7PG3MhD1cEOwm/6ki4ncJIvWGv1iN+tehicK2zmSzZKQEpqyIx1/AYRW5+mKANhJzPD6MvuWTzNYWUcbYMYXP8rUAHkOubPlulTdPJVsnpqXw0liBuoVRirLyJextk9SSuly12jlIEw9gnYehcRPDDy/TcX1SZMIQzWZzk2z4q2QiTP0hD1EMsJNXBDQNtukIqXiVF6UwrPQ4GgbR9mUkjx1s0kuybLVH2beWcFKHdLUZLixg/HFVyG1hZuaKDbTdiUxhgyJ1WaoIYmO086dIiznQAiMyEenCm1Z6As4KIbfpG92gm1nZim3Y2b7B0jjBrbIkQoHr72En9uKMfoGegrbqSlBqDQFQ7DNkRhCEGvNL2ufb4xYaEvy52c012ykFqda01RQkFxEDn65kWpNAGSF4LBO+AoxDTRHdIIQgraA2rnvjVBox4IwQVxQkVNv6BVpCbpgo12DZGuOna0F7ph4lqfGRpkrdtPI9LB9ZYE7Tx5EhD5N28UJ2hzYewPPDY4RWzlQGuEnnSy6DVK+rEZoKdAFq/PC/xPH5objT/OB+ueo1Iv8VvLdvNl8kofvuIs1r3vjhhJkWseMTmNGkyT2dqLMTZtDkTbpWvh59s0W2HcqgxVGmKlBOytZG/DIJSXWSjHLmVWm8lOEVhll5Biqheyt7kCjKUQFEpmQTbKIjUK5SAMRtBFhi9QUCNPrhEA3+IYVu8L9oxNU+n6U1B7tjI1KUdIgU/ssPatf7BgThibJjGGG0+T9mFvm95HTXaQi5VjXaQZaPQzH288bExn6KOd8HowM2ljry/T6JlHSIlRttKHQSee9UKZFXOxG2S7KcUEaGGaGfKipqxqlZsxORtmS3cdaewo7ioiac5hBk5zMEpgSMf0E+a69sO311CwTLQwKGmy/Rrp0mOj0fRC3QBhEhkHbErTKgzT7xpgWq4AgNDX0baOVz3Kg6wDHegXV/n8DwiS/+vvcMZWwfW2IQjOgGAqcKMU1MtTjdXwZ4ymTvJnBkxlaQZU0bjGmy1hWkUVRoxIv4Tk99EQmTm2BblEmciXJ8F6kW6BlZTltLDJhvEQ9MEBoiattcjiUVYGaiFiWq2iRklNFerXDsOpiEQUkBLKBJqUuIgoqjxSKJVmhJ+1jTRskGIxhokmpkNISMTkUbaHw5ToSjXyR4pAvhEAb7Bst8YEf/tDL0t7zeMU4uoq4GoO7srjMb/zhf8A0sszk5pjOTVNxKpcVIsqlHm0ZnK2cfFtrJ0VVJiJl0V7FS10G015sA6oE1EWbNatJ6OzhTL6fyB4ilT0gLSR5TK3JBj5OErPuWcRiGUQBSznEhsaIjmNGk0hVJxtWMZM5QhGh7FvoiXYy2BQUA00iNUIn5MI2oSFZznSyY1adWSLZRmsfTZNEtJC6k3OXj/MM+APEMkYg8BKP0AipW/WOZ8dqUb1CEdMXi+3+KDuCUZTQ3Njcg4EkpzIMRr24QZ6Z0KSuNP5G9lF4mTdcSh+lPNJ0Ad88RGrUsAKNw90ImcW3D6JlE+ImYalw0aJwIbpXZ7n+8YPkAsn80F6csTcwVhwle04mi9IaxZU9MoHW/BQtDu/JI1cDtGPQg+C35mD3BbvzhtZMiJTKBo/jbkxGMTijU0oIAqCKZlYo9mHwsI6pCI2LwEfTpQUFBLNCMYfiBIoRJH0ImmieICUQFWzdJjEkpruAtqvERkgSjoJTR8s8Km8Q9l+PyvZ2XE5pRz7heQ+P9jphRdHueIIEGicOuG7qFHunTuGZgrAdobVGCYGhNU7OBaVApVheil6qgtJMbd3L8cGtHVXpDdmL0MnQdD2kiskHPuuZHJYSBJZN3cuS81vkgzZ3PfMg3VFAbFnMl/voqtWY7+phuneYppfFC3zsOGTP1FFKoskHBj/JB07/Gut0PB0f7flNPrT3V2lk8lwOt04c4tmRXfi2i4yXKKz+PmY8dckpIDW6ibzr8fNvJbU6Hh2ZrGP7T3QMr3gaM5rGixpcV7kOU5lkkgz5OI9G45s+sYzxEg+BYMWY5bGxlLWhn+vUyAKuPTNHb1Dh/r37QSd0Lf0uIj5GvfdfErt7EapFYfW/YaxXSP0xZOphFQ6ijJCCX2Z/bYT+qA+50V4kI+Yz81ScCgPtfgb8QSQSEYUbBtxGEkCaoE2LNHPlTDbo8IjstQWs6up5HrXn20EIrDhmeL3J7oU1TA2JFMyWspwaLBAbJomUSC0ASZotkHpZlOOhLPu8JIa5zBzfGnyW9YH/iDI7hq5I6wzM/Byvnb+TYtzhfD2fxPD8dy9DH7O2BtJA2R0ZCKPdBK1RzoaBmiaINEVGATL06V2vsW9ujVwUE5pQycPU1h7mB8YJ3BKh5ZFqiYFF5qXoKv0vhNYdkThztc32hUmahTwLA4No7/yQq1YaI01R1vn3YdR9bs1Veeuv/tHL2q9XjKOriKsxuPNPPcSffeZ+EmOTzxLSZKIwQdtsERgN6k6KEorQ2JSAf1mhBbbwiLX/kupp/a+GpUyyqctefztvr76GSWeeA5njhDLC0BJLm6RCsSUc4g3V29gajVAxa7hhkdVE4+sO2batNJ4QNFJN65zbTY0YbaQozA7ZXQlSUyFTiRN3DLqW8RB+V3KeWrGIAsTGhHcuzCRmS8UjH7rMW7NYKqY/6QFnEBG6jJRG6bHtS2ZAXQpKa3xgkhQTwXFSqlpxnxHy3I096KKF/c0ldMYkelUv5tEKAwur9KcZRrCI1Rpr9iRmcZKKKpKiMWODbOAyL/pwzAZFUaEpMiTCJEWQWA0so4YrmhixTVN1IwTETpXYiEm9BXSSRysLadUQVgVptkiNMrGzC4RJkHk1ibMLdII2zjcSMu0215w6Tj3jMTW2FTuKKLQbICVOGNI3u0A5aFBuNXA8zejAGYbtaQxjlTVnmIWVPSip6Os7ypg3iy8tSrpNNklp5ExmqttoLncT+nnSSgICfGcI220BKZYI8dwGQVIANI7dQEkYGpqgmF9jvV1GypSs3aIR5bCNiJpfptrqJWu2cC0fx23imgF55eM+0cV3t3717P39vPkJtt5wmMl0jJqXY8rdykxzC3E7Q+TY3GHcyxtKX+U02/m19N/SNjshGplWMeIFlMyS2hvFX5MKynxxpVBkUsFtfh2vcS9C+2jhInVH1Vxj0JGYhMQcYn3ovwLQFyzxnsZfcWf3owih+Y/xr3DMvgG0Ap3AOdlqQvmUlv49ZjxHYg7QLrwDZXbhNe7DaR5Gt7fQH+Zpuku0M3Mg07Oiqmbisqu6g92NnZfk+fiGTyt2WVEF1sgQGRFaG/SmIWWzxghi0wO6UepFqLRjWJFQN6toQ5KE64zOaqxmDaE64q5prkyUyzLbXWMt10ZJaNkBpahEKSqRjbNUnApKKCIjIpARE4XTNLvej59/C91pBV+4tGWG/OpHyTYeZ0ttL9fWt6KEwlLWRv2zBKkl8qz4youfuK31Zdz1VYq1OtvnV8hGMfnw4szXyLKQSiGVIrYsYsuiWipRrNXwPY/UNKgWS1S6u8jXG6yXy6RC0rO2SrOQp53J4AQhkWPjex6tXA4zjulZXcXzfZq5HE4YkhoGkWVjJTFu0MleNZIUqRWJYZIaBsqQ2FHE+OQUXZUKoYSZ3hzPjZtYScwNpwN6GimJ4+GEIZFt4bXapFIyPZjF8SO6GylSSNa6bqD8i7dw89te8Rz9X4OrMbjV2Xk+8pG/BylQdh1hBJf17iutCWVIy1hnzasSi4BsYhBaAet2g8RQpIagZjYRG1kYoUxJZYoW4CgLDUQifmGJ7JcJrrLpj7oxMMimHv1xN6lImbdW8JTLvL1Me4MMnVEmsUgQ2iKfZtkejrDTHyOfZtkWjDAaDWBh0ko1q4mmYIAtBJ7spG3HWlNNNE2lSTQsxppW2gnz+LYgkdB2IedDLtSkAgwNqQgRSqDTdbRaI7ECkDZCO+h4icTxSR1Naiak2c6O0k1SetMCs3brPIO1HHkYwqKbPLel23GuQFC9EI1U8w864mlS7sDkAWJWDM2AlqRCc1woamgM2aaQOY6ZPUXd1tS3/DN0poR5ooZ9pkaKQXjPALgG+dXfx2k9DshO+RZzAG0UECpAySxWeAJBuqGdJUnsLWjpYUQzICSJNU5qDaOlhxlNYgXPklpDpGY/yiigzD60cEiNMlrmEDoC2UVsX4aIvsFp6qnX2boyx22rx7CdJp7hk0Q2hu2jUgfbbSDsEMerowWYls/27ATbJ9sMLIedhd0QLPfYRLakfznEC8/nFSWGYK3LYr7fpZ430QJSUyJTjRZsClVqfVFIzYwVSgrcMMVIQWhNI9dRyk4Mcf7xWjO8ELBjos3vht/J76fvPvvTteIMH93yHzi+8/LZXUao8GLFZG6A/6p/hXk5ctljAQb1HHt4jvfwt1hEfJb3ssAwvvY4Lq+5xJhHIGyMeBErPE6YuQUtPGS6ftYTktFNfpufIq/r3HC4TqGZ8NSebj7S9SM8IN4CgKub/Cv+E3/FBzktOhwrI54jNfvPep0AzOgMXv1LWOFxUrOfyN1PlH01qVHGSFbxGl/Fa34NmWRwU4vYCDCVSSIkWgsS++Kah+dCpC65sExBGWih0GikliQyYc1dI5Gb4Z1clKMYFSiHJRpWE98KWLfXiV+EzMbziJw91Pr+NQjJL+pfZYIdfFJ8H9lwEm/p/90QGujASF1MbRKaTQxl4CUZmnYDUxnkkzx24iBEpzi1MGICrXEiDzPJ0jZ93NRFIOgKuhhqD2G1mp2admGI1w6wVYLtJ5CGaMvEikLamQ4/0VCd0jZuEJFvNzGVRiqFoVRHLy6bITRShlfqpFJjpZ050Ys7xls7XyBTq4AQVIoGzYzHWl4ztghumKAMwVI54fSIi8IiG0hCJ6JVyBA4JoGRcmKgQcsKiYz4oo22VIKedoHQTKg77Uv+bikLL3H40/5/zq53/bMX/YxeDF4xjq4irornaOIAf/G7J85WTlciJsgs4rsrpEYb8SIIwwkpSkAiEpYzi1ipjdAGgRF2/o2kZbZYc5dRGKxm5kiNGKEloM+rxC61QV/YQ9WqUooLZKMuilGJgcZW7KCTcZOVmoydUMJmPjvDml1hNOwnqzJc42/D0AZ24jGbRBSTAiVDUEthKlK0Uk1RQo8lGLQNMhsp1JdDqjUaSDTUE8VirDgTa1J0R834eYeb7ERUJNBwBXasMRKFSGZJ0tMdN7ZISG2F1gFmZKFkQFgA5WU3q7W/gAdHaNifjHFLugOJYFXUOWEsUNQZtqZ9ZDg/FbuuNG00fUIghSDZ4OSkaBbRPKcTnlYp3zISIkALhbRXMbKnUFGnBpS01jEypzGyJzs7cGmA4ZBYY7SL7yFxtjHQWmb94ZguYx6lHFa3bSHdXkCkPmZ8mk5SdELsXHOeHouRdlJ5UyP7sum0PI/uZkBP3CYXRow3KwhdYVs0AaJNLr/G+MAhelo+XdUYJaCRN6nnTBJT4IaK3tWIXCtBC3BDRdd6jACOqlEOq22MyyVuFicwhWJZF5nRfdgknNEDmKTcKZ+lKC4tuaCBtaJFIgR91QjfNohMiRVrlAH54PLJCYFh0DItUlNjKk3Jj5DAN9P9/ET8YZpkGe+9l6mV1wGSe+2fJenxWRd5kqxiRpfRvTF+mqFrVvH21WexRcrTpRFW94cEIsME21mhj3mGmWYLw8ywhTOMMckWzpAqA1NeLDmxSg/H2cOj3MUZtrEuul/wOY3pM7xXfZzsks9tSws8V9nChB7iR9zP8v9r787jvarqxf+/1h4++zOfEc45zKAoKiAKiqiJJVc0K8lyylLJ4dbVrkVZUipqg6a/ynLMx22495Zpds36lllEmhVkgjjggIDMcM6BM5/PtKf1++NzzsfPgQOCgAzn/Xw8Pg8Oe6+991pr78/e78/aa6/95okG6+wRvMxxHBsuYfFbE7GiAa8MO4ll6tjSOibpJaTo5O+chlY7eHq1TDz3AnbnH7ELb6CNOCosoI0YbnQcKsyDiuLbdQT2CAK7HiNoxyq8hdI5opmFqLBzj37fRbSBpQ1qDYsMAXHTpynQlD/U7mATT4xlXdV/kDcqONn/Gz946dt06QpmTv4xrnI4vfATNm1dQNu2jzfuBWZoEhgBju+Q8BPFH5BBnIJRoGAWCFRQ/NcIUFoR9+MUzAIhIdEwWnrS1jVclFbbPXxi6GJH/rgfw+sJKD3T226E9fK87K6o7xCocLeCUaUV07L/wQ//4zO7vb2dkeBoH9oXlfvmqy9y5wMPkwo8EqqGQe4IDBUrPiatTELDhcAgsDJoU+Nb3QRWBt/uJjDzaBWy7UtXd0aFFqYfx/BjoMJie4EfJzALGNpAaROlDULDxQgjBFau58sC2ug5dWgT049hBTFMP47tFV+oGCqPUIWYYe9w/R6hKmAEDqHpFj/KRWmbiJumt/lK9ZxMbaB3sGFPFwOI4oi/YXHsEr8R11xHvqKAgYdyXcxCEsuLARov6qO0jyYksFwwfYJYnCCy80H4tmVrk7h2yKoCASG1Ok1NmMTEYGzQQI1O0R1qVvkBCUMx3DRweoKqpdqnmZBVOmSh9lljFF9k13u5KD+91ATrKcS7cJObMRNvoTFwB03Eq5hOMrsGHWwgCIstONoaTWDV4UXH4Zt9O+FbYchHl/yG+c3Hcv/CO8mZUb5w8udJnBJlc6p+t8oOEPFDXMvACDU1BQ/f0PjKIBF4NMbiGDpkbFcHWnnUsoWozlHQJq6tqDabGR9ZgvYMjrOf79tpv6fVKJEJSGQDhmzOU93h9ddw069Xw5HcG36Yp/yT0GW3Y4aZm9kQNGxfDpXjLOcfjPVbsAmYbKzAxmeTrmGi8RYOLhECTALyRMgToUMnGKq20qZTvKmH8c9wHFHlMohOorg0U0maLNONl0irDD4W/wyP4k/BFP4QTi3u1+RavnnS97lryRWsajuGGcZi7rN/gFPWYTVE4RkmfmDyh/BEFHCO8U9e4HC+m/gwqUQXVU4b67uGYRk+SmmWbT0KxyxwhLWR47wNfNj6G3Ey/G84k7eseuJOjlYVJR1vZ1TFegpBhIaKZsKEzT/cU8j5cZQNca+LhJGhKmwllu1mY0s9p7esYla4kL94x/Pv3hwApqjlfDb+OD+rOoUgtIhkTD476BEWdE3lDbuBumGtrHaOYFCukXhHBzXRVkbWbeLXnM8LTKFTVQJQGbYyPniJhu61rIhM4MXE5FI9WLqAr3Z9bKdeSvtUB2uxg62EOkQbSeLKRRkO2ojRQRUT9GJqc8+ysXMN3YFBtWEwKZnHc0Zh24PIqQQFInRRQQMbCbXPhrCGhGGzWo1iKScQqGLLb4O3iW8vuotHCh+gTaeYMnot94y9DEMHfJjHGRm+yjG8RpOn6AwjYNXg+x0Ugiy5ELRRAdqn3csSojCVRd4eRl24ms7AxFVJMn6OXODzlvvuR/F/r1ihhaEVrulRm6vB0CaWhmrf4MicSYWdQdkeQ9MZvHycLd2jWO8rMmYGywoYjKYrb0Eckp1pFDah04IbQpDr5n3jL+Ocj1++V/MswdE+tE86ZLdu4WfXXUG4g0eNOyINxL02TO3SFaknMBJoVbw9ZmLgEMOOxFF6E1gGYbSKkJBQmSjDQ2uf0LDQUf125LEPKF+jiwNlYxRCtK3Q5k5aInpHaQ1DzLyLUfBQoQJdHC03GgRo2yS0bUytMJSFa0HO3P1fL9Dz1JOCqLap1AnaVYaYjjAqHMTgsAJQWNoggkWlTmD29BUAin0ItOYFFbCekNcIWKALxP1uXMOmYDjU6IAgLDAkuxbXiBALciSstbTXrcBUHpGuIZg6oD0OmYrNdCYCiGQIrMEE9jB05Djc+PEU7B133C1n6JBKL8/R3Wv48rrvc0PzlYxZu5EvvvAoAPceex72ESF1R3fzZnQca6LDGOo2cZL/V45MPwcGqNBgs6onY8SpZSsdYQXVQQspq5Mccaq7s7hxCHve56SBVqqJ4JGiCzPQRNyQQqQYSPW28CSyxeDHDIr1l+z2qej0MUNNYCisUKM1zA8n8/PgDJbqw7BUwL+ZSxipm4kQsFYP5jU1jLV6EJ1hGldv8yLT6HrCQj1s+24/5W0/7T0TEq1eyB0Tf0PKLrCyYxS3/+s6wCStujDQjDCbSekctbqTlMry2+BkOin2MxqjNvGAfTejrU1kVBQ/tGhWFQQWRCIFTMsjahWoyhYwMgaPBe8nqXJ8yFiIdorv2SpEDLYmHf6ZO443soezsGsCa/16bOXhldVLBI8Rkc2Mi63iSudJrHaLPwUn8KPgbDJl4xd9yXqUWUP+SCFqMGxjnqXeERho6hLN3BRczsu5I/hI7G9cEF8ASvPzzrP5k3cC7UEK4ha2dgkzio8Yi6hQGZ4PjuDlIeOpGKTorEmR22bA03TBJaD4GoxYVwYKPqY2CBMQCzSZRJS26K59R3qlwgw1up2RwSZeNY9gq/nOI073UlpTsamDr628h0cK7+dVPRqA4aqJ+DFJXhp6xA6XNXXI6Hwn3aZNY6S4j4fm81S7Aa+m4oRKEfc1vhHiGiZmGHJCRxfJ0KVer6U6WILNatJmN112B11BSM63cZQmmXOIGy4xJ6AqMGhzFd2ugTIUpuGzNhMhaoFngeqGGgX1dXna1g9mHXmCQoThdS6Ocmlti2OogMALyVkmyayN1oqE4ULBxo8FFAo2lRTQbQ5BxsSpdYmmC2RbHNyCg4pqKhMu0XQA3VUkE+8jGh3MG/EojtFFtbuCsO11ujq7CY2QqBGhIpVGK42RSzK4Lo1rdOBmIuSr8+ghk/jgv31xt/bzO5HgaB/aF5W7tbWd/77xBo40huN5eTrdLcXhVrSLgUHELD5VYhsOHe5WTMPCUhFAk7KrCHVIPsgQt9JYRoQut4VAB8StFAmrgoRdQahDvLBAl86QtUNyKiBn+thYhIai0w6IeAGOtov9MgwwQ1B2FFMbxMwEljZAKSp0gtBQtKoutqpOusz+3jjfQ4OBKj1ZF9EWCijswSOfpjYYHKap0WlcPDaYLRTwCVRITZjC0XaxY6Q2sTBpCKqJBbW4yiBBSBMmG1QOkwClPDaFAQU/pCNsJ2/EMbWF5XfTGWSIhR5aazp18Z1kCb+DhnwjKb+LINZCR8KjtiNCMmeTjQa0J1w21xY7LG4YnKMtHcOyp+OZATpoRisL1xmEaYzCs4dScOoIt3niJBlkmV74G9kgSatZTbeZIDAUw8xVHJt5g6OzKxhmrCEaeiTyHg3NBf6784Pc6V/MF5f+nBlrlwLwl2HH89CUj/B35zoK1T75qIkRahw3JNXl93SMLbbk5HtGjTYDTWAqIl6IUd5RXYFnGdi+JhOxMVSAFYDth5j9nA48bdJFHB+DDXoQr4aj2KxrWK8HsZUKDAL+EW7/7qhd2v/J1xkbXU6NkWV5rIWMV7xtFMWnzugm4cfImwXSbiVveUPp0A6en0b7FYReNYS9QVbA2+15ZZQP2gICVKQVM7oBZRTQYQxCG60tgtwwCMvGpzI7MWIbiFX9jQsrOjlz2UZSvzfJnBby4ynH8oc3PwF6x62Xym4rrjtIEifPR82/c4TaQIXKMEI1sUnXsFbXEcOlQyd4Uw9jSXgEzRRvc1fSxUTjLQraplZ1MMV4k/PMv6EcD9MMsXxNZ6rYwd7wDLojNpbpU91dIJrR/HdwJl/3Ly3lx4iux658nkLjeQDMMJZwjFrDb8JTWKOLLZEfMhZxs/0/YIQ87k1nnS72MZuo3uIs5znWxqp51juWI4z1nFx4gyZ/EJ3EGamaMMyA+91zedg/g65kuniPM2KgMj6G61NDFy2kSJtd1NmtrMyPJKSnCwAKnbLRjoF2TIgU35uovOKYV6pnBH0Vhpj1CfzBUTyr/x9pg1tddKCpCIrfgayCdD6gJQgpFAJ0S55Uewe3Wj/hyWAaT4fH9Vn+A8YSXq87gvWjD8NP7buAfEQmpNoNsUMY3xGwPm5Q5WpaIoqCqUh7moSvqfA0XZYiZyomdHVRk3PIxNso2C55FcEMoTESY0RnjAgeFWGGNsvE8NOsjxtEVIbBYQsjChleT0Z5NTaYo7tcKrwAH5tkwSFKns0Rm81OnMO7PQwgZ4U0xQJWxVKsShlscQy67O1/iDuBpj4XkgiKf2+JGmyIGwzOF8sGxZcDD8/6nL/4D3zqjnl7tR4lONqH9kXldnV1s+nrfydh7N2BxN4rLj6bjeKrThLawScgowpU6SQpHSXQGp+AHC41pPAJ6cSjiyymMigYOTKqQKfK0q3yBCokrWNorbG0jdIWeR3gKo+MkSfm2WzJbGW920VtfCQVkSrybMGyXbJujEYN1SG0ea10+S5JN8/h2bewdIjW4U7GwH1nodJ0x3z+PrGDdcOOR0Wng99CvP0JPLODwBqMYR5ORDXgx8fREh+23XhT24roAkPYwFh/Jad1PccFK/5GRf7tng++qfDLApYWXfzVXEk3b+ph/DI4nZ8EZwPw6DNfI91eDFY3VlRz5fu/yrFqJZeYCxis2ugkQaOuZqUegqttOokzRLUQp0AEjxYqSJLFw6KbGAVtkyVKjeqgkgwtOsVg1U4Ev3QxbCFNi05joDEJsJXPm3oYHXrXft1bqZdJppeS8ysJvWq0n4bQQtntmFYHUauTaKgIwwRRP8oxYZ7DjQq6dRwjZxHgYaqQ2opWfKeA58VwCIg63XRn47R11ZA1CuStPB1WJzkrV3zaDsiYOTrtDKl8LSYmbqQZU5sYOoIdKmws0n4cJ4hQ43h04pNVBbK+TcHw6TLz+EZAjTaZaDmMiSiGNrxI3Q02Rr54cWj+ks+P3Ym87EXJRzoJ8/XoMEpYGIwy8zixlbzP8Gi1czy/6aOEhaE7r7DdoAgZr9bgYVIgQp1qxSZgi65guNrCRl3La3pUKb2ZeBMn9SpnVr7FcK+C/+oYRW7rjN3ebpw8R6j1HGFswNcWfw0n0sLbrTXHqpVMN17iY+bfaFBbabOTqBAyRoTqIEMsdGnUVazV9QxVW0mYWZ4JJjGO9RgqpMZpxTcsllqjebN7NBHTY5KxkiODjRS0TbtKlv5ebgzn3soLWDLoOMwwoCq3lbM3Pcu4YC2Hq000hlVkcShg00YKQ2vGWuvIWzZRz2dZOIZfB6eyUg/DVC6VQ36GVgEdG2YTYHGG8QIft5/mCXUaq2pGY1khsUyGw9vW8lZ6BI12DYP9VgZlWtgSVrAyPYogapHMdFHb3Up7NI1jBJyQXcbf4sexvnYYiQqH0DHpqthfLaB7T3W2m9C0aXd2/dap4wdcteb33HjVzXs1LxIc7UP7onJDHfLMZ+5iaOoYcn4njlnseBc1E/japxDmcYwocTOJpz0C7ZPXeWxlE+iQbjLEjSQ2Ju26i4SKYWuTrM7RqbJ0hB0orUiZKZRhUqniWATYOk5BZQhUFwldBbi4FPCVh8IAHaFTeeS0x2Z/C76Xx9MeXpBD+wUSsXpilsFQQxP6Pqb2AYN2DKJGhG6vwGq3kbz2imNZKI0Zgg6KY4GgNWHEIRKaVEXq8ChghhlCFSEM28kXMuSVU3xkNwxRvocRvrtbajsSGJq2pMuWShfPDjEDhWeF5JyAjqSH5Rt4dkhbysOzTDyrBh09nmzlh3DNXbv4DwvXMyjYyhazhjZVzTB/I/VhE1Nzizml5SXGtW6kIlvsd/OaHsn9/kd4PhzHIKONBlqpIEOt6qSLGM+HR7JCD+93O4dFnuHeX/6u9H+t4KPnfIvCO7z0dN8LQfkoqwsr8SbKyhRfueFVUR/ZwCitGZsdjZXezFbXImfkUYU0duCQVgaOCVEnTyyxlRBFfe0bVG1uw2xVeEM13igNCqxNCgKwN6niLeQQ/FrIDVF4uTSBH6O7owGlQiJON8r0KWSqUXaGiJOBIErgOTixDsxIFjuSxTB9THP7Vk7Pi+Dm0sUW3WgXpuViGCEqA+knTBL/eLtFKn90SOu1PrnuajQhXmjha0Vz3sFzYxxRu5lorPh6l65ChHvfOpk1rUehtQPaIPQqABOUV+yobxaoiDUxMrWBSal1FDBY3DqWgjbp9C26OsZTyI7uaf3a9X10/LA/cfGoZ6iK5oi9BNYWRfNxEX7QfgRrO8cQFgYzMtXIJ8csYE1mMP+34qN0Z0aV1mAmlmNGN+F3TiD0avvfjJHt0+JWLkqBPA5mT6+8oL9WvTKKkGPVKiYbK8gRYWl4OE26mhwRbAKyOBhoJqmVnGku5jC1iQ16EGt0Pa+Eo3lRH4aDTxdxEuSopJsAAxebVrY/tztmB4mGX/MfbQ6G38GPaiI0b/okHm9/v6aq1xhubGF5OJwtuoIRqpmTjNdoJU2njlOtujjOWEm7TlLAJkWWpMphERBiEKPAINVBCIymkc12LWuo44X0MawzGuhM1tLsJHEtm+NyyxmWb+QtcyhxciTNPC87YwmUSZXbzZsVY8hGopg9T6slghwRXFYkR1BZ6KQxVsPQ3Fbinsfa5CDylsNRHRtpdCoomDa1+U6q3E4KZoSc6dBhR9Eo4oFLhdtJPCjQGKvF0AGxoEDay3BUZiUj3Q1ECi5OS4Z2naDbjxHDpTKRxXVsVjkjqLG7iYdZPGWTJouVdXFDi85IEsOC49peY5k7lutulXGODhr7onJbmt7kV5/9TzKWtW/GMOqH7hn/Wls22rQw3DzatFBB0PNYM9u/Uf0AsrE2R1fcp7LbpqLbLg5b4Bl0Jr1S99/A0GSjAVsqC7SlPLJRyEYL5CMWVpgujhvlpPCdsSjlYCuTPIq4GcOPjMRUGosQH4tuazieihOWPa5cE7Tw8S1/YGn6KP4VL3YwNXTAeP9VRuU3MKq9iYs3/ZFhuWbaSFJDJxpFNzE6dII1up4XwrGs0fX8IzyGDpJ47OagbkYeM7qRZOU/+db6VYz5f524w0PMdoXZpfjp+Ufwm+RReIUhhF4Fysxi2G1YdjuGkQejgOdXoL0q0CYYbrFzVuCgUZixdVj46DCO56cx7A50EEWHDkakFdAo5QIKHTqYZjeogISZQRsFhgUWSTtLTRglqSMkDEWFskjZPpbl4sQ6qQrXEt2kUTlFWKmL104DyBff4mF0KsxOIATnNQNn5TYvjk0V97jZ1f+Xx6/R+PWaMKUJqoEAVAD+YE1QrVF5MDsUygOVVQSDNCr3dmzhLDdQPuRGGBiRABVo3DHF74iRAaNbYW9QBN0Rkq8E9D7Qk3lfQPwfBipUdH8gIPP+AEIIk6DLhsMyW8FZZqBtKBwdEvY0sOR9i0JY7PfWW+KoGRAx3/npVS8wWJ2pos2LszZTTYhmfedI8m4lnh8nYndTm9iEbfgMS61lSkULNVaG6MuK5J9NImuKWwwqNS2f8/DL+robnYAqlmN9toJXcxbDInnGRD26MlWs8n2ez1SwMTMENzeCtNNBIr6WKVWriFshXW4F8zcdT3vrZEK37h3Lsr/6kBkEWEaWQGmsiiXMqP0bl/6pm9RLxSfDMsdobjxzJG+tvwTXf+cnAt+NFFmGq2a6iDNMbSFFlixROnSCbmJ06RhbqQSghg46SeDgUq26GKM24+ASxaOZSrp0HIOQCD6VqosWXUGDaiWDQ5eO42GRUlladBoHjxadJsRgiNpKgMFKPZRu4gxhK3GVJ6ujNFOJgSZJDoOwlJc9ZRJwVWwpN8yT22oHjX1RuV7W5Yz/9wWatU/dlg2kMh2ks5qa7khxYEEMCk6MWCEDocJxjWLwEirq2qJk4i5aK1xLY6CxfINQFR+HdO3i+Eb5SEhlt03EM4j4u39jqTvqs7XCwzcDFIqaTptQQdQ1cFwTUyu8npN2wQ5J5i08MyQTDcg7AW0pl8CAvB3SlUxi+h3E8xEcr9ialMxZpLLFq5EVKHxT01LhknUCXDukEAkp2AFbKm3y0RRufARG6hRwNxFmnic04qBihIaDEXajlQ1GnGikgbxzFBlrKCEGSd1Ot6p814+sR4MCDfktzN7wf4zbtILXw5E4uBwR34SPgRkE5FyHDbqWPwQn0kg1m3QNHjZGz6std0p5WIk3qU68Bl41GR3BVAH5II4yXCqsNgYZHShMuhRE7FaG5Ws4q7CVY369GrNL0TnLx16niL1g0nGywcJjTmcLBVrNLKYXp84OqQ1jaAxMyyVrd5INDExtYpsBtpkj7kfBsHD9CBWxLKZyKWiDnFZg5nszSyKSp6aikSCI4OajGBg4bpZESwbdUMBuBbNdYXSD2arQkeK1TrlgbVVYm9QOg5qdCU3w6xVWk8bYpmHHq9doW2MUFFbze/Rro0yQ1mSnhiRHfZqupv8l/dvtg5kgCkFSYXZpyrvshQ7kJoX4I0KCak1QWYxZsYrBo9kORpfCyEOQiWBuNLG6Q4K0wqtVmIkCujIkjGmCqmJwEyaLwSAatAM9XXeKDXo5MLshttgk8RejdCtQG6B6+4A4mvyxIdqGyBsmdktxuj+oON2v0Zitxbq2GhWFo0IKx4SEieL2VaEYuNprFEaXQjuawlGalnqLDb5DSyFFe24IcbuLVKSbiAoZZPtURIoDa1oGtOSTpO08vg7JBQ5rOkaxMpdgdTZFplCNhUkivpHKWCOGlcHCpNL06fYdVrUdycb2cfheGlRAzNlKVXI9g2NbyXkpMAqkIp1YCjq8KDEry8j0OtJGSHfOZkgQcvyqAtV/Bqul7/Hkjgp54xyLVwY5vFWo5c2W8RhhlISVJ+q00J6vIV+owIp0YCiN56XI5+uxDA8DjR9GsQ0XLzRwvUpAEfhRQm33DNR5sAox46sxrS60KrYBuvl6tFtbbBHdhmV0geFjEuJiYxDwteSf+fQNP92ruZLgaB/aJx2yG9dy0ktL6I6MeXtiWABlFt92bhQPJhV0oLSH0h5oD93z1JoRZjD8rcX0gBG0AhZeZDRm0AIoArMapT1MvwnTb8cMLSJuG9FCHoWBZ1pow8Yzi4/IhqZNoBSoCJ4dBTOF5xyBxiQSdhCqCOg8TtiJG7qYhXVgWIRGElNZWEQIDUVoVZEzh2BoF5sCrkoSqr6/Aiv8t/C8Fswwh6WzYMTRhoNr1oMRQwGm9glUjIxZtVfq3OoZFE1pzfj2zVTm2wjQ+KZJVdjGMR0rKShFl5GmQ0c5sfNlEl6OjmyUheF4/hkeRZ7df/y4RHkYdhtGdCMRq40qs4s6UzPU6uCoVou6TBcqFmDi0R1Pkk8pKnIdOHaeijdyqE4Df5SHk3eJtATE/1lsofCGhGRnH0XQuoLqB4pXN29YiDe8eLE028BoUxhZihfCAHREoy3QcTC6ei6+3eAPLd6a6v1/GO9p9Yj03MZq7gl2csU+zMB270bbVV6dJqjRmG1gblXF9ZkQpCGo0QSVxW2GacicEhAMpthy0wFWo0I7xXQqD0EtoE0MPwqZDPZ6hdGtsFqK5VAehFGwNyuMTLGFKIz3TE8W7/xoo6dfdqTYwoQBKltsVDO6ii1FYQzCpEbHiunDpCY7VWNVHU7t8o/AH+cTfGAy7fbPSP5RY20pjh3TXx25o0OMLoW1dd8Hc2HPuxP7EyQ12dNCMtOLP6qqf2jhrNq7Y1+V8uFo/CEav1aDWQwCnRUG3rCw+JLkTggTxf3R+/5Vc6tCR8Fv0IRJTehAWNFzty5abNVSPemMrmIroF9bbDX0hmiMDkVk09tDNho9gam2wMiBuaW4nJGj+DBJoe/+CNLQ+hkPVYDq+22MnqF7tKEJ08VjIEiCkQcjowgqNd5IXTzusgodKabTTvF7Y29UuGM02unJkVGMW/1Bmu5slNVmPQXTpMu02KLT2EFAJMgTNzwKSYtqL4vVYZBMdFIIonjpAqaraWkaQuegKly7gJ+xiAYZlFPATTl0Y5MPEwwJOmgmTSrbToXn0h3G0RGTjkiStNmBn7dxlUmgLWKRPMr0iGUDXDvC4LAV14oRdJsMamimNWGgG5PUd7jUm81UbvVJWB6RbjC6i+eargbI1kM2iOF0hUScAomsJh/YWOnioMSmBwaa7sMN3tzyYa6Z+//t1WNOgqN9aF9U7vrGTVy9YCFtFXE2xgbhGQd/J7x9KenlSPrdHNW+kg3RIbTEqkm7eaJBAQuP9YlBREKX4d3N1GWbGNzZzKCOZhJhnvXRetL5bpJuhlZStJAmFzps0rVky4KddXow/jvc4jKtTmKJt/DcWgq54ojGSrk40SZMw6UhtZKj1EaOzGwlXeiiKxoniSZVKBDxixefOAGJJp9IW4DZVbzQ9/563135cSHtn/apXDATd+J6zOeWk3h2//z6DCMaFRQvAl5DsfUCs3gxwygGOf4gTVCrCRMaXV1BYHe/fdXufc8EYPhRzEIlRmijVUC0YzTR9tFE2mrwK7sJ7Ayml8BpHY65sQBRB9MZTNixCW94iJ/oxo+2kq1+HT/aiukl0YSYXgqlFb7T0TMOVwGrUIHhx4hkGzC8OEYQwSgkCSKtKKKEdhY33oxVSBNEOkFbhFauuP3uYTjra9CbVtG44S/892FTuGzNK9SdfBHdY15HdfngRHBjmwjyzYRBCzqiiPhjSGU+gJ2ppp3/Ra9djtmmMTuKvcaVR6kug8piIBtWaHASqFgSd4iL6sphtPqYrQEqX0xvblGY3bvwShpH4w3T5E41UaOOxPTTxFpHY2UraR/1V4JNy7A2gdWkCGqgcFINoZMjuiiD84aBkQN3dPEWJSHEXjAwMgqVKwYXoaOLAU29RrnFQNLe+O6P8/3Br4XMaT7ZU0OwimOMmVvypB+3iKwyMPLvsAKx2576j3P4wn9KcHTQ2BeVW+jq5pJv389SfxxHG6uJWh6eHUErgxo6ycZjtOfj+JhEDRcvGiGwI9R0bUUbim4niWWEaMfE9w2ykSiW75O3Y8T9HFbBJZJ3cUwPEhZhxMTUIU1OLa4ZwVAa1zeJahdLB2QMB8d3iZOHEFzfwPEKqFxANmujYyYhBjV0YFrgRyw6KiuJuXkMz8ciIOq76FCjA4h3ZmikmpSVI+tFwDLIEyFRyBCzXQqpOGHExDAhH4li+y6mF1BZ6CQoQIeZZKM9GDdrEO3OQqB3eG87Rh4P6x0Dm92RMtqJBTmSbp6UznCyfp5J7mrq1nVjbVWEUcjVWujKADsTYnZTfOli065dnLalrWLgoDwD5YLZ2fOm8khxLClvpCaoKt5m0TaECU1+ckhhHFS/9gEeXNbARwobSH38dQKvCecNo9h6kge/WhPUACZYGxV+XfFXtZEt5jNMaMIo6LgutgzZxdaUMKoxcgqrSaHyEKY1fp1GeT0Xv564UgXFX/s6CoYXA6VRQQTTj2O6KexcLSpweu7zKJyO4ditKZyNg1CWgWc2QiyKQQIICPOtqC0h5LsgNZjQsOjc8iKbuteQMyChIsTtFH6hkw1Rh61OjCq3kzYnxeZ4LadtfJnaQohdOZJIqIgGmiCawvNzoMAONNowwI4SAsp0CL0MOteCaygKKqDb60CHLoYdBzuOpRxSdhpT2diFLIEVQRPSlW9ilRPyWvVo/jV8Mg/+x4f5woO/4op//j+OjNQXXyNjxzC8HEaynkiiAZ1pJtP2Ji35zbjaY1jFMUSHH0N+TAYdVYRWjtDKYXfXYwQ2mJpAZXA2pKDFJ8i1EvoFHCuJilfj13j4qW5IxAgdFwIf19xU7GPFZrSpwPBRORMVjRNUaJzcMCJdQzFWR9m48WU2GLAokabdcfjklrWMGn4kelQBMxfHaDLYunkthg6pOmoEQV1IIbkeI4jitDXgO13kq9fgxbfgRZoJVAc6rjELaSLZOqxCFaGZJ1uxHHOri71WYW9WhDFd7CfXoghqisdW0NMipJ1ii4zR0dPRXoHKK4wuSi1tYazY/yuoLLZCFVs5i+s0Oou3I+0NqvjdGlw8XsMUxVuMQTEADSo0wSBdHHFBU2zRsot9yrxhGiOIk2qcQsWS9xFGM7Qf/1e6By8FXew3Zm1W2OsUKlAE1cWg39xSvN0YpiCMFVsgzfae/m05iKwxcA8L0apnHN8AjGyxRZOg2DqLWZymjeI4ddoqdsEyMrrYepkqfg8Je+rLLt4SNTJvn3tCpzhN9TNIdRgp9oFTbrH1rHQesoGQnvfW9X8e0zbgv90aGlRqtFnMU1ABQVXxXIUBkbcMzBbAApVR6HjPPF/R8+ai4i3YNggq4bX3XcUlc760u6fPnZLgaB/aF5WbaWnnV5/4NKOaN9EWT9FqV9ARiZOxY1i6+M6rEIVp+wSBidKKgmHR5qQxCfEMC6U1cT9PoAzyVoSY79Jlx4j7BQpmBNe0yJkOOTtCwYiggY3JWnJ2FCMMSfp5Yl6BqkInHU4Sz7AIlEHSy5Jys7hmhIwdpTLfzZDsVpTWrE8NpiOSJFCKrkgC37AwCHECj0jPJ+a7xPwCbdEUTlDsuBsqRaCK7wLSKAqmTUusomwc5eIXzdQBTuBhhsUXZMb9PHbgE/PzjO3YQNLI0Bypplsl8AyTdidFJPRJFzIoNJb2SfpZBvutDKMJJ+8RD/Jk4w6mH2IZAQk/S9T1SLgFbNcv3kpRiohb7KRhFNiuT8vu0KqnE7ACs734pQ9TxZOz0VX8Fe2NLP6yDio13vCezr7lDT49rQc6Vqqa3pVj+FFUaBNrPRz7n6P5ccbgkusv46d/+D0XL91IxSkufrILL7oVL7YVq1CJ6SWKywU2qmCinQClbYzAQWsfQ0cxC3FCL4vppwmdAka3ibYLeMl2TD+JYabABaPDI7Q0ll+FmUmh7QDdXcBv88i7eUIAHeL7BTJ+N75pY5g2BbedznwHr6UH8WblCJqj1UR9j9FdjfimJms7GKGmYDpscapQJkSNAqalydRXM36oScqxWNPq05EJ8bVDVTrOYTUOLd0wJK4YU1PJy6vf5I3Nebp8RUchTtrtxFEFXMPBLhQw3BDPsSlEo1QUOsnjYAQhBSeKjllEIoqhVeCEBrnQxLZDdKGbpjYD31D4gUEYQGBFGJQIGN+Q5pwp05gyqo6IZeAFIXMffpQXX9pKCJhRjQ4h9A2qujtwfI/26hTJ2gQtbhJrczPHNb9OfaadihBcy8Ywo4RBDqOQwbWjbIynWZeqpyVWiXZM8pbDoEwLedPBCAK0obALHmO6t3C4jmKaUSi0EwkD4m43pp0kb8UwAw8vcNnomDxXWU9uSJJjR1dy1MjxjBs+imFpxX1PPMIra3O0FVIM9tvwKyyGVjnktKZpg8+QLa0M90M6Ymla6aJDJTixq4XJnqYyMRQjyOPrTrq9gM7Qp0OF1GqTIU4lVgNYlQaGa+MZTSjfwbAr0EGICqP4YTeuH8EMK8i6jdhxH0elMDwHVZnFr9xCmMjhxbYAimjnCEw3jTZ8tBGge+55+U47vtNGaBXfJhCaeexcLUYQITSzKB3BztegVUhgdxEaHpZbQWhnsfJVaC+PakqTWVnFExGfDSOSWCGcvjrDyYOiUO0SJj28ZDu+0442Cz1vAyigjQLaCFGhiQojGL5DaOVRoY3SCjtbX2y1tLKgIbTy+E4nvtOGF9vaczoMoXyU+R393ipFWD3Jel9mYPF2PzO/pyWy9xZyjrcfgKA43+woTit/aKD4moKebff+G0LP+4uL57J42VBeWmHnazDcYoe33rKEptsTpRV/NBl+lMDphNBAaQutAiw3hfIt2jZew7mfvZS9SYKjfWhfVO7mdetpPXcmRu69r9byjpdi57Rd/FXkNxSffnLHaLyhxX4uVpPCbFfFPgeVgIagttinAtNCGz09YhWgFVa+Gj/WgpWrwSpU4HQNh7yB1gFGS4pMk4cRAxX3MPwUylAEBQPdVUEuSJLx24j6JltRrLUtXkhBalglt3/6Uhoqk2itue0XP+OfL7RzZGcHdq6VtFMBdpT1NrSYAYEdBTyUB4PcgJxhkjV8HNOjEHUIPEWIQTaeJNAGaE3Ec7HCgJgOcG0TV1nEdQHXsckbUVQQkjB9nJhFIhHDjpjEYlGGRjU55YAySdshRzfUUpUaxOCqOkbUpFFKEYSa7rxfGpU8YhnYplEcrHJnI60fQlw/5K2t3aze0knB96iMBrRnPVLROI4dZczgNN0FH9NQ1KejJJz+W0izrk9b1sPQIVu68jR2uthmSF1FjLVNbWzt9jl6aCWWCklEo9RXp0juYF07E4YapSAIQizLxPVDOrIFXlqxgfXr3qQ120Q8FuGIEYfTUHcYpmnzxtq1NG1ZStOWHMu35LELXXjaxDdMLEPhWIrauENNVBFLDKUyniAMNK6bI9/dSg7N5mwXm7oCzEweO/SJ6wgdpoWhPTrNOAWdJBZ0MLyQoy4XUFVwiYeQcaK0hy4uPu22ImtoYqFD0i+QsWK02xYRM0dgBehgMIFTIBsxGJE2mDn1FN4/dTJOz3g9b61by69+9yQrNjZjqDwqdIgGBpbWuAa0h0niXkBEaYJAg1/AxQUnRo2dZIMVEGIT9T1CbdOiXA7LujToBIOzOawwIK01lflutBnBjkYwqgtYVowQyGcN/FwMHWvD7IpghSZGLKSgtqBdj5TjEKpq8DKoeAEjjIOpCL0QMwgg5YK2MQ2HQOcBH8NWKNNB+3l0qAgJUZ6JacVReRM/BzgedtIgsDO4fhblOliFaojkCHIOuXwW3CjNBOS8LvKGJkUEOwhJmXGsSBQsl4Jr4qOJmpocUQg9HBRO4GMrjfOVMzlhwinv/svUDwmO3sF9993HXXfdRWNjI8ceeyz33HMPJ5544i4tuy8q1/d9/vXQGVjLN2Nt6WkWzRU7pSqft380qGKnRRUCIZgtxabJMFFsUtZmsXlZUQx6jC6KkX1PlK/cnubofLH5ctum0jBebKbtfWyasPiro/SEC8X/BzU9T6B0qNJj0Ubu7XVpo9g0re2ej1Ns3i4Nb6LfLgO6mPcdNdsCpRcg6ljv+oqBSpjoWVeh+K/Z2XMbKNaTPtrTJJ8opg0TPR2MM8WOxFjFtDrydjoollU7DoZ2CKIaw46ijASh44HhY3fVoZprKXTbFDyLiAVWKoOKFgi60nidCVwzi+9abCrYNAcVxFRAXEXosH3srIlhWGy1fVosjTJ9IoZH0lHYVTUMGlTHyJFjCfMFNnS4pM0AAxMrFiEaizPp8DFUJ6PEHRsv0NimgWHsuP6EEG/TWhfHTjuAeZ6HaZp0dHTQ3NxMVsUwTZP2zg7M0MewItQkHeKJJIEGy3boymRobu2kMhEhaigCzyenTGIxh2y+heb2LrI5g0rbJp8tYPjtdHd3kK5LoQKbrjBGW2cnUXyqUgaut5UwB54dIWJrfM8h40cwtU91XYwKpxK6TXQsgh2P01YwidsGqahmUHUlw2qqMQyjpzw+nu8TooqDxRoKrTWul0WHJsq0cAsFsBxMQ5FwLCK7+T7MXbGvg6O915ljP3j00UeZM2cODz74IFOnTuXuu+9m5syZLF++nMGDB++XPFmWRaM6l3BQljDhEwbdeHZFTxOkJnRDDMvFylcRtUO03Y2vFBBF6QIeHhgRHAJMQ1EIQ0JlEBgeEcMgD9i+Rdx20WYeZRUwdATlQSTr4UcNVERj2SFBGAFlEKoCOgAvTII2sJSL4Qd4yiCnTQJMrNAgRoBTuQWVT2B7EZQFgVJor9iEGlg+Rj4Gpll8Q7QOUUaeUIFjGBjKQAUaw+pGRTKYuQTKCjAM8DX4lkEYGAQhGMosBmz5JO2FCCpwiCoPHfEwzQJYHpYBvo7gu1F8H7K6gLYcjHwCFw8z4uJWxFBmgB10k8/G6A6j2IU42gvp1D629jF9h4JpFF8wYSiMiAWRkGQ8TrJqKEdNG8Pxx4wlkUjQ3t5Oy8YNRC2bWG0tiWSSQqFAMpnENPdth2hnYDSoCLHXHOiBEYBtFx/Kqaqqoqqq/AndnYyeXptm3MjtX75cNGSv5e3dsG0L294+dIhGy16gnTw43xBR7qBuOZo6dSonnHAC9957LwBhGDJ8+HA+97nPccMNN7zj8vs68jwY7a1fYlprtNYEQYBhGLsVWPQekgfDiU8IIcR7b19fvw/a36qu67JkyRJmzHj7XUGGYTBjxgwWLVrU7zKFQoHOzs4+H9HX3gpIlFIYhoFt27vd4qKUksBICCHEfnPQBkdbt24lCALq6voOWV9XV0djY2O/y9x+++1UVFSUPsOH9/9eKyGEEEIMXAdtcPRuzJ07l46OjtJn/fr1+ztLQgghhDjAHLQdsmtrazFNk6ampj7Tm5qaqK+v73cZx3FKj24KIYQQQvTnoG05ikQiTJ48mQULFpSmhWHIggULmDZt2n7MmRBCCCEOZgdtyxHAnDlzuOyyy5gyZQonnngid999N5lMhtmzZ+/S8r1PRUnHbCGEEOLg0Xvd3lcP3B/UwdGFF17Ili1buPnmm2lsbGTSpEk89dRT23XS3pGuri4A6ZgthBBCHIS6urqoqKjY6+s9qMc52lNhGLJp0yZSqdQB+eh4Z2cnw4cPZ/369QN2HKaBXgcDvfwgdTDQyw9SBwO9/LB9HWit6erqYsiQIaXRu/emg7rlaE8ZhsGwYcP2dzbeUTqdHrBfiF4DvQ4GevlB6mCglx+kDgZ6+aFvHeyLFqNeB22HbCGEEEKIfUGCIyGEEEKIMhIcHcAcx2HevHkDemymgV4HA738IHUw0MsPUgcDvfzw3tfBgO6QLYQQQgixLWk5EkIIIYQoI8GREEIIIUQZCY6EEEIIIcpIcCSEEEIIUUaCIyGEEEKIMhIcCSGEEEKUkeBIiAPET3/6U5RS/X5uuOGGfbLNhQsXcsstt9De3r5P1r8neutj8eLF+zsr79r999/PT3/60/2dDSHEbhrQ71YT4kB02223MXr06D7Txo8fv0+2tXDhQm699VYuv/xyKisr98k2BrL777+f2tpaLr/88v2dFSHEbpDgSIgDzNlnn82UKVP2dzb2SCaTIZFI7O9s7DfZbJZ4PL6/syGEeJfktpoQB5k//OEPvO997yORSJBKpTjnnHN49dVX+6R5+eWXufzyyxkzZgzRaJT6+no+/elP09LSUkpzyy23cP311wMwevTo0i28NWvWsGbNGpRS/d4SUkpxyy239FmPUorXXnuNT3ziE1RVVXHqqaeW5v/sZz9j8uTJxGIxqqurueiii1i/fv27Kvvll19OMplk3bp1fOhDHyKZTDJ06FDuu+8+AF555RU+8IEPkEgkGDlyJA8//HCf5Xtv1T377LP8+7//OzU1NaTTaS699FLa2tq2297999/PMcccg+M4DBkyhGuuuWa7W5Cnn34648ePZ8mSJZx22mnE43G++tWvMmrUKF599VX++te/lur29NNPB6C1tZUvfelLTJgwgWQySTqd5uyzz+all17qs+5nnnkGpRS//OUv+eY3v8mwYcOIRqOcccYZrFy5crv8Pvfcc3zwgx+kqqqKRCLBxIkT+f73v98nzRtvvMHHP/5xqquriUajTJkyhd/+9rd90niex6233srYsWOJRqPU1NRw6qmnMn/+/F3aT0Ic7KTlSIgDTEdHB1u3bu0zrba2FoD//d//5bLLLmPmzJl8+9vfJpvN8sADD3DqqaeydOlSRo0aBcD8+fN56623mD17NvX19bz66qs89NBDvPrqq/zzn/9EKcV5553Hm2++yS9+8Qu+973vlbYxaNAgtmzZstv5Pv/88xk7dizf+ta36H0r0Te/+U1uuukmLrjgAq688kq2bNnCPffcw2mnncbSpUvf1a28IAg4++yzOe2007jzzjv5+c9/zrXXXksikeBrX/sal1xyCeeddx4PPvggl156KdOmTdvuNuW1115LZWUlt9xyC8uXL+eBBx5g7dq1pWAEikHfrbfeyowZM/jsZz9bSvf888/zj3/8A9u2S+traWnh7LPP5qKLLuKTn/wkdXV1nH766Xzuc58jmUzyta99DYC6ujoA3nrrLZ544gnOP/98Ro8eTVNTEz/84Q+ZPn06r732GkOGDOmT3zvuuAPDMPjSl75ER0cHd955J5dccgnPPfdcKc38+fP50Ic+RENDA9dddx319fW8/vrr/O53v+O6664D4NVXX+WUU05h6NCh3HDDDSQSCX75y18ya9Ys/u///o+PfvSjpbLffvvtXHnllZx44ol0dnayePFiXnjhBf7t3/5tt/eZEAcdLYQ4IPzkJz/RQL8frbXu6urSlZWV+qqrruqzXGNjo66oqOgzPZvNbrf+X/ziFxrQzz77bGnaXXfdpQG9evXqPmlXr16tAf2Tn/xku/UAet68eaX/z5s3TwP64osv7pNuzZo12jRN/c1vfrPP9FdeeUVblrXd9B3Vx/PPP1+adtlll2lAf+tb3ypNa2tr07FYTCul9COPPFKa/sYbb2yX1951Tp48WbuuW5p+5513akD/5je/0Vpr3dzcrCORiD7zzDN1EASldPfee68G9I9//OPStOnTp2tAP/jgg9uV4ZhjjtHTp0/fbno+n++zXq2Lde44jr7ttttK055++mkN6KOOOkoXCoXS9O9///sa0K+88orWWmvf9/Xo0aP1yJEjdVtbW5/1hmFY+vuMM87QEyZM0Pl8vs/8k08+WY8dO7Y07dhjj9XnnHPOdvkWYqCQ22pCHGDuu+8+5s+f3+cDxZaB9vZ2Lr74YrZu3Vr6mKbJ1KlTefrpp0vriMVipb/z+Txbt27lpJNOAuCFF17YJ/n+zGc+0+f/jz/+OGEYcsEFF/TJb319PWPHju2T39115ZVXlv6urKzkyCOPJJFIcMEFF5SmH3nkkVRWVvLWW29tt/zVV1/dp+Xns5/9LJZl8eSTTwLw5z//Gdd1+fznP49hvH2avOqqq0in0/z+97/vsz7HcZg9e/Yu599xnNJ6gyCgpaWFZDLJkUce2e/+mT17NpFIpPT/973vfQClsi1dupTVq1fz+c9/frvWuN6WsNbWVv7yl79wwQUX0NXVVdofLS0tzJw5kxUrVrBx40agWKevvvoqK1as2OUyCXEokdtqQhxgTjzxxH47ZPdeqD7wgQ/0u1w6nS793drayq233sojjzxCc3Nzn3QdHR17Mbdv2/bW1YoVK9BaM3bs2H7TlwcnuyMajTJo0KA+0yoqKhg2bFgpECif3l9fom3zlEwmaWhoYM2aNQCsXbsWKAZY5SKRCGPGjCnN7zV06NA+wcs7CcOQ73//+9x///2sXr2aIAhK82pqarZLP2LEiD7/r6qqAiiVbdWqVcDOn2pcuXIlWmtuuukmbrrppn7TNDc3M3ToUG677TbOPfdcjjjiCMaPH89ZZ53Fpz71KSZOnLjLZRTiYCbBkRAHiTAMgWK/o/r6+u3mW9bbX+cLLriAhQsXcv311zNp0iSSySRhGHLWWWeV1rMz2wYZvcov4tsqb63qza9Sij/84Q+Yprld+mQy+Y756E9/69rZdN3T/2lf2rbs7+Rb3/oWN910E5/+9Kf5+te/TnV1NYZh8PnPf77f/bM3yta73i996UvMnDmz3zSHH344AKeddhqrVq3iN7/5DX/605/4r//6L773ve/x4IMP9mm1E+JQJcGREAeJww47DIDBgwczY8aMHaZra2tjwYIF3Hrrrdx8882l6f3dItlRENTbMrHtk1nbtpi8U3611owePZojjjhil5d7L6xYsYL3v//9pf93d3ezefNmPvjBDwIwcuRIAJYvX86YMWNK6VzXZfXq1Tut/3I7qt9f/epXvP/97+dHP/pRn+nt7e2ljvG7o/fYWLZs2Q7z1lsO27Z3Kf/V1dXMnj2b2bNn093dzWmnncYtt9wiwZEYEKTPkRAHiZkzZ5JOp/nWt76F53nbze99wqy3lWHbVoW77757u2V6xyLaNghKp9PU1tby7LPP9pl+//3373J+zzvvPEzT5NZbb90uL1rrPsMKvNceeuihPnX4wAMP4Ps+Z599NgAzZswgEonwgx/8oE/ef/SjH9HR0cE555yzS9tJJBL9jj5umuZ2dfLYY4+V+vzsruOPP57Ro0dz9913b7e93u0MHjyY008/nR/+8Ids3rx5u3WUP6G47b5JJpMcfvjhFAqFd5U/IQ420nIkxEEinU7zwAMP8KlPfYrjjz+eiy66iEGDBrFu3Tp+//vfc8opp3DvvfeSTqdLj7l7nsfQoUP505/+xOrVq7db5+TJkwH42te+xkUXXYRt23z4wx8mkUhw5ZVXcscdd3DllVcyZcoUnn32Wd58881dzu9hhx3GN77xDebOncuaNWuYNWsWqVSK1atX8+tf/5qrr76aL33pS3utfnaH67qcccYZXHDBBSxfvpz777+fU089lY985CNAcTiDuXPncuutt3LWWWfxkY98pJTuhBNO4JOf/OQubWfy5Mk88MADfOMb3+Dwww9n8ODBfOADH+BDH/oQt912G7Nnz+bkk0/mlVde4ec//3mfVqrdYRgGDzzwAB/+8IeZNGkSs2fPpqGhgTfeeINXX32VP/7xj0Cxs/+pp57KhAkTuOqqqxgzZgxNTU0sWrSIDRs2lMZZOvroozn99NOZPHky1dXVLF68mF/96ldce+217yp/Qhx09tNTckKIbfT36Hp/nn76aT1z5kxdUVGho9GoPuyww/Tll1+uFy9eXEqzYcMG/dGPflRXVlbqiooKff755+tNmzZt92i71lp//etf10OHDtWGYfR5rD+bzeorrrhCV1RU6FQqpS+44ALd3Ny8w0f5t2zZ0m9+/+///k+feuqpOpFI6EQioceNG6evueYavXz58t2uj8suu0wnEont0k6fPl0fc8wx200fOXJkn0fSe9f517/+VV999dW6qqpKJ5NJfckll+iWlpbtlr/33nv1uHHjtG3buq6uTn/2s5/d7lH5HW1b6+IwC+ecc45OpVIaKD3Wn8/n9Re/+EXd0NCgY7GYPuWUU/SiRYv09OnT+zz63/so/2OPPdZnvTsaauHvf/+7/rd/+zedSqV0IpHQEydO1Pfcc0+fNKtWrdKXXnqprq+v17Zt66FDh+oPfehD+le/+lUpzTe+8Q194okn6srKSh2LxfS4ceP0N7/5zT7DHwhxKFNavwe9FYUQ4gDw05/+lNmzZ/P8888f9K9oEULsO9LnSAghhBCijARHQgghhBBlJDgSQgghhCgjfY6EEEIIIcpIy5EQQgghRJkBPc5RGIZs2rSJVCq1w5FshRBCCHFg0VrT1dXFkCFD+rwcem8Z0MHRpk2bGD58+P7OhhBCCCHehfXr1zNs2LC9vt4BHRylUimgWLnlbzQXQgghxIGrs7OT4cOHl67je9uADo56b6Wl02kJjoQQQoiDzL7qEiMdsoUQQgghykhwJIQQQghRRoIjIYQQQogyEhwJIYQQQpSR4EgIIYQQoowER0IIIYQQZSQ4EkIIIYQoI8GREEIIIUQZCY6EEEIIIcpIcCSEEEIIUUaCIyGEEEKIMhIcCSGEEEKUkeBICCGEEKKMBEdCCCGEEGX2SnB03333MWrUKKLRKFOnTuVf//rXTtM/9thjjBs3jmg0yoQJE3jyySf7zH/88cc588wzqampQSnFiy++uN06Tj/9dJRSfT6f+cxn9kZxhBBCCDGA7XFw9OijjzJnzhzmzZvHCy+8wLHHHsvMmTNpbm7uN/3ChQu5+OKLueKKK1i6dCmzZs1i1qxZLFu2rJQmk8lw6qmn8u1vf3un277qqqvYvHlz6XPnnXfuaXGEEEIIMcAprbXekxVMnTqVE044gXvvvReAMAwZPnw4n/vc57jhhhu2S3/hhReSyWT43e9+V5p20kknMWnSJB588ME+adesWcPo0aNZunQpkyZN6jPv9NNPZ9KkSdx9993vOu+dnZ1UVFTQ0dFBOp1+1+sRQgghxHtnX1+/96jlyHVdlixZwowZM95eoWEwY8YMFi1a1O8yixYt6pMeYObMmTtMvzM///nPqa2tZfz48cydO5dsNrvT9IVCgc7Ozj4fIYQQQohy1p4svHXrVoIgoK6urs/0uro63njjjX6XaWxs7Dd9Y2Pjbm37E5/4BCNHjmTIkCG8/PLLfOUrX2H58uU8/vjjO1zm9ttv59Zbb92t7QghhBBiYNmj4Gh/uvrqq0t/T5gwgYaGBs444wxWrVrFYYcd1u8yc+fOZc6cOaX/d3Z2Mnz48H2eVyGEEEIcPPYoOKqtrcU0TZqamvpMb2pqor6+vt9l6uvrdyv9rpo6dSoAK1eu3GFw5DgOjuPs0XaEEEIIcWjboz5HkUiEyZMns2DBgtK0MAxZsGAB06ZN63eZadOm9UkPMH/+/B2m31W9j/s3NDTs0XqEEEIIMbDt8W21OXPmcNlllzFlyhROPPFE7r77bjKZDLNnzwbg0ksvZejQodx+++0AXHfddUyfPp3vfOc7nHPOOTzyyCMsXryYhx56qLTO1tZW1q1bx6ZNmwBYvnw5UGx1qq+vZ9WqVTz88MN88IMfpKamhpdffpkvfOELnHbaaUycOHFPiySEEEKIAWyPg6MLL7yQLVu2cPPNN9PY2MikSZN46qmnSp2u161bh2G83UB18skn8/DDD3PjjTfy1a9+lbFjx/LEE08wfvz4Uprf/va3peAK4KKLLgJg3rx53HLLLUQiEf785z+XArHhw4fzsY99jBtvvHFPiyOEEEKIAW6Pxzk6mMk4R0IIIcTB54Ae50gIIYQQ4lAjwZEQQgghRBkJjoQQQgghykhwJIQQQghRRoIjIYQQQogyEhwJIYQQQpSR4EgIIYQQoowER0IIIYQQZSQ4EkIIIYQoI8GREEIIIUQZCY6EEEIIIcpIcCSEEEIIUUaCIyGEEEKIMhIcCSGEEEKUkeBICCGEEKKMBEdCCCGEEGUkOBJCCCGEKCPBkRBCCCFEGQmOhBBCCCHKSHAkhBBCCFFGgiMhhBBCiDISHAkhhBBClJHgSAghhBCijARHQgghhBBlJDgSQgghhCgjwZEQQgghRBkJjoQQQgghykhwJIQQQghRRoIjIYQQQogyEhwJIYQQQpSR4EgIIYQQoowER0IIIYQQZSQ4EkII8Z4adcPv93cWhNgpCY6EEEIIIcpIcCSEEEIIUUaCIyGEEEKIMhIcCSGEEEKUkeBICCGEEKLMXgmO7rvvPkaNGkU0GmXq1Kn861//2mn6xx57jHHjxhGNRpkwYQJPPvlkn/mPP/44Z555JjU1NSilePHFF7dbRz6f55prrqGmpoZkMsnHPvYxmpqa9kZxhBBCCDGA7XFw9OijjzJnzhzmzZvHCy+8wLHHHsvMmTNpbm7uN/3ChQu5+OKLueKKK1i6dCmzZs1i1qxZLFu2rJQmk8lw6qmn8u1vf3uH2/3CF77A//t//4/HHnuMv/71r2zatInzzjtvT4sjhBBCiAFOaa31nqxg6tSpnHDCCdx7770AhGHI8OHD+dznPscNN9ywXfoLL7yQTCbD7373u9K0k046iUmTJvHggw/2SbtmzRpGjx7N0qVLmTRpUml6R0cHgwYN4uGHH+bjH/84AG+88QZHHXUUixYt4qSTTtqlvHd2dlJRUUFHRwfpdHp3iy6EEOJdGHXD71lzxzn7OxviILavr9971HLkui5LlixhxowZb6/QMJgxYwaLFi3qd5lFixb1SQ8wc+bMHabvz5IlS/A8r896xo0bx4gRI3a6nkKhQGdnZ5+PEEIIIUS5PQqOtm7dShAE1NXV9ZleV1dHY2Njv8s0NjbuVvodrSMSiVBZWblb67n99tupqKgofYYPH77L2xRCCCHEwDCgnlabO3cuHR0dpc/69ev3d5aEEEIIcYCx9mTh2tpaTNPc7imxpqYm6uvr+12mvr5+t9LvaB2u69Le3t6n9eid1uM4Do7j7PJ2hBBCCDHw7FHLUSQSYfLkySxYsKA0LQxDFixYwLRp0/pdZtq0aX3SA8yfP3+H6fszefJkbNvus57ly5ezbt263VqPEEIIIcS29qjlCGDOnDlcdtllTJkyhRNPPJG7776bTCbD7NmzAbj00ksZOnQot99+OwDXXXcd06dP5zvf+Q7nnHMOjzzyCIsXL+ahhx4qrbO1tZV169axadMmoBj4QLHFqL6+noqKCq644grmzJlDdXU16XSaz33uc0ybNm2Xn1QTQggh9iZ5Cu/QscfB0YUXXsiWLVu4+eabaWxsZNKkSTz11FOlTtfr1q3DMN5uoDr55JN5+OGHufHGG/nqV7/K2LFjeeKJJxg/fnwpzW9/+9tScAVw0UUXATBv3jxuueUWAL73ve9hGAYf+9jHKBQKzJw5k/vvv39PiyOEEEKIAW6Pxzk6mMk4R0II8d47VFtYDtVyHYgO6HGOhBC7ZtQNv9/fWRjwZB8IIXaVBEdCCCGEEGUkOBJCCCGEKCPBkRBCCCFEGQmOhBBCCCHKSHAkhBBCCFFGgiMhhBBCiDISHAkhhBBClJHgSAgh3oGMkSTEwCLBkRBCCCFEGQmOhBBCCCHKSHAkhBBCCFFGgiMhhBBCiDISHAkhhBBClJHgSAghhBCijARHQggh9jkZDkEcTCQ4EkIIIfaABH6HHgmOhBBCCCHKSHAkhBBCCFFGgiMhhBBCiDISHAkhhBBClJHgSAghhBCijARHQhyg5AkYIYTYPyQ4EkIIIYQoI8GREEIIIUQZCY6EEEIIIcpIcCSEEEIIUUaCIyGEEEKIMhIcCSGEEEKUkeBICCGEEKKMBEdCCLETMt6UEAOPBEdCCDFASeAnRP8kOBJCCCGEKCPBkRBCCCFEGQmOhBBCCCHKSHAkhBBCCFFGgiMhhBBCiDISHAkhhBBClNkrwdF9993HqFGjiEajTJ06lX/96187Tf/YY48xbtw4otEoEyZM4Mknn+wzX2vNzTffTENDA7FYjBkzZrBixYo+aUaNGoVSqs/njjvu2BvFEUIIIcQAtsfB0aOPPsqcOXOYN28eL7zwAsceeywzZ86kubm53/QLFy7k4osv5oorrmDp0qXMmjWLWbNmsWzZslKaO++8kx/84Ac8+OCDPPfccyQSCWbOnEk+n++zrttuu43NmzeXPp/73Of2tDhCCCGEGOD2ODj67ne/y1VXXcXs2bM5+uijefDBB4nH4/z4xz/uN/33v/99zjrrLK6//nqOOuoovv71r3P88cdz7733AsVWo7vvvpsbb7yRc889l4kTJ/I///M/bNq0iSeeeKLPulKpFPX19aVPIpHY0+IIIcQek8EVBw7Z14emPQqOXNdlyZIlzJgx4+0VGgYzZsxg0aJF/S6zaNGiPukBZs6cWUq/evVqGhsb+6SpqKhg6tSp263zjjvuoKamhuOOO4677roL3/d3mt9CoUBnZ2efjxBCCCFEOWtPFt66dStBEFBXV9dnel1dHW+88Ua/yzQ2NvabvrGxsTS/d9qO0gD853/+J8cffzzV1dUsXLiQuXPnsnnzZr773e/uML+33347t956664XUAghhBADzkH7tNqcOXM4/fTTmThxIp/5zGf4zne+wz333EOhUNjhMnPnzqWjo6P0Wb9+/XuYYyHenXdqtpdmfSGE2Lv2KDiqra3FNE2ampr6TG9qaqK+vr7fZerr63eavvff3VknwNSpU/F9nzVr1uwwjeM4pNPpPh8hhBBCiHJ7FBxFIhEmT57MggULStPCMGTBggVMmzat32WmTZvWJz3A/PnzS+lHjx5NfX19nzSdnZ0899xzO1wnwIsvvohhGAwePHhPiiSEEEKIAW6P+hxB8fbWZZddxpQpUzjxxBO5++67yWQyzJ49G4BLL72UoUOHcvvttwNw3XXXMX36dL7zne9wzjnn8Mgjj7B48WIeeughAJRSfP7zn+cb3/gGY8eOZfTo0dx0000MGTKEWbNmAcVO3c899xzvf//7SaVSLFq0iC984Qt88pOfpKqqak+LJIQQQogBbI+DowsvvJAtW7Zw880309jYyKRJk3jqqadKHarXrVuHYbzdQHXyySfz8MMPc+ONN/LVr36VsWPH8sQTTzB+/PhSmi9/+ctkMhmuvvpq2tvbOfXUU3nqqaeIRqNA8fbYI488wi233EKhUGD06NF84QtfYM6cOXtaHCGEEPvIqBt+z5o7ztnf2RDiHe1xcARw7bXXcu211/Y775lnntlu2vnnn8/555+/w/Uppbjtttu47bbb+p1//PHH889//vNd5VUIIYQQYmcO2qfVhBBCvDN5mlGI3SfBkRBCCCFEGQmOhBBCCCHKSHAkBHLrQQghxNskOBJCCCGEKCPBkRBCCCFEGQmOhBBCCCHKSHAkhBBC7CHpt3hokeBICCGEEKKMBEdCCDEASUuHEDsmwZEQQgghRBkJjoQQQgghykhwJIQQYkCTW4xiWxIcCSGEeM9IICIOBhIcCSGE2CEJZsRAJMGREEJsQwICIQY2CY6EEEIIIcpIcCSEEOI9J61z4kAmwZEQQgghRBkJjoQQQgghykhwJIQQQghRRoIjIfaxPelbIf0yxIFm1A2/l+NSHPIkOBJCiP1soAYbA7Xc4sAnwZEQQogDxsEQMB0MeRR7RoIjIYQQ70gCAjGQSHAkhBiQ5GI/MMl+F7tCgiMhehyKJ81DsUxCCLGvSXAkhHhXJPASQhyqJDgSQgghhCgjwdFBRn6tD0yy38XuejfHzO4sI8fk7pH6OrhIcCSEEGKXHEoX+EOpLGLvk+BICHHAea8uXHKBfNverouDtW4P1nyLvUuCIyGE2AfkIiveDTluDgwSHAkhxAByIF583+s8HYh1cCAbiPUlwZEQB4lD7QR1qJVnZ3ZW1n1ZDwOpjsu9287oA7W+xPYkONpH5Et2cNtf+29/bFeO1f1nIB1nQhxMJDjaD/b0xCQntgPbvn6EeqCSOtp1Ulf7l9R/0cFcDxIcHUT25oF2MB+0e8Ouln+g19O+NpD3w4FSpv7y8W5uMR0o5dmXBkIZRdFeCY7uu+8+Ro0aRTQaZerUqfzrX//aafrHHnuMcePGEY1GmTBhAk8++WSf+Vprbr75ZhoaGojFYsyYMYMVK1b0SdPa2soll1xCOp2msrKSK664gu7u7r1RHNFj2xPB3jgxyCPaB64dXRClJWx7ezJY4v7qf/ReOhDKsb9vWe7Ofj4Q6gvku15uj4OjRx99lDlz5jBv3jxeeOEFjj32WGbOnElzc3O/6RcuXMjFF1/MFVdcwdKlS5k1axazZs1i2bJlpTR33nknP/jBD3jwwQd57rnnSCQSzJw5k3w+X0pzySWX8OqrrzJ//nx+97vf8eyzz3L11VfvaXEOKPvzl9t7eetvX3+5ytd/MHyRD4Y8Hgx6g729FfDtbNmDZZ8dzPl8p7wfqGWTDvcHpz0Ojr773e9y1VVXMXv2bI4++mgefPBB4vE4P/7xj/tN//3vf5+zzjqL66+/nqOOOoqvf/3rHH/88dx7771AsdXo7rvv5sYbb+Tcc89l4sSJ/M///A+bNm3iiSeeAOD111/nqaee4r/+67+YOnUqp556Kvfccw+PPPIImzZt2tMiiV0wEAOaQ6Gv2I7y8G5vbx0I+2lvt2geCPvpUHGgfGf29IfmvszHwRr0HeqsPVnYdV2WLFnC3LlzS9MMw2DGjBksWrSo32UWLVrEnDlz+kybOXNmKfBZvXo1jY2NzJgxozS/oqKCqVOnsmjRIi666CIWLVpEZWUlU6ZMKaWZMWMGhmHw3HPP8dGPfrTfbRcKBQqFQun/HR0dAHR2du5ewXdBWMjucL07mjd+3h9ZduvMHaYLC9nS3/0t35u+fD3brnNH6x4/748ApbS929p2+73/31n5djY/LGQZ8YXHdlrOnW1rR+XZ2fZ7t9mrs7Nzh3W77Tbfqcz91fXu7Lfeei/P17Z/l9t2/+4oX+XzesveX962zV95HrctT29ey+ujPE/bztt2P/eXt/Jl+sv3zo7HbcvfX72Ul2nbfflO88qPmR2Ve9s89Fe2nR1b267/nb5Xu6L8mNpR3vubv6M87yi/wHb7qPxY2N1tb7vsrnz/ypUfM/3V+bbz3ilv/e3fHZ0XdqS/+us9rnZ0PPV3LO3o/NffeXxXzo/92fY7/E7Td5SHXZ23p3rXq7XeJ+tH74GNGzdqQC9cuLDP9Ouvv16feOKJ/S5j27Z++OGH+0y777779ODBg7XWWv/jH//QgN60aVOfNOeff76+4IILtNZaf/Ob39RHHHHEduseNGiQvv/++3eY33nz5mlAPvKRj3zkIx/5HAKf9evXv3Ow8i7sUcvRwWbu3Ll9Wq3CMKS1tZWamhqUUvsxZ/3r7Oxk+PDhrF+/nnQ6vb+zs18M9DoY6OUHqYOBXn6QOhjo5Yft60BrTVdXF0OGDNkn29uj4Ki2thbTNGlqauozvampifr6+n6Xqa+v32n63n+bmppoaGjok2bSpEmlNNt2+PZ9n9bW1h1uF8BxHBzH6TOtsrJyxwU8QKTT6QH7heg10OtgoJcfpA4GevlB6mCglx/61kFFRcU+284edciORCJMnjyZBQsWlKaFYciCBQuYNm1av8tMmzatT3qA+fPnl9KPHj2a+vr6Pmk6Ozt57rnnSmmmTZtGe3s7S5YsKaX5y1/+QhiGTJ06dU+KJIQQQogBbo9vq82ZM4fLLruMKVOmcOKJJ3L33XeTyWSYPXs2AJdeeilDhw7l9ttvB+C6665j+vTpfOc73+Gcc87hkUceYfHixTz00EMAKKX4/Oc/zze+8Q3Gjh3L6NGjuemmmxgyZAizZs0C4KijjuKss87iqquu4sEHH8TzPK699louuuiifdbEJoQQQoiBYY+DowsvvJAtW7Zw880309jYyKRJk3jqqaeoq6sDYN26dRjG2w1UJ598Mg8//DA33ngjX/3qVxk7dixPPPEE48ePL6X58pe/TCaT4eqrr6a9vZ1TTz2Vp556img0Wkrz85//nGuvvZYzzjgDwzD42Mc+xg9+8IM9Lc4BxXEc5s2bt92twIFkoNfBQC8/SB0M9PKD1MFALz+893WgtN5Xz8EJIYQQQhx85N1qQgghhBBlJDgSQgghhCgjwZEQQgghRBkJjoQQQgghykhwJIQQQghRRoKj99jtt9/OCSecQCqVYvDgwcyaNYvly5f3SXP66aejlOrz+cxnPtMnzbp16zjnnHOIx+MMHjyY66+/Ht/338uivGu33HLLduUbN25caX4+n+eaa66hpqaGZDLJxz72se1GVT+Yyz9q1Kjtyq+U4pprrgEOzf3/7LPP8uEPf5ghQ4aglCq9aLqX1pqbb76ZhoYGYrEYM2bMYMWKFX3StLa2cskll5BOp6msrOSKK66gu7u7T5qXX36Z973vfUSjUYYPH86dd965r4u2S3ZWfs/z+MpXvsKECRNIJBIMGTKESy+9lE2bNvVZR3/HzR133NEnzYFafnjnY+Dyyy/frnxnnXVWnzSH6jEA9HtOUEpx1113ldIc7MfArlz/9tb5/5lnnuH444/HcRwOP/xwfvrTn+5eZvfJG9vEDs2cOVP/5Cc/0cuWLdMvvvii/uAHP6hHjBihu7u7S2mmT5+ur7rqKr158+bSp6OjozTf9309fvx4PWPGDL106VL95JNP6traWj137tz9UaTdNm/ePH3MMcf0Kd+WLVtK8z/zmc/o4cOH6wULFujFixfrk046SZ988sml+Qd7+Zubm/uUff78+RrQTz/9tNb60Nz/Tz75pP7a176mH3/8cQ3oX//6133m33HHHbqiokI/8cQT+qWXXtIf+chH9OjRo3UulyulOeuss/Sxxx6r//nPf+q//e1v+vDDD9cXX3xxaX5HR4euq6vTl1xyiV62bJn+xS9+oWOxmP7hD3/4XhVzh3ZW/vb2dj1jxgz96KOP6jfeeEMvWrRIn3jiiXry5Ml91jFy5Eh922239Tkuys8bB3L5tX7nY+Cyyy7TZ511Vp/ytba29klzqB4DWus+5d68ebP+8Y9/rJVSetWqVaU0B/sxsCvXv71x/n/rrbd0PB7Xc+bM0a+99pq+5557tGma+qmnntrlvEpwtJ81NzdrQP/1r38tTZs+fbq+7rrrdrjMk08+qQ3D0I2NjaVpDzzwgE6n07pQKOzL7O4V8+bN08cee2y/89rb27Vt2/qxxx4rTXv99dc1oBctWqS1PvjLv63rrrtOH3bYYToMQ631ob//t70whGGo6+vr9V133VWa1t7erh3H0b/4xS+01lq/9tprGtDPP/98Kc0f/vAHrZTSGzdu1Fprff/99+uqqqo+dfCVr3xFH3nkkfu4RLunvwvjtv71r39pQK9du7Y0beTIkfp73/veDpc5WMqvdf91cNlll+lzzz13h8sMtGPg3HPP1R/4wAf6TDuUjgGtt7/+7a3z/5e//GV9zDHH9NnWhRdeqGfOnLnLeZPbavtZR0cHANXV1X2m//znP6e2tpbx48czd+5cstlsad6iRYuYMGFCaRRygJkzZ9LZ2cmrr7763mR8D61YsYIhQ4YwZswYLrnkEtatWwfAkiVL8DyPGTNmlNKOGzeOESNGsGjRIuDQKH8v13X52c9+xqc//WmUUqXph/r+L7d69WoaGxv77POKigqmTp3aZ59XVlYyZcqUUpoZM2ZgGAbPPfdcKc1pp51GJBIppZk5cybLly+nra3tPSrN3tHR0YFSarsXY99xxx3U1NRw3HHHcdddd/W5lXAolP+ZZ55h8ODBHHnkkXz2s5+lpaWlNG8gHQNNTU38/ve/54orrthu3qF0DGx7/dtb5/9Fixb1WUdvmt517Io9fn2IePfCMOTzn/88p5xySp/Xp3ziE59g5MiRDBkyhJdffpmvfOUrLF++nMcffxyAxsbGPgcGUPp/Y2Pje1eAd2nq1Kn89Kc/5cgjj2Tz5s3ceuutvO9972PZsmU0NjYSiUS2uyjU1dWVynawl7/cE088QXt7O5dffnlp2qG+/7fVm+f+ylS+zwcPHtxnvmVZVFdX90kzevTo7dbRO6+qqmqf5H9vy+fzfOUrX+Hiiy/u8wb2//zP/+T444+nurqahQsXMnfuXDZv3sx3v/td4OAv/1lnncV5553H6NGjWbVqFV/96lc5++yzWbRoEaZpDqhj4L//+79JpVKcd955faYfSsdAf9e/vXX+31Gazs5OcrkcsVjsHfMnwdF+dM0117Bs2TL+/ve/95l+9dVXl/6eMGECDQ0NnHHGGaxatYrDDjvsvc7mXnf22WeX/p44cSJTp05l5MiR/PKXv9ylg/ZQ8qMf/Yizzz67zwuTD/X9L3bM8zwuuOACtNY88MADfebNmTOn9PfEiROJRCL8+7//O7fffvsh8c6tiy66qPT3hAkTmDhxIocddhjPPPMMZ5xxxn7M2Xvvxz/+MZdcckmf94nCoXUM7Oj6d6CQ22r7ybXXXsvvfvc7nn76aYYNG7bTtFOnTgVg5cqVANTX12/Xe7/3//X19fsgt/tWZWUlRxxxBCtXrqS+vh7XdWlvb++TpqmpqVS2Q6X8a9eu5c9//jNXXnnlTtMd6vu/N8/9lal8nzc3N/eZ7/s+ra2th8xx0RsYrV27lvnz5/dpNerP1KlT8X2fNWvWAAd/+bc1ZswYamtr+xz3h/oxAPC3v/2N5cuXv+N5AQ7eY2BH17+9df7fUZp0Or3LP8AlOHqPaa259tpr+fWvf81f/vKX7ZpA+/Piiy8C0NDQAMC0adN45ZVX+pwoek+mRx999D7J977U3d3NqlWraGhoYPLkydi2zYIFC0rzly9fzrp165g2bRpw6JT/Jz/5CYMHD+acc87ZabpDff+PHj2a+vr6Pvu8s7OT5557rs8+b29vZ8mSJaU0f/nLXwjDsBQ8Tps2jWeffRbP80pp5s+fz5FHHnlA3U7oT29gtGLFCv785z9TU1Pzjsu8+OKLGIZRutV0MJe/Pxs2bKClpaXPcX8oHwO9fvSjHzF58mSOPfbYd0x7sB0D73T921vn/2nTpvVZR2+a3nXsambFe+izn/2srqio0M8880yfxzGz2azWWuuVK1fq2267TS9evFivXr1a/+Y3v9FjxozRp512WmkdvY8ynnnmmfrFF1/UTz31lB40aNAB/Sh3uS9+8Yv6mWee0atXr9b/+Mc/9IwZM3Rtba1ubm7WWhcf5RwxYoT+y1/+ohcvXqynTZump02bVlr+YC+/1loHQaBHjBihv/KVr/SZfqju/66uLr106VK9dOlSDejvfve7eunSpaWnse644w5dWVmpf/Ob3+iXX35Zn3vuuf0+yn/cccfp5557Tv/973/XY8eO7fMYd3t7u66rq9Of+tSn9LJly/Qjjzyi4/H4AfEY887K77qu/shHPqKHDRumX3zxxT7nhd6nbxYuXKi/973v6RdffFGvWrVK/+xnP9ODBg3Sl156aWkbB3L5td55HXR1dekvfelLetGiRXr16tX6z3/+sz7++OP12LFjdT6fL63jUD0GenV0dOh4PK4feOCB7ZY/FI6Bd7r+ab13zv+9j/Jff/31+vXXX9f33XefPMp/oAP6/fzkJz/RWmu9bt06fdppp+nq6mrtOI4+/PDD9fXXX99nnButtV6zZo0+++yzdSwW07W1tfqLX/yi9jxvP5Ro91144YW6oaFBRyIRPXToUH3hhRfqlStXlubncjn9H//xH7qqqkrH43H90Y9+VG/evLnPOg7m8mut9R//+EcN6OXLl/eZfqju/6effrrf4/6yyy7TWhcf57/pppt0XV2ddhxHn3HGGdvVTUtLi7744ot1MpnU6XRaz549W3d1dfVJ89JLL+lTTz1VO46jhw4dqu+44473qog7tbPyr169eofnhd6xr5YsWaKnTp2qKyoqdDQa1UcddZT+1re+1Sdw0PrALb/WO6+DbDarzzzzTD1o0CBt27YeOXKkvuqqq/o8rq31oXsM9PrhD3+oY7GYbm9v3275Q+EYeKfrn9Z77/z/9NNP60mTJulIJKLHjBnTZxu7QvVkWAghhBBCIH2OhBBCCCH6kOBICCGEEKKMBEdCCCGEEGUkOBJCCCGEKCPBkRBCCCFEGQmOhBBCCCHKSHAkhBBCCFFGgiMhhBBCiDISHAkhhBBClJHgSAghhBCijARHQgghhBBl/n8VyF8uNvcZHwAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "clf = RandomForestClassifier(**classifier_params)\n", "clf.fit(X_train, truth_train.to_numpy().ravel())\n", "fig, axs = plt.subplots(2, sharex=True)\n", "axs[0].plot(experiments_train.columns.astype(int), experiments_train.transpose())\n", "axs[0].set_title('Unprocessed raman spectra')\n", "axs[1].bar(experiments_train.columns.astype(int), clf.feature_importances_[9:])\n", "_ = axs[1].set_title('Feature Importances')\n", "plt.savefig('../images/random_forest/feature_importance.svg', format='svg', dpi=1200)" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-05-01T11:20:33.556613800Z", "start_time": "2024-05-01T11:20:28.596343600Z" } }, "id": "fd7b893d195e56a2", "execution_count": 64 }, { "cell_type": "code", "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.0\n", "1.5\n", "2.0\n", "2.5\n", "3.0\n", "3.5\n", "4.0\n", "4.5\n", "5.0\n", "5.5\n", "6.0\n", "6.5\n", "7.0\n", "7.5\n", "8.0\n", "8.5\n", "9.0\n", "9.5\n", "10.0\n", "10.5\n", "11.0\n", "11.5\n", "12.0\n", "12.5\n", "13.0\n", "13.5\n", "14.0\n", "14.5\n", "15.0\n", "15.5\n", "16.0\n", "16.5\n", "17.0\n", "17.5\n", "18.0\n", "18.5\n", "19.0\n", "19.5\n", "20.0\n" ] }, { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAGzCAYAAAAv9B03AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACfuUlEQVR4nOzdeXhTdfY/8HeSNkn3fae0tKxlaaFALSCgVMqmbIPo4IBFQRmqI/xmUBwExK/gBgMigjCCCKioLCqjxVJlk1J2RQplKbTQlRa6t1nv74/k3iQ0bZM0e8/refo8NLlJbhLanpzP+ZzDYxiGASGEEEJIB8C39QkQQgghhFgLBT6EEEII6TAo8CGEEEJIh0GBDyGEEEI6DAp8CCGEENJhUOBDCCGEkA6DAh9CCCGEdBgU+BBCCCGkw6DAhxBCCCEdBgU+hDiBHTt2oGfPnnB1dYWvr6+tT8coI0eOxMiRI23y2DweD+np6TZ57LYcPnwYPB4Phw8f5i579tlnER0dbZPz4fF4WL58udUf99atW+DxePjggw9Mvg9bvm7E/lDgQ+zaZ599Bh6PhzNnztj6VNrtxx9/tMgfjitXruDZZ59FbGwstmzZgs2bN5v9MQghxFm42PoECOkofvzxR2zYsMHswc/hw4ehVCqxbt06dO3a1az3bQ0///yzrU/BYWzZsgVKpdLWp0GIQ6PAhxAHV15eDgB2s8RVX18PDw8Pg48XCoUWPBvn4urqautTIMTh0VIXcTjPPvssPD09UVhYiAkTJsDT0xMRERHYsGEDAODixYt49NFH4eHhgaioKHzxxRc6t2eXz44ePYoXXngBAQEB8Pb2xsyZM3H//n2dY7/77juMHz8e4eHhEIlEiI2NxVtvvQWFQtHsvHJycjBu3Dj4+fnBw8MD/fr1w7p167hzZs+Px+NxX235+OOP0bt3b4hEIoSHh2P+/Pmoqqriro+OjsayZcsAAEFBQa3WYXzwwQfg8XgoKChodt3ixYshFAq553/s2DFMmzYNnTt3hkgkQmRkJBYsWIDGxkad27HvxY0bNzBu3Dh4eXlhxowZWLZsGVxdXXH37t1mjzV37lz4+vqiqakJQPMaH7a25euvv8bbb7+NTp06QSwWY9SoUbh+/Xqz+9uwYQNiYmLg5uaGwYMH49ixY0bXDe3atQs9evSAWCxGYmIijh49qnN9QUEB/v73v6NHjx5wc3NDQEAApk2bhlu3bukcJ5PJ8Oabb6Jbt24Qi8UICAjAsGHDkJmZqXPclStX8Je//AX+/v4Qi8UYOHAgvv/++zbP88FaFe36l82bNyM2NhYikQiDBg3C6dOnm93e1MfVx9DXhP15O378OF5++WUEBQXB19cXL7zwAqRSKaqqqjBz5kz4+fnBz88PixYtAsMweh/zP//5D6KiouDm5oYRI0bgzz//bHbM/v370adPH4jFYvTp0wf79u3Te18ffPABhgwZgoCAALi5uSExMRHffvtts+MyMzMxbNgw+Pr6wtPTEz169MDrr79u/AtG7AZlfIhDUigUGDt2LIYPH4733nsPu3btQnp6Ojw8PPDvf/8bM2bMwJQpU7Bp0ybMnDkTycnJ6NKli859pKenw9fXF8uXL0deXh42btyIgoIC7g8voPql7enpiYULF8LT0xO//PILli5dipqaGrz//vvcfWVmZmLChAkICwvDP/7xD4SGhuLy5cs4cOAA/vGPf+CFF15AcXExMjMzsWPHDoOe4/Lly/Hmm28iJSUF8+bN487x9OnT+O233+Dq6oq1a9fi888/x759+7Bx40Z4enqiX79+eu/vySefxKJFi/D111/jX//6l851X3/9NUaPHg0/Pz8AwDfffIOGhgbMmzcPAQEBOHXqFNavX487d+7gm2++0bmtXC5Hamoqhg0bhg8++ADu7u5ITk7GihUrsHv3bp3iYalUim+//RZTp06FWCxu9fm/88474PP5+Oc//4nq6mq89957mDFjBnJycrhjNm7ciPT0dDz88MNYsGABbt26hUmTJsHPzw+dOnUy6HU+cuQIdu/ejZdffhkikQgff/wxxowZg1OnTqFPnz4AgNOnT+PEiRN46qmn0KlTJ9y6dQsbN27EyJEjkZubC3d3d+49W7VqFZ5//nkMHjwYNTU1OHPmDM6dO4fHHnsMAHDp0iUMHToUEREReO211+Dh4YGvv/4akyZNwp49ezB58mSDzlvbF198gdraWrzwwgvg8Xh47733MGXKFOTn53NZInM/rqGvCeull15CaGgo3nzzTZw8eRKbN2+Gr68vTpw4gc6dO2PlypX48ccf8f7776NPnz6YOXOmzu0///xz1NbWYv78+WhqasK6devw6KOP4uLFiwgJCQGgWjadOnUq4uLisGrVKlRWViItLU3v/4V169bhiSeewIwZMyCVSvHVV19h2rRpOHDgAMaPH8+9ZhMmTEC/fv2wYsUKiEQiXL9+Hb/99ptRrxWxMwwhdmzbtm0MAOb06dPcZbNmzWIAMCtXruQuu3//PuPm5sbweDzmq6++4i6/cuUKA4BZtmxZs/tMTExkpFIpd/l7773HAGC+++477rKGhoZm5/TCCy8w7u7uTFNTE8MwDCOXy5kuXbowUVFRzP3793WOVSqV3L/nz5/PGPojV15ezgiFQmb06NGMQqHgLv/oo48YAMzWrVu5y5YtW8YAYO7evdvm/SYnJzOJiYk6l506dYoBwHz++efcZfqe96pVqxgej8cUFBRwl7HvxWuvvab3sZKSknQu27t3LwOA+fXXX7nLRowYwYwYMYL7/tdff2UAML169WIkEgl3+bp16xgAzMWLFxmGYRiJRMIEBAQwgwYNYmQyGXfcZ599xgDQuc+WAGAAMGfOnOEuKygoYMRiMTN58uRWX4/s7Oxmr1t8fDwzfvz4Vh9z1KhRTN++fbn/Pwyj+n8yZMgQplu3bs1eB+3XatasWUxUVBT3/c2bNxkATEBAAHPv3j3u8u+++44BwPzwww9GP25LHvw5MvQ1YX/eUlNTdX4ekpOTGR6Px7z44ovcZXK5nOnUqZPOe8c+Rzc3N+bOnTvc5Tk5OQwAZsGCBdxlCQkJTFhYGFNVVcVd9vPPPzMAdF43fecvlUqZPn36MI8++ih32X/+8x+Df7aI46ClLuKwnn/+ee7fvr6+6NGjBzw8PPDkk09yl/fo0QO+vr7Iz89vdvu5c+fq1EzMmzcPLi4u+PHHH7nL3NzcuH/X1taioqICDz/8MBoaGnDlyhUAwPnz53Hz5k288sorzepsDFnO0ufQoUOQSqV45ZVXwOdrfkznzJkDb29v/O9//zPpfqdPn46zZ8/ixo0b3GW7d++GSCTCxIkTucu0n3d9fT0qKiowZMgQMAyD8+fPN7vfefPmNbts5syZyMnJ0XmsXbt2ITIyEiNGjGjzXNPS0nTqfx5++GEA4N7LM2fOoLKyEnPmzIGLiyZ5PWPGDC5zZYjk5GQkJiZy33fu3BkTJ07EwYMHuSVN7ddDJpOhsrISXbt2ha+vL86dO8dd5+vri0uXLuHatWt6H+vevXv45Zdf8OSTT3L/nyoqKlBZWYnU1FRcu3YNRUVFBp87a/r06TrP+cHXyhKPa+hrwnruued0fh6SkpLAMAyee+457jKBQICBAwfq/XmdNGkSIiIiuO8HDx6MpKQk7ue1pKQEFy5cwKxZs+Dj48Md99hjjyEuLq7V879//z6qq6vx8MMPN3s/AdWSNxWVOw8KfIhDEovFCAoK0rnMx8cHnTp1ahZs+Pj4NKvdAYBu3brpfO/p6YmwsDCdGoVLly5h8uTJ8PHxgbe3N4KCgvDMM88AAKqrqwGA+8POLouYA1uH06NHD53LhUIhYmJi9NbpGGLatGng8/nYvXs3AIBhGHzzzTcYO3YsvL29ueMKCwvx7LPPwt/fH56enggKCuKCFfZ5s1xcXPQuJUyfPh0ikQi7du3ibnfgwAHMmDHDoICwc+fOOt+zf9jZ95J9DR7cyebi4mJUz5YH/x8AQPfu3dHQ0MDVKDU2NmLp0qWIjIyESCRCYGAggoKCUFVVpfN6rFixAlVVVejevTv69u2Lf/3rX/jjjz+4669fvw6GYfDGG28gKChI54ut1WKL1Y3R1mtlicc19DVp6RzZ4CQyMrLZ5Yb8vAKq94n9eWX/P+g77sGfIwA4cOAAHnroIYjFYvj7+yMoKAgbN27UOffp06dj6NCheP755xESEoKnnnoKX3/9NQVBDo5qfIhDEggERl3OtFAs2ZqqqiqMGDEC3t7eWLFiBWJjYyEWi3Hu3Dm8+uqrDvnLLzw8HA8//DC+/vprvP766zh58iQKCwvx7rvvcscoFAo89thjuHfvHl599VX07NkTHh4eKCoqwrPPPtvseYtEIp2sFMvPzw8TJkzArl27sHTpUnz77beQSCRc4NgWc76X7fXSSy9h27ZteOWVV5CcnAwfHx/weDw89dRTOq/H8OHDcePGDXz33Xf4+eef8d///hf/+c9/sGnTJjz//PPcsf/85z+Rmpqq97FMaUnQ1mtlicc19DVp6xz1XW7p9/jYsWN44oknMHz4cHz88ccICwuDq6srtm3bprMZws3NDUePHsWvv/6K//3vf8jIyMDu3bvx6KOP4ueff27xORH7RoEP6bCuXbuGRx55hPu+rq4OJSUlGDduHADV7qLKykrs3bsXw4cP5467efOmzv3ExsYCAP7880+kpKS0+HjGLHtFRUUBAPLy8hATE8NdLpVKcfPmzVYfpy3Tp0/H3//+d+Tl5WH37t1wd3fH448/zl1/8eJFXL16Fdu3b9cpMH1wZ5IhZs6ciYkTJ+L06dPYtWsX+vfvj969e5t87trY1+j69es676NcLsetW7daLPJ+kL5lqatXr8Ld3Z3LKn777beYNWsWVq9ezR3T1NSks8OO5e/vj7S0NKSlpaGurg7Dhw/H8uXL8fzzz3Pvpaura7veQ2NZ4nGNeU3MoaX3ic3usf8f9B2Xl5en8/2ePXsgFotx8OBBiEQi7vJt27Y1uy2fz8eoUaMwatQorFmzBitXrsS///1v/Prrr1Z9D4n50FIX6bA2b94MmUzGfb9x40bI5XKMHTsWgOaTqPanT6lUio8//ljnfgYMGIAuXbpg7dq1zX7pa9+W7W1jyB+GlJQUCIVCfPjhhzr38emnn6K6uprbdWKKqVOnQiAQ4Msvv8Q333yDCRMm6PTd0fe8GYbhtuYbY+zYsQgMDMS7776LI0eOGJztMcTAgQMREBCALVu2QC6Xc5fv2rVL71JJS7Kzs3XqOm7fvo3vvvsOo0eP5l4LgUDQLAuxfv36Zm0NKisrdb739PRE165dIZFIAADBwcEYOXIkPvnkE5SUlDQ7F33b/83BEo9r6GtiLvv379epQzp16hRycnK4n9ewsDAkJCRg+/btOstVmZmZyM3NbXbuPB5P51xv3bqF/fv36xx37969ZueRkJAAANx7ShwPZXxIhyWVSjFq1Cg8+eSTyMvLw8cff4xhw4bhiSeeAAAMGTIEfn5+mDVrFl5++WXweDzs2LGj2S97Pp+PjRs34vHHH0dCQgLS0tIQFhaGK1eu4NKlSzh48CAAcAW0L7/8MlJTUyEQCPDUU0/pPbegoCAsXrwYb775JsaMGYMnnniCO8dBgwa1K4AIDg7GI488gjVr1qC2thbTp0/Xub5nz56IjY3FP//5TxQVFcHb2xt79uwxKphgubq64qmnnsJHH30EgUCAp59+2uTzfpBQKMTy5cvx0ksv4dFHH8WTTz6JW7du4bPPPkNsbKzBGbY+ffogNTVVZzs7ALz55pvcMRMmTMCOHTvg4+ODuLg4ZGdn49ChQwgICNC5r7i4OIwcORKJiYnw9/fHmTNn8O233+ps6d+wYQOGDRuGvn37Ys6cOYiJiUFZWRmys7Nx584d/P7772Z4dZoz9+Ma+pqYS9euXTFs2DDMmzcPEokEa9euRUBAABYtWsQds2rVKowfPx7Dhg3D7Nmzce/ePaxfvx69e/dGXV0dd9z48eOxZs0ajBkzBn/9619RXl6ODRs2oGvXrjo1WStWrMDRo0cxfvx4REVFoby8HB9//DE6deqEYcOGWeR5Eiuw+j4yQozQ0nZ2Dw+PZseOGDGC6d27d7PLo6KidLYYs/d55MgRZu7cuYyfnx/j6enJzJgxg6msrNS57W+//cY89NBDjJubGxMeHs4sWrSIOXjwYLNtxgzDMMePH2cee+wxxsvLi/Hw8GD69evHrF+/nrteLpczL730EhMUFMTweDyDtrZ/9NFHTM+ePRlXV1cmJCSEmTdvXrMt88ZsZ2dt2bKFAcB4eXkxjY2Nza7Pzc1lUlJSGE9PTyYwMJCZM2cO8/vvvzMAmG3btnHHtfReaGO3y48ePVrv9S1tZ//mm290jmO3NWs/PsMwzIcffshERUUxIpGIGTx4MPPbb78xiYmJzJgxY1p/ERjVFu358+czO3fuZLp168aIRCKmf//+zd7b+/fvM2lpaUxgYCDj6enJpKamMleuXGGioqKYWbNmccf93//9HzN48GDG19eXcXNzY3r27Mm8/fbbOm0TGIZhbty4wcycOZMJDQ1lXF1dmYiICGbChAnMt99+2+x1MGQ7+/vvv6/3uWlvPzf0cVt7rbTvz9DXRN/PMMO0/P/2wf9T2s9x9erVTGRkJCMSiZiHH36Y+f3335ud5549e5hevXoxIpGIiYuLY/bu3dvsdWMYhvn000+597xnz57Mtm3buHNiZWVlMRMnTmTCw8MZoVDIhIeHM08//TRz9erVNl8vYr94DGODSkFCbOizzz5DWloaTp8+jYEDB9r6dJze77//joSEBHz++ef429/+ZvHHUyqVCAoKwpQpU7BlyxaLPx4hxLFQjQ8hxKK2bNkCT09PTJkyxez33dTU1Gzp8fPPP8e9e/eMGllBCOk4qMaHEGIRP/zwA3Jzc7F582ZunIi5nTx5EgsWLMC0adMQEBCAc+fO4dNPP0WfPn0wbdo0sz8eIcTxUeBDCLGIl156CWVlZRg3bpxOobA5RUdHIzIyEh9++CHu3bsHf39/zJw5E++88w5NfSeE6EU1PoQQQgjpMKjGhxBCCCEdBgU+hBBCCOkwqMZHi1KpRHFxMby8vEyeqk0IIYQQ62IYBrW1tQgPD9c7O1AbBT5aiouLm00KJoQQQohjuH37Njp16tTqMRT4aPHy8gKgeuG8vb1tfDaEEEIIMURNTQ0iIyO5v+OtMqXd80cffaTTIj4nJ6fFY6VSKfPmm28yMTExjEgkYvr168f89NNPOsfI5XJmyZIlTHR0NCMWi5mYmBhmxYoVjFKp5I5RKpXMG2+8wYSGhjJisZgZNWpUs7bhlZWVzF//+lfGy8uL8fHxYWbPns3U1tYa/Lyqq6sZAEx1dbXBtyGEEEKIbRnz99vo4ubdu3dj4cKFWLZsGc6dO4f4+HikpqaivLxc7/FLlizBJ598gvXr1yM3NxcvvvgiJk+ejPPnz3PHvPvuu9i4cSM++ugjXL58Ge+++y7ee+89rF+/njvmvffew4cffohNmzYhJycHHh4eSE1NRVNTE3fMjBkzcOnSJWRmZuLAgQM4evQo5s6da+xTJIQQQoizMjaqGjx4MDN//nzue4VCwYSHhzOrVq3Se3xYWBjz0Ucf6Vw2ZcoUZsaMGdz348ePZ2bPnt3iMUqlkgkNDdUZxFdVVcWIRCLmyy+/ZBhGNVQRDwzC++mnnxgej8cUFRUZ9Nwo40MIIYQ4HotlfKRSKc6ePYuUlBTuMj6fj5SUFGRnZ+u9jUQigVgs1rnMzc0Nx48f574fMmQIsrKycPXqVQCqoYbHjx/H2LFjAQA3b95EaWmpzuP6+PggKSmJe9zs7Gz4+vrqDJ1MSUkBn89HTk5Oi+dWU1Oj80UIIYQQ52VUcXNFRQUUCgVCQkJ0Lg8JCcGVK1f03iY1NRVr1qzB8OHDERsbi6ysLOzduxcKhYI75rXXXkNNTQ169uwJgUAAhUKBt99+GzNmzAAAlJaWco/z4OOy15WWliI4OFj3ybm4wN/fnzvmQatWrbJYK31CCCGE2B+LNzBct24dunXrhp49e0IoFCI9PR1paWk6++y//vpr7Nq1C1988QXOnTuH7du344MPPsD27dstem6LFy9GdXU193X79m2LPh4hhBBCbMuojE9gYCAEAgHKysp0Li8rK0NoaKje2wQFBWH//v1oampCZWUlwsPD8dprryEmJoY75l//+hdee+01PPXUUwCAvn37oqCgAKtWrcKsWbO4+y4rK0NYWJjO4yYkJAAAQkNDmxVYy+Vy3Lt3r8VzE4lEEIlExrwEhBBCCHFgRmV8hEIhEhMTkZWVxV2mVCqRlZWF5OTkVm8rFosREREBuVyOPXv2YOLEidx1DQ0NzTotCgQCKJVKAECXLl0QGhqq87g1NTXIycnhHjc5ORlVVVU4e/Ysd8wvv/wCpVKJpKQkY54mIYQQQpyU0Q0MFy5ciFmzZmHgwIEYPHgw1q5di/r6eqSlpQEAZs6ciYiICKxatQoAkJOTg6KiIiQkJKCoqAjLly+HUqnEokWLuPt8/PHH8fbbb6Nz587o3bs3zp8/jzVr1mD27NkAAB6Ph1deeQX/93//h27duqFLly544403EB4ejkmTJgEAevXqhTFjxmDOnDnYtGkTZDIZ0tPT8dRTTyE8PLy9rxMhhBBCnIDRgc/06dNx9+5dLF26FKWlpUhISEBGRgZXeFxYWKiTvWlqasKSJUuQn58PT09PjBs3Djt27ICvry93zPr16/HGG2/g73//O8rLyxEeHo4XXngBS5cu5Y5ZtGgR6uvrMXfuXFRVVWHYsGHIyMjQ2TG2a9cupKenY9SoUeDz+Zg6dSo+/PBDU14XQgghhDghHsMwjK1Pwl7U1NTAx8cH1dXVNLKCEEIIcRDG/P22+K4uQgghhBB7QYEPIYQQQjoMms5uBWdu3cP/LpagR4gXnhrc2danQwghhHRYlPGxgryyWmz77Rayrugf5EoIIYQQ66DAxwo8RarEWr1EbuMzIYQQQjo2CnyswENIgQ8hhBBiDyjwsQIPdcanjgIfQgghxKYo8LECzVKXoo0jCSGEEGJJFPhYgYdIAICWugghhBBbo8DHCriMj1QOapRNCCGE2A4FPlbA1vgoGaBRRstdhBBCiK1Q4GMF7kIBeDzVv6nAmRBCCLEdCnysgMfjaW1pp4wPIYQQYisU+FgJFTgTQgghtkeBj5VQLx9CCCHE9ijwsRIaW0EIIYTYHgU+VsLW+FDGhxBCCLEdCnysxIO6NxNCCCE2R4GPlXhScTMhhBBicxT4WAkVNxNCCCG2R4GPlVBxMyGEEGJ7FPhYiYfWvC5CCCGE2AYFPlaiWeqi4mZCCCHEVijwsRIqbiaEEEJsjwIfK/EUuQKg4mZCCCHElijwsRKa1UUIIYTYHgU+VkK7ugghhBDbo8DHSqi4mRBCCLE9CnyshDI+hBBCiO1R4GMlbManUaaAQsnY+GwIIYSQjokCHythi5sBamJICCGE2IpJgc+GDRsQHR0NsViMpKQknDp1qsVjZTIZVqxYgdjYWIjFYsTHxyMjI0PnmOjoaPB4vGZf8+fPBwDcunVL7/U8Hg/ffPMNdz/6rv/qq69MeYpmJ3IRwFXAA0DLXYQQQoitGB347N69GwsXLsSyZctw7tw5xMfHIzU1FeXl5XqPX7JkCT755BOsX78eubm5ePHFFzF58mScP3+eO+b06dMoKSnhvjIzMwEA06ZNAwBERkbqXF9SUoI333wTnp6eGDt2rM7jbdu2Tee4SZMmGfsULcaD6nwIIYQQm+IxDGNUwUlSUhIGDRqEjz76CACgVCoRGRmJl156Ca+99lqz48PDw/Hvf/+by94AwNSpU+Hm5oadO3fqfYxXXnkFBw4cwLVr18Dj8fQe079/fwwYMACffvqp5snweNi3b5/JwU5NTQ18fHxQXV0Nb29vk+6jNUPf+QVFVY3YP38oEiJ9zX7/hBBCSEdkzN9vozI+UqkUZ8+eRUpKiuYO+HykpKQgOztb720kEgnEYrHOZW5ubjh+/HiLj7Fz507Mnj27xaDn7NmzuHDhAp577rlm182fPx+BgYEYPHgwtm7ditbiOolEgpqaGp0vS6KdXYQQQohtGRX4VFRUQKFQICQkROfykJAQlJaW6r1Namoq1qxZg2vXrkGpVCIzMxN79+5FSUmJ3uP379+PqqoqPPvssy2ex6effopevXphyJAhOpevWLECX3/9NTIzMzF16lT8/e9/x/r161u8n1WrVsHHx4f7ioyMbPFYc2ALnGlsBSGEEGIbFt/VtW7dOnTr1g09e/aEUChEeno60tLSwOfrf+hPP/0UY8eORXh4uN7rGxsb8cUXX+jN9rzxxhsYOnQo+vfvj1dffRWLFi3C+++/3+K5LV68GNXV1dzX7du3TXuSBqIaH0IIIcS2jAp8AgMDIRAIUFZWpnN5WVkZQkND9d4mKCgI+/fvR319PQoKCnDlyhV4enoiJiam2bEFBQU4dOgQnn/++RbP4dtvv0VDQwNmzpzZ5vkmJSXhzp07kEgkeq8XiUTw9vbW+bIkWuoihBBCbMuowEcoFCIxMRFZWVncZUqlEllZWUhOTm71tmKxGBEREZDL5dizZw8mTpzY7Jht27YhODgY48ePb/F+Pv30UzzxxBMICgpq83wvXLgAPz8/iESiNo+1BhpbQQghhNiWi7E3WLhwIWbNmoWBAwdi8ODBWLt2Lerr65GWlgYAmDlzJiIiIrBq1SoAQE5ODoqKipCQkICioiIsX74cSqUSixYt0rlfpVKJbdu2YdasWXBx0X9a169fx9GjR/Hjjz82u+6HH35AWVkZHnroIYjFYmRmZmLlypX45z//aexTtBjK+BBCCCG2ZXTgM336dNy9exdLly5FaWkpEhISkJGRwRU8FxYW6tTvNDU1YcmSJcjPz4enpyfGjRuHHTt2wNfXV+d+Dx06hMLCQsyePbvFx966dSs6deqE0aNHN7vO1dUVGzZswIIFC8AwDLp27Yo1a9Zgzpw5xj5Fi6HiZkIIIcS2jO7j48ws3cfn48PX8V5GHqYldsL70+LNfv+EEEJIR2SxPj6kfbilLprVRQghhNgEBT5W5CGk4mZCCCHElijwsSLq40MIIYTYFgU+VkS7ugghhBDbosDHimhXFyGEEGJbFPhYEWV8CCGEENuiwMeKNDU+VNxMCCGE2AIFPlbEBj5ShRISuXMGPwzD4KUvz+O1PX/Y+lQIIYSQZijwsSIPoYD7t7NmfSrqpPjh92J8dfo2mmTO+RwJIYQ4Lgp8rMhFwIfYVfWSO2udT22TjPt3o5QCH0IIIfaFAh8r8+QmtDtn4KP9vKhDNSGEEHtDgY+VOXsTw7omzfNqoIwPIYQQO0OBj5VpxlY4Z+BTq53xcdLnSAghxHFR4GNlnk6+pZ0yPoQQQuwZBT5WxnZvdtZsiHYmiwIfQggh9oYCHyvzcPLiZu1dXQ1U3EwIIcTOUOBjZc4+tkK3xocyPoQQQuwLBT5WxmV8nDQbolvj45zPkRBCiOOiwMfKnH47O2V8CCGE2DEKfKzMkytuds6ggDI+hBBC7BkFPlbm9MXNtKuLEEKIHaPAx8qcvbhZO+NDIysIIYTYGwp8rIzt3OysgU+tRGs7u5Mu5xFCCHFcFPhYmbMvdVHGhxBCiD2jwMfKnHlkBcMw1LmZEEKIXaPAx8qceWSFRK6ETMFw3zvjcySEEOLYKPCxMi7jI5WDYZg2jnYsDy7fNcoo40MIIcS+UOBjZWyNj5JxvsBAu74HcM7lPEIIIY6NAh8rcxcKwOOp/u1sBc4PPh9qYEgIIcTeUOBjZTweT2tLu3NlRGrUk9n9PYQAVMXNSqVzLecRQghxbCYFPhs2bEB0dDTEYjGSkpJw6tSpFo+VyWRYsWIFYmNjIRaLER8fj4yMDJ1joqOjwePxmn3Nnz+fO2bkyJHNrn/xxRd17qewsBDjx4+Hu7s7goOD8a9//Qtyuf1lHZy1wJld6gr2EnGXOdtyHiGEEMfmYuwNdu/ejYULF2LTpk1ISkrC2rVrkZqairy8PAQHBzc7fsmSJdi5cye2bNmCnj174uDBg5g8eTJOnDiB/v37AwBOnz4NhULzB/LPP//EY489hmnTpunc15w5c7BixQrue3d3d+7fCoUC48ePR2hoKE6cOIGSkhLMnDkTrq6uWLlypbFP06JUdT4Sp13qCvISIa+sFgyjKuJm65oIIYQQWzM647NmzRrMmTMHaWlpiIuLw6ZNm+Du7o6tW7fqPX7Hjh14/fXXMW7cOMTExGDevHkYN24cVq9ezR0TFBSE0NBQ7uvAgQOIjY3FiBEjdO7L3d1d5zhvb2/uup9//hm5ubnYuXMnEhISMHbsWLz11lvYsGEDpFKpsU/Topx1bAUb+HiJXeDuqspqNVIvH0IIIXbEqMBHKpXi7NmzSElJ0dwBn4+UlBRkZ2frvY1EIoFYLNa5zM3NDcePH2/xMXbu3InZs2eDx1YBq+3atQuBgYHo06cPFi9ejIaGBu667Oxs9O3bFyEhIdxlqampqKmpwaVLl1o8t5qaGp0va2BrfJwt41OrXuryFLnA3YkbNRJCCHFcRq1BVFRUQKFQ6AQXABASEoIrV67ovU1qairWrFmD4cOHIzY2FllZWdi7d6/O0pa2/fv3o6qqCs8++6zO5X/9618RFRWF8PBw/PHHH3j11VeRl5eHvXv3AgBKS0v1nhd7nT6rVq3Cm2++2ebzNjcPJw0KNBkfV3gIBbgL2tlFCCHEvli8+GLdunWYM2cOevbsCR6Ph9jYWKSlpbW4NPbpp59i7NixCA8P17l87ty53L/79u2LsLAwjBo1Cjdu3EBsbKxJ57Z48WIsXLiQ+76mpgaRkZEm3ZcxPJ20uLlWvavLU+QCd3bnGi11EUIIsSNGLXUFBgZCIBCgrKxM5/KysjKEhobqvU1QUBD279+P+vp6FBQU4MqVK/D09ERMTEyzYwsKCnDo0CE8//zzbZ5LUlISAOD69esAgNDQUL3nxV6nj0gkgre3t86XNTjroFJ2V5eX2IXbudbgZM+REEKIYzMq8BEKhUhMTERWVhZ3mVKpRFZWFpKTk1u9rVgsRkREBORyOfbs2YOJEyc2O2bbtm0IDg7G+PHj2zyXCxcuAADCwsIAAMnJybh48SLKy8u5YzIzM+Ht7Y24uDhDnp7VOHtxM2V8CCGE2Cujl7oWLlyIWbNmYeDAgRg8eDDWrl2L+vp6pKWlAQBmzpyJiIgIrFq1CgCQk5ODoqIiJCQkoKioCMuXL4dSqcSiRYt07lepVGLbtm2YNWsWXFx0T+vGjRv44osvMG7cOAQEBOCPP/7AggULMHz4cPTr1w8AMHr0aMTFxeFvf/sb3nvvPZSWlmLJkiWYP38+RCIR7In2vC5nwhU3i13gLmR3dTnXcySEEOLYjA58pk+fjrt372Lp0qUoLS1FQkICMjIyuELiwsJC8PmaRFJTUxOWLFmC/Px8eHp6Yty4cdixYwd8fX117vfQoUMoLCzE7Nmzmz2mUCjEoUOHuCArMjISU6dOxZIlS7hjBAIBDhw4gHnz5iE5ORkeHh6YNWuWTt8fe6FZ6nKubAhlfAghhNg7k4qb09PTkZ6erve6w4cP63w/YsQI5Obmtnmfo0ePbnFaeWRkJI4cOdLmfURFReHHH39s8zhbc/alLqrxIYQQYq9oVpcNOH9xsytlfAghhNglCnxswFlndWk3MPRQ1/hQHx9CCCH2hAIfG3DGpS6JXAGpQglAXdzspE0aCSGEODYKfGzAGYub2WUuQDWSw53L+DjPcySWdbOiHh8fvo4mGf2fIYRYDo3NtgFnzPiw9UoeQgEEfJ5W4OM8z5FYTpNMgWe3nUJBZQMYBpj/SFdbnxIhxElRxscG2IxPo0wBhVL/TjZHo93DB9AMYqXiZmKID7OuoaBSNXR4z7k7Le7wJISQ9qLAxwbY4mbAeZoYavfwAQB32s5ODHS5pAabj+YDAPg8IP9uPf64U23jsyKEOCsKfGxA5CKAq4AHwHmWu2q1trIDmowP1fiQ1iiUDF7b8wfkSgapvUMwoZ9qOPG+80U2PjNCiLOiwMdGPJyszqdOoprM7sUudbFb9p0ko0Us4/PsW/j9TjW8RC5YMbEPJg+IAAD88HsxZOpdgoQQYk4U+NgImxFxlp1ddU26S11ulPEhbSiqasT7B/MAAK+O7YkQbzEe7hqIQE8RKuulOHr1ro3PkBDijCjwsRFn29lV+0CND9vAUCpX0id30gzDMHhj/59okCowMMoPfx3cGQDgIuDjiXjVctdeWu4ihFgABT42wi4FOcvYiroHdnWxIysAyvqQ5v53sQS/XCmHq4CHVVP6gs/ncddNUS93ZeaWoaZJZqtTJIQ4KQp8bMT5anzUxc3q5yV04XMF3NTLh2irbpBh+feqwcV/H9kV3UK8dK7vHe6NbsGekMqV+OliiS1OkRDixCjwsRFnW+p6MOMDaLI+NLaCaFv542VU1EkQG+SBvz8S2+x6Ho/HFTnvPUfLXYQQ86LAx0acbWxFzQPb2QHQoFLSTPaNSuw+cxsA8M7UfhC5CPQeNykhAjwekHPzHu7cb7DmKRJCnBwFPjbidBkf9XZ29nkBgBvN6yJammQK/HvfRQDAX5M6Y1C0f4vHhvu64aEuAQCA7y4UW+X8CCEdAwU+NuJ0xc2S5ktdbFaLMj4EAD765TryK+oR7CXCa2N7tnm8ZrmLRlgQQsyHAh8b0Sx1OUdQwNb4eIm0a3zUTQydZDmPmC6vtBabjtwAAKyY2BveWkuiLRnbJxQiFz5u3K3HxSIaYUEIMQ8KfGzE+Za69GR8hJTxIeqxFHtVYykeiwtBau9Qg27nJXbFaPWxVORMCDEXCnxsRNO52TmCgtoHOjcDgLuIdnURYOfJApwvrIKnyAVvTewDHo/X9o3UpvSnERaEEPOiwMdGnKmPj1SuhESu+qNEu7qItuKqRryXcQUA8OqYHgj1ERt1+4e7BSLQU4jKeimOXaMRFoSQ9qPAx0Y8nSgbop21ol1dhMUwDJZ+dwn1UgUSo/wwIynK6PtwEfDxODvCgpa7CCFmQIGPjTjTri62sNldKIBAa/SABw0q7dAOXirFoctlesdSGGNK/04AaIRFR1EnkWP2Z6fx/sErtj4V4qQo8LERLuPjBMtAtXp6+ACAu4jd1eX4z5EYR6Fk8J568voLw2PR/YGxFMboE+GNrsGekMiVyLhYaq5TJHbq/Ywr+OVKObYev2XrUyFOigIfG3GmGh994yoAyvh0ZN9dKEL+3Xr4urvihREx7bovHo+Hyeoi573n75jj9IidOld4H5+fLAAANMoUkMqpoJ2YHwU+NsIGPjIFA4ncsQODBweUsrg+Pk6Q1SKGkyuUWJd1DQAwd3iMTsG7qSapA5+T+fdQVNXY7vsj9kcqV2LxnovQ7lVZS0ubxAIo8LERdscT4PgFzvp6+ABanZsd/PkR4+w9X4SCygb4ewgxKznaLPcZ4euGh2JUIy72n6ciZ2e0+egN5JXVwt9DCLGr6k8TOwOQEHOiwMdGXAR87ofb0Ze7uAGlIt1P9mzGp0Hm2M+PGE6mUOJDdbbnxRExXPBrDmyR877zRTTCwsnk363Dh79cBwAsnRCHAA8RAKC6kTI+xPwo8LEhTycZW9FSjY+7kDI+Hc23Z+/gzv1GBHqK8LeHos1632P7qkZYXC+vw59FNWa9b2I7DMNg8d6LkMqVGN49CBMTwuHtpvoQVUOBD7EACnxsyFkKnPVNZgeoxqejkcgV+Ej9qf3vI2O5Pk7m4iV2xWNxIQCoyNmZfH3mNnJu3oObqwBvT1J19vZWf4ii9gXEEkwKfDZs2IDo6GiIxWIkJSXh1KlTLR4rk8mwYsUKxMbGQiwWIz4+HhkZGTrHREdHg8fjNfuaP38+AODevXt46aWX0KNHD7i5uaFz5854+eWXUV2tO7hQ33189dVXpjxFq3CWsRXcgFKq8enQvj5zB0VVjQjxFuGvSZ0t8hhTBmhGWMhphIXDK69twtv/uwwAWPhYd0T6uwOAVsbHsX83EvtkdOCze/duLFy4EMuWLcO5c+cQHx+P1NRUlJeX6z1+yZIl+OSTT7B+/Xrk5ubixRdfxOTJk3H+/HnumNOnT6OkpIT7yszMBABMmzYNAFBcXIzi4mJ88MEH+PPPP/HZZ58hIyMDzz33XLPH27Ztm859TZo0ydinaDXO0r25VtJ8ThegKeCul8qpJsPJNckU2KDO9sx/pCvErubN9rAe7haEAA8hKuqkOHatwiKPQaxnxQ+5qGmSo0+EN9KGRnOXe6t3AlKND7EEowOfNWvWYM6cOUhLS0NcXBw2bdoEd3d3bN26Ve/xO3bswOuvv45x48YhJiYG8+bNw7hx47B69WrumKCgIISGhnJfBw4cQGxsLEaMGAEA6NOnD/bs2YPHH38csbGxePTRR/H222/jhx9+gFyu+4nA19dX577EYuNmA1mTh5M0+GuxxkcdCCkZcLO8iHP68lQhSmuaEOYjxvRBkRZ7HFftERa0u8uh/XKlDAf+KIGAz8M7U/rBRaD5c+TDZnxoqYtYgFGBj1QqxdmzZ5GSkqK5Az4fKSkpyM7O1nsbiUTSLPhwc3PD8ePHW3yMnTt3Yvbs2a1Oca6uroa3tzdcXHT/2M6fPx+BgYEYPHgwtm7d2mqmQSKRoKamRufLmjycpLhZ32R2AHBz1d6y79jPkbSsUarAx4dvAADSH+0KkYtlsj0sdrnr50ul1OfFQdVJ5Fiy708AwHPDuqBPhI/O9d5u6hofyvgQCzAq8KmoqIBCoUBISIjO5SEhISgt1d9KPjU1FWvWrMG1a9egVCqRmZmJvXv3oqSkRO/x+/fvR1VVFZ599tlWz+Ott97C3LlzdS5fsWIFvv76a2RmZmLq1Kn4+9//jvXr17d4P6tWrYKPjw/3FRlpuU+q+ng6TXGz6vy9H2hUJ+DzuC371L3Zee3KKcDdWgk6+blhWqLlf4b6RvggNsgDErkSP/1JIywc0QcH81Bc3YRIfze8ktKt2fW01EUsyeK7utatW4du3bqhZ8+eEAqFSE9PR1paGvh8/Q/96aefYuzYsQgPD9d7fU1NDcaPH4+4uDgsX75c57o33ngDQ4cORf/+/fHqq69i0aJFeP/991s8t8WLF6O6upr7un37tsnP0xRcxsfBdz211MAQoLEVzq5BKsdGdbbn5Ue7Qehi+Y2iPB4PUwaoe/rQxHaHc+F2FbZn3wIAvD2pL9f2QhtX3EwNDIkFGPVbKjAwEAKBAGVlZTqXl5WVITQ0VO9tgoKCsH//ftTX16OgoABXrlyBp6cnYmKaz+8pKCjAoUOH8Pzzz+u9r9raWowZMwZeXl7Yt28fXF1bb4WflJSEO3fuQCKR6L1eJBLB29tb58uanGU7e0tLXYDWoFIHD+6Ifp9nF6CyXoqoAHdMVi9BWcPEBNUHo5M3K/HRL9dQVtNktccmppMplHhtzx9gGGBy/wgM7x6k9zgf6uNDLMiowEcoFCIxMRFZWVncZUqlEllZWUhOTm71tmKxGBEREZDL5dizZw8mTpzY7Jht27YhODgY48ePb3ZdTU0NRo8eDaFQiO+//96gouULFy7Az88PIpHIgGdnfZ5ccbNjZ0Na6uMDaGV8HPw5kubqJHJ8ckST7XEVWK8tWCc/d4ztEwqGAT74+SqGvPMLnt9+BlmXy2ibux3bfDQfV0pr4efuiiXje7V4HPXxIZZkdD/5hQsXYtasWRg4cCAGDx6MtWvXor6+HmlpaQCAmTNnIiIiAqtWrQIA5OTkoKioCAkJCSgqKsLy5cuhVCqxaNEinftVKpXYtm0bZs2a1axgmQ16GhoasHPnTp1C5KCgIAgEAvzwww8oKyvDQw89BLFYjMzMTKxcuRL//Oc/TXphrMEZiptlCiWaZKo/NA/28QGoiaEz++y3m7jfIENMoAeXgbGmtU8lIOX3Enx1uhCnb93HoctlOHS5DKHeYkwb2AlPDozk+sIQ27tZUc8Nr10yPg4Bni1/IKXOzcSSjA58pk+fjrt372Lp0qUoLS1FQkICMjIyuILnwsJCnfqdpqYmLFmyBPn5+fD09MS4ceOwY8cO+Pr66tzvoUOHUFhYiNmzZzd7zHPnziEnJwcA0LVrV53rbt68iejoaLi6umLDhg1YsGABGIZB165dua339soZipu1z13fXCauiSEFPk6lpkmGzUfzAQD/SOmmsxXZWkQuAkxN7ISpiZ1wvbwWu0/fxp5zRSitacL6X67jo1+vY1jXQDw1qDMeiwuxSv0R0Y9hGLyuHkvxcLdAbmdeS3y0GhgyDNPqDl9CjGXSBMH09HSkp6frve7w4cM6348YMQK5ublt3ufo0aNb3Ho+cuTINhvgjRkzBmPGjGnzcewJuwzkyIEPW98jduXrXepgt7RTcbNz2Xr8Jmqa5OgW7IkJ/ayf7XlQ12Av/Ht8HP6Z2gOZuWXYffo2jl2r4L78PYSYOiACf3soGp0DKAvUXjVNMlwtrTX4+NO37iM7vxJiVz7entS3zUCGzfhIFUpI5EqLNcQkHZP5RicToznDUlctN65Cf6E5ja1wPtUNMnx67CYA4JWU7hDw7efTuMhFgAn9wjGhXzhu32vA7tO38c3Z2yirkWDLsZv49uwdZC4cgcBWlllI65pkCkz5+ASul9cZfdtXUrobFHh6CAXg81TNT2saZRT4ELOiwMeGnGFkBRu0eelZ5gKoxscZ/fd4PmolcvQM9cLYPvp3c9qDSH93/DO1B15J6YbDeXex/IdLuHO/Eb9eKce0gdbt2eVMPvrlOq6X18FdKECIt+Gd8ftE+OC5YV0MOpbH48HbzRVVDTJUN8oQbMTjENIWCnxsyBlGVnA7uvQUNgPaNT6OG9wRjfv1Umw9rsn28O0o29MSFwEfKXEh+P1OFdb/ch1Hrt6lwMdEeaW12KTeybfmyQSMsWDg66MOfGhnFzE3qvazIS7j48BDPFvr4QNoZXwcOLgjGp8czUe9VIHe4d5I7R3S9g3syAh1z5hj1ypoy7sJFEoGr+39A3Ilg9FxIRYNegBN92aa0E7MjTI+NuShNcSzUabQ28HU3tW1MJmdRZ2b7ZdCyeC/x/JRamDzP4YBdp9WdTdf+Fh3h9tpkxDpC2+xC6obZfj9TjUSo/xsfUoOZefJApwvrIKXyAUrJvax+OOx87pobAUxN8f7S+tE3IUC8HiqPyh1ErlDBj61LUxmZ7kJ2V1d9KnN3mTmlmHVT1eMvl18Jx882jPYAmdkWS4CPh7uFoT/XSzBkat3KfAxQnFVI97LUP1fWTS2J0J9LF9zw2V8aKmLmJnj/aV1IjweDx5CF9RJ5KoCZy9bn5Hx6ppaL25m65go42N/DueVAwAGd/HHoGjDggABn4+/DOjkcNke1oju6sAnrxwLH+tu69NxCAzDYOl3f6JeqkBilB9mDO5slcelsRXEUijwsTEPkUAd+DhmRoTb1dXCdnZ3J+hV5IwYhsGRq3cBAPMf6crVvzi7ET1Uz/OPompU1kla7R5MVH76sxSHLpfDVcDDO1P6Wq2gnQaVEkuh4mYbc/RePm0tdVGNj326WlaHkuomiF35SOrib+vTsZoQbzF6hnqBYYDj1ytsfTp2r7pBhmXfXwIAzBvZFd1CrJeWZud1VTdQxoeYFwU+NuboYytaG1AK0HR2e3XkqmqZ66GYgA7XHI7N+hzOu2vjM7F/72Rcxt1aCWKCPDD/kVirPja31EU1PsTMKPCxMTYj4qgZH81SVxsZHwdu0uiM2GWujrLEpW1kd1Vh9tGrd6FUOmYbCWs4mV+JL0+pdvG9M6UfRC7WDZC9KfAhFkKBj415OHj35joD+/jQUpf9qJfIcfrmfQDAyB6OtzurvRKj/OAhFKCyXopLxTW2Ph271CRT4PV9FwEATw/ujME2WA6lPj7EUijwsTFPB+/ebGgDw0aZAgr6dG0Xsm9UQqpQorO/O6I74MBOoQsfQ7oGAtAs+RFdH/96Hfl36xHkJcJrY3va5Byojw+xFAp8bIwtCnbUpa7aNnZ1eWgFRI0yyvrYA+1lLkfdlt5eIy1Q51NW0+SwH2C0XS2rxUb1WIo3n+jN1dpYG9X4EEuhwMfGPBy9uLmp9RofkQsf7O7XBgd9js6EYRgcVmc52D/+HdHwbqrnfq7wvll2DV0rq8Xw937FU5tPOnRmU6lk8NqePyBTMEjpFWLTIbSapS6Zw470IfaJAh8b82T73Djgrie5QsllcVpa6mKbNAJAPdX52NzNinrcvtcIoYCPh2ICbH06NhPp747YIA8oGeC3G+3f1r7txC1I5EpcLKrGgT+KzXCGtrEzpwDnCqvgKXLBW5N62zQjyBY3KxnHzYgT+0SBj41p+vg4XlCgXZDt0ULgA2htaadfXjbHLnMN6uLX6nvWEbCF3WwHa1NVN8iw71wR9/26Q9cccghqSXUj3svIAwAsGtMDYT5uNj0fkQsfQoHqTxQ1MSTmRIGPjTlyH59adQ8fkQsfQpeW/yux3Zupxsf22JoWdkt3R8Zu5T9y9W67llK+OXsbjTIFugZ7wtfdFfkV9fj+d8fK+qjGUlxCnUSO/p19MSMpytanBB6Pp9nSTgXOxIwo8LExR+7cXNtGfQ+L3dnliMGdM2mSKXAyvxKApolfRza4iz/ErnyU1UiQV1Zr0n0olQx2nCwAADw3rAteGK5q8rcuy7GyPgcvlSIzt0w9lqIfBFYaS9EWdmcXBT7EnCjwsTEPB14GYoO1lup7WDS2wj7k3LwHiVyJMB8xugV72vp0bE7sKkCyus7J1N1dR67eRUFlA7zFLpiYEI6ZyVEI8BCioLIBe7WWv+zdp8dvAgDmDo9Bj1D7mZbMFjjTlnZiThT42JgjL3VpdnS1vt2VanzsA1vLMrJHx93G/iBuucvEwOezE7cAANMHRcJd6AIPkQteHKHK+nz4yzVI5faf9WEYBldKVBmvx+PDbXw2unxoUCmxAAp8bMyRi5trKePjUDrymIqWjFAXOJ8puGf0cvPNinocuXoXPB7wt4eiucufeSgKgZ4i3LnfiG/P3jHn6VpEaU0TaiVyCPg8dAn0sPXp6KAaH2IJFPjYmDNkfFqazM7ianwccMu+s7h9rwH5d+vhwudxXYsJ0CXQA1EB7pApGJwwclr759m3AACP9ghGZ60O2G5CAf4+UpX1+eiXa5DI7Tvgv1pWB0D1Wlh7Hldb2Ant1MSQmBMFPjbGZnwaZQqHKoYENJPZvdrI+HBjK2yQ8blUXI3xHx7DL1fKrP7Y9uSwOtszIMqPq5sgKtq7uwxVL5Hj2zOqbM7MIdHNrv9rUmeEeItQXN2Er0/fNst5WsrVUtUyV/cQ+6v7YjM+VONDzIkCHxtji5sBx2vwZ3DGx4aDWDNzy3CpuAbbfrtl9ce2J2wNCy1zNWfKtva954tQK5EjJtADD+vJoIldBUh/pCsA4KNfr6PJjls5XC1jAx/7KWpmcTU+NKiUmBEFPjYmchHAVaAqNHW05a6aNgaUsjy4Ce3Wf37sL8zzhVUOPUqgPaRyJU6ouxNT4NNccmwAhAI+7txvxI279W0ezzAMPlcXNf8tOQr8FrZ+PzkoEuE+YpTVSPBFTqE5T9ms7Dnw4cZW0FIXMSMKfOyAo87r4razt1njY7uRFewvzDqJHHmlpvVqcXRnbt1Dg1SBQE8R4sK8bX06dsdd6ILBXfwBGLbclX2jEtfK6+AhFOAviZ1aPE7kIkD6o90AAB8fvmGTpd62KJUMrpWranzsc6mLJrQT86PAxw6wu54crYmhodvZ2eU8Wwwp1d4NcrbgntUf3x5o7+ZqKTvR0RlT58NuYZ8yoFOb//f/ktgJnfzcUFEnwU51o0N7UlTViAapAkIBH1EB9rWjC9AdVEqIuVDgYwc8bVgD0x5soNZ2cbPtBrFqp8hP37pv9ce3B1zgQ92aW8ROqs/Jr2y1HufO/QYcuqwqlJ81pO2xDkIXPl5WZ302Hrlhd1lddpkrJsgDrgL7+3PA1vjUUh8fYkb29z+9A2IzIo6W8TG0j48td3VpF0WeLeh4gU9JdSOulNaCz4PeIlyi0jXYE+E+YkjkSmSrx3ros/NkIZQMMLRrALoGG1YTM2VABKIC3HGvXort6i3w9oLdym6P9T0A9fEhlkGBjx1w2BofdTbFEWp8AFVav6S60ernYEtH1dme+Ehf+HkIbXw29ovH43EZsZa6ODfJFNh9WlWkPCs52uD7dhHw8Y9RqqzP5qP5qLWjQl1NYbP91fcAmj4+tRJ5h92cQMzPpMBnw4YNiI6OhlgsRlJSEk6dOtXisTKZDCtWrEBsbCzEYjHi4+ORkZGhc0x0dDR4PF6zr/nz53PHNDU1Yf78+QgICICnpyemTp2KsjLd3iyFhYUYP3483N3dERwcjH/961+Qy+0/mOCWuhyswV+tobu6bFjjww1SVZ/jmQ623EXdmg03Qj2x/mgLdT7f/16M+w0yRPi6YVSvEKPu+4n4cMQEeaCqQYbP7Ki1Ahv4dLPzjA8AuwoYiWMzOvDZvXs3Fi5ciGXLluHcuXOIj49HamoqysvL9R6/ZMkSfPLJJ1i/fj1yc3Px4osvYvLkyTh//jx3zOnTp1FSUsJ9ZWZmAgCmTZvGHbNgwQL88MMP+Oabb3DkyBEUFxdjypQp3PUKhQLjx4+HVCrFiRMnsH37dnz22WdYunSpsU/R6hx1QjtX42OnGR+lkuF+WQ5X/+HvSMtdcoUSx67RNnZDDekaABc+D/kV9SisbNC5jmEYbNfawm7s9HLtrM+WY/l2sUtJoWRwXb2jq4edBj6uAj63VE69fIi5GB34rFmzBnPmzEFaWhri4uKwadMmuLu7Y+vWrXqP37FjB15//XWMGzcOMTExmDdvHsaNG4fVq1dzxwQFBSE0NJT7OnDgAGJjYzFixAgAQHV1NT799FOsWbMGjz76KBITE7Ft2zacOHECJ0+eBAD8/PPPyM3Nxc6dO5GQkICxY8firbfewoYNGyCVSvWem0QiQU1Njc6XLTji2AqFkuFmbxmc8bFyRqteKgebHX+kp2YmU0dx/nYVapvk8HN3Rb9OvrY+HbvnLXbFgCg/AMCRq7of5M4V3sel4hqIXPiYPjDSpPuf0C8c3YI9UdMk56ah21LhvQZI5EqIXPiI9Hdv+wY2QhPaibkZFfhIpVKcPXsWKSkpmjvg85GSkoLs7Gy9t5FIJBCLxTqXubm54fjx4y0+xs6dOzF79mxugvTZs2chk8l0Hrdnz57o3Lkz97jZ2dno27cvQkI0KejU1FTU1NTg0qVLeh9r1apV8PHx4b4iI037hdZeHtz0csfZ1aWdnTK0xkemYKw6rZptsCgU8DG0awAAILe4xuEya6Zia1Ue7hZkdIaio2J3dz24rX37CdVW9Cfiw02ulRLweXglpTsAYOvxm6hq0P+BzFo0y1yedv3/g+3lQ00MibkYFfhUVFRAoVDoBBcAEBISgtLSUr23SU1NxZo1a3Dt2jUolUpkZmZi7969KCkp0Xv8/v37UVVVhWeffZa7rLS0FEKhEL6+vi0+bmlpqd7zYq/TZ/Hixaiurua+bt+2zUwdR1zqYs9V6MJvc7Ahm6oGrLuzi90J4u3mgjAfN0T4ukHJABcKq6x2DrZ0WJ21oGUuw7Gv1Ykbldxw0fKaJvx4UfX7apaeuVzGGNsnFD1DvVAnkWPLsfx23Vd7cTO6DNydZis+tLOLmJnFd3WtW7cO3bp1Q8+ePSEUCpGeno60tDTw+fof+tNPP8XYsWMRHh5u6VODSCSCt7e3zpctOOJSV12TYT18ANU6vVDdI8SaBdxc4KNOlQ+MVi1jdITlrru1EvxZpFq6HU6Bj8HiwrwR5CVCg1TBFcJ/caoQciWDxCg/9Inwadf98/k8LHhMlfXZ9tst3Ku3Xdbnqrq+x14Lm1k0toKYm1GBT2BgIAQCQbPdVGVlZQgNDdV7m6CgIOzfvx/19fUoKCjAlStX4OnpiZiYmGbHFhQU4NChQ3j++ed1Lg8NDYVUKkVVVVWLjxsaGqr3vNjr7Jkjdm5mJ7O3tczFcrdBnQ+71OWl/sQ4UF2/0REKnI9dUy3V9IlQ/SEnhuHxeDpdnKVyJXap52y1N9vDGh0Xgt7h3miQKvBh1jWz3KcprqmXunqE2udWdhZNaCfmZlTgIxQKkZiYiKysLO4ypVKJrKwsJCcnt3pbsViMiIgIyOVy7NmzBxMnTmx2zLZt2xAcHIzx48frXJ6YmAhXV1edx83Ly0NhYSH3uMnJybh48aLO7rLMzEx4e3sjLi7OmKdpdY7Yx8fQAaUsNrizZh0Tu6OL7QWSGKWax3Su4D7kCuvVGtnCYZrGbjL2NTucV46MS6W4WytBkJcIY3qb5wMUj8fDv1J7AFCNv9hz9o5Z7tcYMoUSN+6qMz4Os9TlOL8fiX0zeqlr4cKF2LJlC7Zv347Lly9j3rx5qK+vR1paGgBg5syZWLx4MXd8Tk4O9u7di/z8fBw7dgxjxoyBUqnEokWLdO5XqVRi27ZtmDVrFlxcdP+Y+vj44LnnnsPChQvx66+/4uzZs0hLS0NycjIeeughAMDo0aMRFxeHv/3tb/j9999x8OBBLFmyBPPnz4dIZN+feB1xZEWdkYEPW+djk6Uu9S/OHqFe8BK5oF6qwBUnHliqUDJcxmdkj2Abn43jebhbIPg8VVfjtYeuAgBmJHWG0MV8lQEjewTj7yNjAQCv7f0Dp25ad/m1oLIeMgUDD6EAEb5uVn1sY7EfXGipi5iL0T/J06dPxwcffIClS5ciISEBFy5cQEZGBldIXFhYqFO43NTUhCVLliAuLg6TJ09GREQEjh8/3qxQ+dChQygsLMTs2bP1Pu5//vMfTJgwAVOnTsXw4cMRGhqKvXv3ctcLBAIcOHAAAoEAycnJeOaZZzBz5kysWLHC2KdodY44skLTw6f1IY0sd3WA1GDF4I7NSrE1AgI+DwmdfQE493LXxaJq3G+QwUvsgv6RvrY+HYfj6y5Egvp1y79bDxc+D38d3Nnsj/PP0T0wrm8oZAoGL+w4g1sV9WZ/jJbklaqyPV1DvOx+cC2NrSDmZtjH9Qekp6cjPT1d73WHDx/W+X7EiBHIzc1t8z5Hjx4Nhmm5JblYLMaGDRuwYcOGFo+JiorCjz/+2OZj2RtH7NysmcxuYMbHVV3j08oASHPT3tXFGhTtj2PXKnCm4L7ZajbszeE81XLvsK6BcLHDwZOOYET3YJxT7/4b1zcMwd7i1m9gAj6fh9XTElB0Pxu/36nG7O2nsW/eUPi4G/Zhoj24URXB9l3fA1AfH2J+9FvRDjhijY+hA0pZthhbUdOku6sL0CpwvuW8O7vYHjQjaRq7ybQn2Rsyhd1UbkIBtswciHAfMfLv1mPerrOQWaH+7Fo5W9hs3/U9gFbGhya0EzOhwMcOsIGPTMFwvUPsHVfjY2jGxwZjK9hiSG+tc0zo7AsBn4fi6iYUVznfwNL79VL8frsKAG1jb49+ET54enAk0oZGY0BnP4s+VrC3GP+dNQgeQgFO3KjE0u/+bDX7bQ55pfY9o0sb18CQMj7ETCjwsQMeWg3+HKXAmd0x5RAZH61Bh+5CF8SFqfo1nXHCOp9j1yugZFSzl8J87Lto1Z7x+TysmtIPyx7vzXWQt6S4cG98+HR/8HnAl6du47/HLDfSQiJX4JZ6Fpm9zujSRktdxNwo8LEDLgI+xK7qBn8Ostxl6IBSlk0yPnqWugAgUb3cdcYJl7vYMRW0zOV4RvUKwb/Hq1pvrPzpMn6+pL/jfHvl362HQsnAS+yCEG/73vEKaG1np11dxExMKm4m5ucpckGTTOowO7vqjK3xEVq/gWEtu6vLTfccB0X747MTt7jOvO2Rf7cOv+bdxbNDom0+70ipZLj6Hurf45hmD41G/t067MopxD++uoBvXkxud7foB3GFzSFeVslmtRebsW2SKSGRK9ockePsjly9y21gMNSwroEY1Suk7QM7CAp87ISHyAUVdVKHyfjUNhm3nd1NnfFpsMWsrgfOkR1dcaVUNbDU0ODtQQzDYO6Os7heXodIPzeMNlODO1MdvXYXFXUSeAgFSIy2bF0KsQwej4flT/RG4b0GHLtWgee3n8F36UMRYsZdZdfKVFvZuzvAMhegGovD4wEMo/q9I/LsuIEPwzBI/+Ic9/vXUF/kFOLPN1PhSrs8AVDgYzccbWyF0RkfK4+sYBhG08fHTTfwCfEWo5OfG+7cb8T5wvt4uJtp2ZHfrlfiunreUWlNU/tOuJ0YhsF/MlXN9v6a1LnDfyp2ZK4CPj766wBM3XgC18vr8Pz2M9j9wkPccnF75XEZH/vfyg6o6q08RS6obZKjulGGQE/7X56zlPsNMi7o+fvIWBiSsNty9CYkciVKq5sQ6e9u4TN0DBT42AlH695sdB8fK4+saJAqoFCqdsY8mPEBVNva79xvxJlbpgc+27Nvcf+uarBt/cEvV8rx+51quLkK8MKIWJueC2k/HzdXbJ01CJM+/g0Xi6qxcPfv+HjGALM0G+RmdDlIxgdQvR61TfIOv7OL3Yka5CXCojE9DbrN//4owa3KBty530iBjxrlvewEmxFxlKUue6/xYQshXfg8rnBcW2K0am6XqZPab99rQNZlzVBcWwY+DMNgjTrbM2tIdIf+ROxMOge4Y/PfEiEU8JFxqRTvHcxr9302ShUouKfa0eUIW9lZmgntjvH70VKK1IFPuBFjRiL83HRuSyjwsRtsLx9HWOpSKBlN4GPwdHbrZny4Hj5urnoLONlGhucLq0waWLozpwBKrVYrVQ1S007UDA5eKsOl4hp4CAV4YXiMzc6DmN/AaH+895d+AIBNR27gwB/F7bq/G3frwDCAn7srAj2F5jhFq6BePiolbODjY3jNFzuLreg+BT4sCnzshKcDdW/WHq1h7xkf7xYCs+4hXvASu6DBhIGlTTIFdp++DQBIUe+UqLLRL2SlkuEGac4e1gV+Ho7zx4wYZlL/CLwwQhXQfvbbrXbdl6Pt6GJRLx+V4mpVLaFRGR9f1fJWUVWDRc7JEVHgYye4jI8DzOti63tcBTyIDJxY7cZNZ7dWxqd580JtAj6P68hrbD+f7y8Uo6pBhk5+bpgyIAKA7TI+P/1ZiiultfASueD5YZTtcVbPqufKnS28j/Ja0wvp87QCH0dCvXxUimmpyywo8LETjjSvS3syu6GfGtlda41WCnxqH5jMrg+73GVMB2eGYfDZiVsAgL89FAV/dYbFFhkfhVa257mHu1hluCWxjTAfN8RH+oJhgMzcsrZv0AJuK7sDzOjSppnQbv+/Hy2pmJa6zIICHzvhyRU32/+uLjaoMKb/jTv7/KRyi88hArTHVbR8jmyvmzO37ht8TmcL7iO3pAYiFz6eHBgJX3WwUW2D4uYDfxTjWnkdfNxcMXtYF6s/PrGu1N6qZdWMP03v6MzO6HKEqezaaKlLpbjK+KWuTuqMT3FVE5RKy//udQQU+NgJRypuNnZHF6DJ+DCMqgOrpbXUvFBbQqRqYGlpTZPBaWA22zMpIQJ+HkL4umkyPtYI6FhyhRLrDl0DAMwdHtPq8yTOYYy6QWb2jUqTAoB6iZz7f+5oS11ccXMHXuqSKZTcMmeYr+EZn1AfMfg8QKpQoqJOYqnTcygU+NgJRypuNnYyOwC4uWoNYrVCHVNLzQu1uQtd0DtcNbD0rAHLXWU1Tdyn7ZlDogCAy/ho73Szhu8uFCO/oh5+7q6Ypa7/IM4tJsgT3YI9IVcy+PWKcSMLAOCautlmkJfI4YrguRqfDpzxKatpgpIBhAI+Aj0Mb1nhKuBznb/vUJ0PAAp87IaH0HECH3Yyu5cRGR8+nwd3dmeXFZbz2F+QbZ3jwCh1Px8D5nbtyimEXMlgULQfeoer5ieJXQVcgbe1evnIFEp8+Isq2/PCiFiTR24Qx5OqzvqYstx1tdSxOjZroz4+QEm1JttjbCNLqvPRRYGPnXDIpS4jMj4AuMDHOhmf1nd1sdi5XW0VOEvlSnyRUwgAmJkcrXMdV+djpU+j+84VoaCyAQEeQsxMjrLKYxL7MKaPKvA5cvUummTGfYC46qA7ugDt4uaOm/FhC5vDjChsZtHOLl0U+NgJRxpZYUpxM6AZW2GNQaWaBoZtZXxUgU9eaU2r9QM//VmCijoJgr1E3B8fFlfnY4WMj1SuxLosVbZn3shYs81vIo6hd7g3Inzd0ChT4OjVu0bd1lG3sgO01AWY1rWZRRkfXRT42AlHGlmhvZ3dGO5WbGKoaWDY+jkGe4sR6e8GJaPq4tyS7eqi5hlJUc0mHLPbyKsaLd/L55uzt1FU1YggLxFmJFG2p6Ph8XgYze7uumTccpdmKrsDLnVpFTdbcxOBPSlhd3T5mBD4UMZHBwU+doLL+Fhpu3d7GDuglOVhxaxWrQHFzSy2zudsC40ML96pxrnCKrgKeHg6KbLZ9b7qx7B0xkciV+CjX64DAOaPjOWaQpKOhd3dlXW5HDIDx61UN8pQWqP6w+lIM7pY7AcYmYKxyq5Qe2RK80IWZXx0UeBjJ9igQMkAjUau3VubKdvZAStnfAzYzs5KbKORITuFfVzfMAR7NV9f93NXLXVZusZn9+nbKKluQqi3GE8N7mzRxyL2a2C0PwI8hKhulOHUTcO6jrMT2cN8xA7Z+sBdKIBAXdDbUXv5FFcbv5WdpenlQ4EPQIGP3XAXCsA2Qbb3Amd2GcnYwIfbuWbhGh+GYQxqYMgapJ7UfuF284Gl9+ql+P531WDIlraNs8XN9+stt9TVJFNgw6/qbM+jXSF2pWxPRyXg87gZcYbu7rrKLXM5XrYHUC3xdfSxFWzQEmFCxofNEtVK5B02cNRGgY+d4PF4WlvaHSTjY+KurgYLB3ZNMiVkCtVyoSGfbrsFe8JbPbD0conuwNKvThdCKleib4QP+kf66r29psbHcr9QvsgpRFmNBBG+bnhyYCeLPQ5xDGyB/c+5pQZ149Xs6HK8+h4WO3DY2gXOZwvu44mPjuNcoeGjbcytXitgMWVXl7vQhRuvQ8tdFPjYFUcpcOZqfIxd6hKxS12WDezYT4QCrd5BreHzeRjALXdplg7kCiV2nVRtYZ81JLrFuWSW3tXVKFXg48M3AADpj3aFyIWyPR3dkK4B8BS5oKxGgt/vVLV5PBv4OGJ9D4ut17N2xuKrU4X44041/pN51aqPq62kWhWseIldjN5UwuLqfGi5iwIfe+IovXxMzfh4cNvZLfv8uOaFYheDh6hyA0u1GhkeulyOoqpG+HsIMaFfWIu31fTxscxS146Tt1BRJ0Gkvxv+kkjZHgKIXAQY2SMIgGG7u9ilrh6OHPiIbbPUVVDZAAD47XoFytQF4tZWpN7RZcoyF0tT4NxglnNyZBT42BFHGVuh2dVl7HZ269T4GLqVXVsi28G54B63q+5zdVHzU4MiW62pseSurnqJHJuO5AMAXn60W7Ot9KTj4pa7LpW1uhP0Xr2Um9HU1cGGk2rzsdGE9luV9QBUG0++u1Bk1cdmlbSjeSGLtrRr0G9RO+LpABkfpZJBndS0XV3sUp6la3wMbV6oLSHSFy58HspqJLhzvxFXy2px4kYl+DzgmYda75djyRqf7dm3cK9eiugAd0zuH2H2+yeOa2SPYAhd+LhZUc/N4dKHXeaK9HfjssqOiOvlY8WlrgapHOW1msGee8/ZJvBpz1Z2Fi11aVDgY0es2efGVA0yBdgPl8b28bHnjI+bUIDeEar5W2cL7nPZntFxoW3+svFlt7M3mLe5mlLJ4L/HbgIA/pHSDS6U7SFaPEUueLhrIIDWd3dxhc3BjrvMBWh+nq1Z48Muc3kIBRAK+LhSWovLJTVWe3wWu9TVrsDHj3r5sOg3qR3RZHzsd7shO6DUhc/jhnMaylp9fLjJ7EYuxbF1Pr/mlXOf7AyZfM4udUkVSrP2YKppkuGeeov8uL4t1xiRjosdWnqwlTofZyhsBrTmdVmxxqdAvczVNcQLj/YMBgDsO2/9rA9b3BxuQg8fFmV8NEwKfDZs2IDo6GiIxWIkJSXh1KlTLR4rk8mwYsUKxMbGQiwWIz4+HhkZGc2OKyoqwjPPPIOAgAC4ubmhb9++OHPmDHc9j8fT+/X+++9zx0RHRze7/p133jHlKdoEuxRUZ8cZH7a+x9OIwmGWJvCxcMan0fAePtrYwOe7C8VokCrQI8QLD8X4t3k7d6EArgLVa2HOOp9KddDjJXKhnVxEr1G9gsHnAZeKa3D7nv6iVa6wOdRx63sA7UGl1isFuFmhek2jA9wxeYBqqfm7C0VQGNBCwJy4pS4TxlWw2CaGFXVSowfcOhujA5/du3dj4cKFWLZsGc6dO4f4+HikpqaivLxc7/FLlizBJ598gvXr1yM3NxcvvvgiJk+ejPPnz3PH3L9/H0OHDoWrqyt++ukn5ObmYvXq1fDz8+OOKSkp0fnaunUreDwepk6dqvN4K1as0DnupZdeMvYp2oyHAxQ315rYtRnQPL8GCwd2pix1AUBitJ/O9zOHRBkU3Kmaq5l/Szub7fH3FJrtPolzCfAUYXAXVXCuL+vDMIwm4+PwS12aeV3WwmZ8ogM88EiPYPi6u6KsRoITNyqsdg4Mw3Bdm9uz1OXj5goP9YfPjp71MTrwWbNmDebMmYO0tDTExcVh06ZNcHd3x9atW/Uev2PHDrz++usYN24cYmJiMG/ePIwbNw6rV6/mjnn33XcRGRmJbdu2YfDgwejSpQtGjx6N2NhY7pjQ0FCdr++++w6PPPIIYmJidB7Py8tL5zgPDw9jn6LNeApNC3wKKxuw+egNq0Txpu7oAjQZn3qLb2c37RyDvcTo7O+uvq0LJiUYXkzsa4FBpZV16sDHgwIf0jJ2uevnS2XNrrtbJ0FVgwx8nmPv6AJs08eH3dEVHegOoQufa2uxz4pFzpX1UkjlSvB4QIi36UtdPB6P6nzUjAp8pFIpzp49i5SUFM0d8PlISUlBdna23ttIJBKIxbpvlpubG44fP859//3332PgwIGYNm0agoOD0b9/f2zZsqXF8ygrK8P//vc/PPfcc82ue+eddxAQEID+/fvj/fffh1ze8h9ZiUSCmpoanS9bMrWPz5Lv/sTKH69wIw0siZvM3p6Mj7WKm41c6gKA5JgAAMD0gZFG7YDxY3v5WCDjE0CBD2nFaHXgc7rgHu5q7UACgKulqmWuqAAPhx9zYouRFWxxc1SA6gP05P6qPloZl0qtMnMQ0ExlD/IUQWhkXeWDqM5HxahXsaKiAgqFAiEhITqXh4SEoLRUf3Fdamoq1qxZg2vXrkGpVCIzMxN79+5FSUkJd0x+fj42btyIbt264eDBg5g3bx5efvllbN++Xe99bt++HV5eXpgyZYrO5S+//DK++uor/Prrr3jhhRewcuVKLFq0qMXns2rVKvj4+HBfkZHNJ29bkyl9fKobZDhxXZV2/fJUISRyywYV2jU+xuIyPhbfzm7aUhcA/GtMD7w1sTf+mdrDqNuxS133zRr4qP6IUcaHtCbC1w39OvmAYYBDl3WzPpplLsfO9gBaDQytVOPTJFOgRL3EFK0OfAZ09kV0gDsapIpWC8rNqcgMW9lZlPFRsfiurnXr1qFbt27o2bMnhEIh0tPTkZaWBj5f89BKpRIDBgzAypUr0b9/f8ydOxdz5szBpk2b9N7n1q1bMWPGjGaZpIULF2LkyJHo168fXnzxRaxevRrr16+HRCLRez+LFy9GdXU193X79m3zPXETmLKdPetKGeTqQruKOil+vFjSxi3ax9QBpYBmO7tErrRocSC3q8vN+MAn0FOEvyVHG/3p2CJLXWyNj4fIbPdJnFNLu7uulasCnx6hjl3fA2j18WmSGTSfrL0K1cXiXmIXLqPL4/EwSd1Py1o9fdoznPRBEb6qpXzK+BghMDAQAoEAZWW6nyrKysoQGhqq9zZBQUHYv38/6uvrUVBQgCtXrsDT01OnNicsLAxxcXE6t+vVqxcKCwub3d+xY8eQl5eH559/vs3zTUpKglwux61bt/ReLxKJ4O3trfNlS5pdXYZ/omF/0QV5qf44fnaiwPwnpsXUcRUAdOZmWTJNXMsVN1uvWRu7pZ2WuogtpPZWZeF/u16hsxSUV+ocW9kBTcaHYcA1UbWkmxWawmbtTQ5sI9Hfrleg3AojLNit7O3p2syijI+KUYGPUChEYmIisrKyuMuUSiWysrKQnJzc6m3FYjEiIiIgl8uxZ88eTJw4kbtu6NChyMvL0zn+6tWriIpq3jH3008/RWJiIuLj49s83wsXLoDP5yM4OLjNY+0Bt9Rl4A91o1SBI1fvAgBWT4uHUMDH77ercOF2laVO0eQBpQAgcuFDwFf9ArFknY+mc7Npw/xMwWV8LLGriwIf0oauwV6IDfKATMHg1yuqHbYMw+CaE8zoYoldBVzvMGt0b+Z2dAXqbpCJCvBAYpSfeoRFscXPo9gMzQtZVOOjYvRS18KFC7FlyxZs374dly9fxrx581BfX4+0tDQAwMyZM7F48WLu+JycHOzduxf5+fk4duwYxowZA6VSqVN7s2DBApw8eRIrV67E9evX8cUXX2Dz5s2YP3++zmPX1NTgm2++0Zvtyc7Oxtq1a/H7778jPz8fu3btwoIFC/DMM8/obIu3Z8ZuZz9y9S6aZEp08nPDw90CMSFetePg8xO3LHWKmoyPCYEPj8ezSp2PprjZeoGPj7p7s0V2ddF2dmKAB3d3lVQ3oVYihwufhy6BjrO7tTXW7OVzq1LTw+dBbNZnrxWaGRaboXkhi+3lU1rTBLlC2e77c1RGBz7Tp0/HBx98gKVLlyIhIQEXLlxARkYGV/BcWFioU7jc1NSEJUuWIC4uDpMnT0ZERASOHz8OX19f7phBgwZh3759+PLLL9GnTx+89dZbWLt2LWbMmKHz2F999RUYhsHTTz/d7LxEIhG++uorjBgxAr1798bbb7+NBQsWYPPmzcY+RZsxdlbXz+plrtTeoeDxeJiVHA0AOPBHCTeU0NzYPj7GjqtgaSa0Wybj0yRTQCpX/UDbYqnLEhkfWuoihmADn1/zytEkU3CFzdGBHu3eDWQv2J9pa2xpZzM+7I4ubRP6hUEo4ONySQ2ulFp2N7A55nSxgjxFEAr4UCgZlNpo0rw9MOkvQ3p6OtLT0/Ved/jwYZ3vR4wYgdzc3Dbvc8KECZgwYUKrx8ydOxdz587Ve92AAQNw8uTJNh/HnrEZnyaZEnKFstXZTDKFktvBwU5pjo/0RUKkLy7crsJXpwqR/mg3s5+jZleXadkUd5FlMz5stofH0wRZ1sAudZnrFzLDMLTURYzSr5MPwnzEKKluwvFrFVyNijMsc7GsuaX9VkXLGR9fdyEe6RmEg5fKsO9cERaPs0x9qFSu5IakmiPw4fN5CPMVo6CyAUX3G9HJr/lz6wic42OAk2CLm4G2B3mezK9ETZMcgZ5CDOisWcqbNURVF7XzZKFFUpntWeoCLJ/x4ZoXilzA5xs3UqM9fM3cublOIodU/f4F0K4uYgAej6ezuyuPm9Hl+FvZWZqlLssGPhK5glti0pfxATQ9ffZbcIRFWU0TGAYQuvDNlvmlOh8KfOyKyEUz86mtjAi7m+uxuBCuYBhQDbMM9BSitKYJP+c27+TaXuyOKVOXutwsPK/LFvU9gPm3s7PZHjdXAfeaEdIWNvA5dLmMmyLuTBkfa01ov32vEQyjmsoe2EKN3SM9g+DjphphkX2j0iLnoZnRJTZ6NmJLuMCnA+/sosDHzhhS4KxUMlwBI/uLjiVyEeDpwZ0BANstUOTMLXWZnPGx7NiK9jQvbA8fdeDTJFOaZXRIJS1zERMMivaDn7sr7jfIcKlYFfg4w1Z2lqaXj2WLm29VaHZ0tRRwiFwE3AiLvefvWOQ82AaKYe0YTvogbks7ZXyIvWCXglorcD5/uwrltRJ4iVwwJDaw2fUzkqIg4POQc/Me96nPXGrb0ccHANy5QaWW+cVVyzUvtF59D6BaWmMzb+b4NHpPvaMrgHZ0ESO4CPhI6aXprC8U8PXWqDgqHystdd3SGk7aminqie0Zf1pmhIU5uzazaKmLAh+742lA92Z2mevRXsF6d2uE+ogxRp0J+jzbfA0NGYZp16wuQDvjY+GlLitnfFQT2s23s4sKm4mp2M0OABAT5NHqJglHw42tsHBxs2ZGV+tB44DOfohSj7DQNyS2vTQ7utq/lZ1FTQwp8LE7bXVvZhiGC3weXObSNjNZVeS8/3yR2boJN0gVYNQ1fKZMZwc0Yyss1bnZFs0LWZomhu2v86GlLmKqoV0DuQ8Y3Z1omQuwXnGzoRkfHo+HSQmW6+nDLnWZM+PTSWtsBcNYfvSHPaLAx860VeOTV1aLgsoGCF34GNE9qMX7GdzFHz1DvdAoU+Cbs+aZQcYGYwI+D2JX0/7reHDb2Z0r4wNoevmYY1ApO6CUevgQY4ldBRilXu7qG+Fj47MxLx8rNTA0NOMDaJoZHr921+wjLMzZw4cV6iMGj6eamVhRZ76Gq46EAh8709bYiow/Vdme4d2CuCBJHx6Ph1lDogGolrvMsd2yVmtAqak7DNiMT6PFtrO3b9dZe/iquzdXm2FnFw0oJe2x/IneeGtib/wtufnYH0dmjaUuqVyJO/fVPXwM6HgdHeiBAZ19oWSA73837wgL7V1d5iJ04SPES3V/HbXOhwIfO+PRRvfmg9xurhC912ublBABb7ELCu814MjV8nafW207d3QBmkGlFtvV1Y7J7O1lzu7N1LWZtIe/hxB/S46G2NW5WiFwu7osuNR1534DlIyqlUSwl2EfPCYPUPX0MefE9tomGff7LMyMGR+A6nwo8LEznq0sdRVWNuBySQ0EfJ7Ozo2WuAkFmD4oEoB5prbXtXNcBWCNBobWn8zO8uF6+VBxMyGWYI0+PtrLXIZmtif0DYOrgIfckhrkldaa5TzY+h5vsUu7Pmzqo9nZ1WDW+3UUFPjYmdZqYNii5qQu/vAz8A/i3x6KBo8HHL16F/l369p1bu3t4QNYb2SFbTI+5uveTANKCWmOrfGplyosNmTT0MJmbX4eQjzSIxiA+Xr6WKK+h0UZH2JXWlvqMmQ314M6B7jjUfUPZHu3tre3hw9g+YwP18fHFsXN3Lyu9tf40FIXIc1pZ5trLdTEkMv4BBrX/4jt6fPd+WKz1FQWV6kyPhGWCHw6eC8fCnzsTEtLXeW1TThbeB8AMNqA+h5tbJHznrN3DJ78rg+b8TF1KztghRofdqnLyg0MAe3t7O3L+DRKFWhUd3+mpS5CNFwEfG6rvqWWu0zJ+ADAIz2D4ePmitKaJpzMb/8IixL1rLAwM/bwYbEZnzuU8SH2oKXOzZm5ZWAY1QR2Y9uXD+saiJhAD9RK5Nh3zvQ0bHsHlAJW2NVlw+3s5mpgWKneyi4U8M2+tk+Io/O28IR2Y7ayaxO5CDCeHWFhhiJnS3RtZnWijA+xJy318TFmN9eD+Hwe19Bwe3aByU2r2jugFLBsjY9ErkCTTLXub5sGhux29vb9QtYubDbXYEJCnIUle/nIFUrcvqfeym5kxgcApvRnR1iUtPvDnWYru+VqfGqb5Bbvgm2PKPCxM/pGVlQ3ynDiegUAcKMojDU1sRM8hAJcL6/DCRMnCZsj46Nd42PurqHaa/62yJRotrO3r8aHujYT0jJL9vIpqmqEXMlA5MJHqLfxS0yJUX7o7O+OeqkCWVfaN8LCEl2bWe5CF/ipl+Y7YoEzBT52Rt/Iil+vlEOuZNAt2BMxQZ4m3a+X2BVTE1W9Jkyd2m6WPj7q5ydXMpCaeVcG17xQa2CoNbE1PvVSBaRy058bDSglpGVs/Z4lanxuaS1z8U34HcLjaVqN5OTfM/k8lEoGJVXsZHbz1/gAHXtnFwU+dkZf52Z2N5f28EFTsMtdhy6XcZ1JjVFnhl1d7loN1RrMPLbCls0LAVVwya5MteeXMvXwIaRllpzXVaAubI4yYZmLNSjaDwBw+pbpgU9lvRRShRI8nmrEhCV05J1dFPjYmQdrfJpkChzOuwvAuG3s+nQN9sLQrgFQMsDOk4VG357b1dWOjI+LgA+ReqK8uXd22XJcBaCaYcbWH7RnSzstdRHSMksudd2qYOt7jCts1paoDnzyympNPke2vifESwxXgWX+TEdoDSvtaCjwsTNs4CNTMJDIFTh69S4aZQpE+Lqhd7h3u+9/VnI0AOCr04VokhmXcdF0bm5fRoXd0m7unV21Ns74AOYZVEoDSglpmbcFi5vNkfEJ9hKjs787GAY4X1hl0n2wgY8ltrKzaKmL2A22RwWgKnDW7OYKNcsOn1G9QhDh64aqBhl+zjWu+I6r8WlnRoXd0l5v5sDHllvZWT7u7e/efI8GlBLSInYcjWVqfEzr4fOggVGqrM9ZE5e7ii1Y2Mxil7ruUMaH2JqLgA+xq+ptqW6U4dBl07ex6yPg8/B4fDgATe2QobSns7cHW8DdYOYt7bZsXsgyx84uWuoipGU+Furjo1AyuH1PFQREG9m1+UHscteZgvsm3d4SU9kf1IkyPsSesIFF1uUyVDfKEOAhxMBof7PdPxtEHb5SbvByF8MwZhlSCjh3xkcztqL9GR/a1UVIc5Yqbi6uaoRUoYRQwDe6SeyDBkapfl+fL6yCzITdq2zXZmtkfCrqJEaXPTg6CnzsEFvnw3b/fCwuxKzbs+M7+SLUW4x6qQInblQYdJtGmQLs+BmzZXzMXtzMzumyh4xPOwKfOsr4ENISS01oZzs2R/q7tfv3bbdgT3iLXdAoU+BySY3Rty+qsvxSl6+7K1dvWdzBlrso8LFDbJO/XPUPTHt3cz2Iz+dx874y/jRsuYvd0cXnaYqTTcVlfMy+nd12k9lZXI2Pibu6JHIFNwyWipsJaY5dyq4x85BSc9X3AKrfsYnqOp8zt4xf7iqxYNdmFo/H67Bb2inwsUPaGRVPkQuGdA0w+2OwwdShy+WQG5CKrdXq2tzeIms2cDJ/xscOlrramfG5X6+6nYDPs+nzIMRe+VhoqcscO7q0seUJZ42s85HIFSivVe3sDLfgri6g4+7sosDHDrFLQYBq4q/IpX0ZFn0Gd/GHr7sr7tVLDSrAM8dkdpa71tgKc9I0MLThUlc7a3zYAaV+7kKTOscS4uzYjK5ErjRrbQrbtbm9hc0sLuNTcM+o8Txl1arfASIXvsWXuynjQ+yGh1bGx9TZXG1xFfAxqqfhy13mGFfBYrfsm7uBYa0dFTebmvHhCptpmYsQvTyFLlyHdHPu7Cow41IXoKqldOHzUFYjwR0jMirFWoXNlh5STBkfYjfY4ELowsfIHkEWexx2BEZmblmbn0jqJOqt7GYoHHZXPz+zj6xotH0DQx+39tX40LgKQlrH11oGNlcTQ6WS4YqbzRX4uAkF6BPhA0CV9TEU17zQglvZWR21lw8FPnaI3S7+cNdAneyPuT3cLRDuQgGKqhrxZ1HrOw8cIeNjT9vZTc34VLI7umgrOyEt0hQ4myfjU1rTBIlcCRc+z6x1NQNNKHC25FT2B3XUXj4mBT4bNmxAdHQ0xGIxkpKScOrUqRaPlclkWLFiBWJjYyEWixEfH4+MjIxmxxUVFeGZZ55BQEAA3Nzc0LdvX5w5c4a7/tlnnwWPx9P5GjNmjM593Lt3DzNmzIC3tzd8fX3x3HPPoa6uzpSnaFOT+3fCkNgALHisu0UfR+wqwIjuqoxSxqWSVo81x4BSliUyPjKFkqsZsocGhrVNcoOKxh9ES12EtE2T8TFP4MPu6Ir0d4eLGWdjDVQ3MjSmwJmtt7FG4MPO6yqtaTLp95WjMvod3r17NxYuXIhly5bh3LlziI+PR2pqKsrLy/Uev2TJEnzyySdYv349cnNz8eKLL2Ly5Mk4f/48d8z9+/cxdOhQuLq64qeffkJubi5Wr14NPz8/nfsaM2YMSkpKuK8vv/xS5/oZM2bg0qVLyMzMxIEDB3D06FHMnTvX2Kdoc3Hh3vhizkNcmtSS2OUudjRGS8wxoJTFTmhvMGNhYq3W1lZzZKVM5aO1zGbKdlvq2kxI28zdy4dd5opqx3BSfRLVjQzzymoNPldrdG1mBXuJ4CrgQaFkUKbeSdYRGB34rFmzBnPmzEFaWhri4uKwadMmuLu7Y+vWrXqP37FjB15//XWMGzcOMTExmDdvHsaNG4fVq1dzx7z77ruIjIzEtm3bMHjwYHTp0gWjR49GbGyszn2JRCKEhoZyX9qB0eXLl5GRkYH//ve/SEpKwrBhw7B+/Xp89dVXKC4uNvZpdhiP9AyGq4CH6+V1uF7ecnbMXF2bAcuMrGA/+XkIBWb9xGYsFwGfe43umzC2ggaUEtI2zdgK8/wOMWcPH21BXiJEBbADSw3L+pRYoXkhi8/ncV2qO9Jyl1F/IaRSKc6ePYuUlBTNHfD5SElJQXZ2tt7bSCQSiMW6kaubmxuOHz/Off/9999j4MCBmDZtGoKDg9G/f39s2bKl2X0dPnwYwcHB6NGjB+bNm4fKykruuuzsbPj6+mLgwIHcZSkpKeDz+cjJyWnx3GpqanS+OhpvsSuSYwMBtD67q4ar8THfdnZzjqywh+aFrPbU+dCAUkLaxtX4mCvjU8EWNps34wNotrUbutzFZXws3MOHpdnS3mCVx7MHRgU+FRUVUCgUCAnRHZgZEhKC0lL9fzRTU1OxZs0aXLt2DUqlEpmZmdi7dy9KSjQ1Jfn5+di4cSO6deuGgwcPYt68eXj55Zexfft27pgxY8bg888/R1ZWFt59910cOXIEY8eOhUKh+uNZWlqK4OBgncd2cXGBv79/i+e2atUq+Pj4cF+RkZHGvBxOg90y/3MrgY85a3wsMbJCM67CDgIf9c6uahN2dtFSFyFts1SNT1SgeTM+ADBI3cjwtAGT2muaZFyz2PbOCzNUR9zSbvE1gXXr1qFbt27o2bMnhEIh0tPTkZaWBj5f89BKpRIDBgzAypUr0b9/f8ydOxdz5szBpk2buGOeeuopPPHEE+jbty8mTZqEAwcO4PTp0zh8+LDJ57Z48WJUV1dzX7dv327PU3VYj8WFgMcDfr9T3eLMljp1RsUsNT4WGFnB9fCxYWEzyxwZHxpQSkjLvM04oZ1hGIstdQGanV0Xbrc9sJRd5vJ1d7Xojl5tHbGJoVGBT2BgIAQCAcrKdAthy8rKEBqqv9FeUFAQ9u/fj/r6ehQUFODKlSvw9PRETEwMd0xYWBji4uJ0bterVy8UFha2eC4xMTEIDAzE9evXAQChoaHNCqzlcjnu3bvX4rmJRCJ4e3vrfHVEQV4iJHZW/XC2lPUxa8aH69xsxoyPHWxlZ/mYOLZCrlByt6GMDyEt04ytaP/vkPJaCZpkSgj4mtlV5hQb5AkfN1c0yZTILW69nELTw8c62R5Ak/ExpsmiozMq8BEKhUhMTERWVhZ3mVKpRFZWFpKTk1u9rVgsRkREBORyOfbs2YOJEydy1w0dOhR5eXk6x1+9ehVRUVEt3t+dO3dQWVmJsLAwAEBycjKqqqpw9uxZ7phffvkFSqUSSUlJxjzNDqmt3V3m7OPjxs3qUkCpNLyVe2vsoXkhi8v4GJmGv68Oeng81cgKQoh+5uzjc6tCle2J8HWD0MX8iyA6A0vbqPNhuzZHWKm+BwA6UcanbQsXLsSWLVuwfft2XL58GfPmzUN9fT3S0tIAADNnzsTixYu543NycrB3717k5+fj2LFjGDNmDJRKJRYtWsQds2DBApw8eRIrV67E9evX8cUXX2Dz5s2YP38+AKCurg7/+te/cPLkSdy6dQtZWVmYOHEiunbtitTUVACqDNGYMWMwZ84cnDp1Cr/99hvS09Px1FNPITw8vF0vUkfADi3NuVnJLbdos0SNDwA0yc2z3KXJ+NjBUhdb42Pkri72dfd1c4WA5nQR0iJzbme31FZ2bZoC59brfGyZ8SmuajRqppgjMzrwmT59Oj744AMsXboUCQkJuHDhAjIyMriC58LCQp3C5aamJixZsgRxcXGYPHkyIiIicPz4cfj6+nLHDBo0CPv27cOXX36JPn364K233sLatWsxY8YMAIBAIMAff/yBJ554At27d8dzzz2HxMREHDt2DCKRZvfLrl270LNnT4waNQrjxo3DsGHDsHnzZlNfmw4l0t8dcWHeUDLAocvNsz5s4GOOwELsIuBm7ZirzoctcjTHENX2MjXjww4opWUuQlpnzgntbH1PFwsUNrPYOp/Tt+63GlxYcys7K8zHDTwe0CRTcpsrnJ1Jf8XS09ORnp6u97oHi41HjBiB3NzcNu9zwoQJmDBhgt7r3NzccPDgwTbvw9/fH1988UWbxxH9UnuHIrekBj9fKsWTAzU73BiG0Vrqan9gwefz4O4qQL1Uoa7zaf/WbXuYzM4ytcZH07WZtrIT0hpvM/bx4XZ0WaCwmRUf6QtXAQ93ayW4fa8RnVvILhVZeSs7oJoJGewlQlmNBEX3GxHo6fy/f2hWF+Gk9lFl7Y5eq+AyPIDqk4BCXYtjjqUuQDO2wtwZH3sobvZ1ZweVmhb4UMaHkNZpb2dv7/LMLQv28GGJXQ0bWKo9md2aOtrOLgp8CKdHiBeiA9whlStxJO8ud3mtRFN0y46baC8PoXl7+dhjA0Nja3xoQCkhhmEzu3Ilw83oMwXDMCiwQsYH0BpY2kKBs1LJoNSKA0q1Rfipgr6O0suHAh/C4fF4XJGzdhdndk6Xp9AFfDMV3bqZuXszuxRnDxkfPxNrfGhAKSGGcXMVwFWg+l3Unp1dFXVS1EsV4PGASH/LBhvs3K6zLUxqr6iTQKZgwOcBIV7WXW6ijA/p0EarA59frpRDot5xZc4dXSw249NoroxPo/00MPThOjfLuCVCQ9BSFyGG4fF4Wstdpv8OYbM94T5uELmYJ5vdEnZn19XyWlTrqf8rVmd7QrzFVp832NF6+VDgQ3T0j/RFsJcIdRI5TtxQzUKrM2MPH5bZa3zsKOPDFjczjKajtCFoVxchhmOXtduzpf2Weit7dKDl6ntYQV4iRKsHlp7TM7BUs5XdeoXNrI7Wy4cCH6KDz+dhdG9VkTPbxZkNKswxmZ1lzhofuUKp2W5vBzU+Qhc+9/yM2dlFu7oIMRzbWqM9W9oLLDiqQp+B6rld+gqcNcNJrVvfA2jP6+oYg0op8CHNjOmt6ob986UyKJSM1lKX+YIKc05o196BZs7grD1M2dlFS12EGM4c87puVlg58GELnPXU+RSre/hYYmxGW9jHrGmSG5WlbpDKsfnoDVwtq7XUqVkEBT6kmaQYf/i4uaKyXoqzBffNOqCUxU1ol7Q/48Ou8asKHu3jv7Sml49hO7uUSoYbWUEDSglpm7cZmhhao2uztoHRqsDn9zvNB5bacqnLQ+TC7UY1dLlLoWTw8pfnsfLHK/h/X/9uydMzO/v4K0HsiquAj1E9gwGodndxGR8zBj7svC5zZHxq7GgyO4vb0m7gL2XtQmia00VI2zRjK0z78KQzld2CXZu1xQR6wtddNbD00gMDS0ts1MOHxe3sMrDAedWPl3Hosmow+MWialxzoKwPBT5Er1T10NKMP0s1XZvNWuPDTmg3Q+BjR80LWdzYCgNrfNhW8V5iF4sMSiTE2fi0c6nrfoOM+93W2d86GR8+n4fEzuxyl26dT5ENxlVoM2ZL+xc5hfjv8ZsANG0A9p4vstzJmRn9hiV6De8WBLErH0VVjci5qfoBNeuuLjMWN2vGVdhP4MNuaTc08KEePoQYh5vQbuJSF5vtCfMRQ2ymxqyGSIxuXucjkStQUafa1WmzwMfPsIzP8WsVeOO7PwEACx/rjsVjewEAvjtfBKUR7TtsiQIfopebUIAR3YMAABduVwEw864uM25nt6fJ7CzNoFLDanzu0VZ2QozS3gnt1t7RxRrE7ezSDCxlOzaLXPhcA1RrYzM+d1rJ+Fwvr8W8XWehUDKY3D8CLz3aFY/2DIaX2AXF1U04ebPSWqfbLhT4kBaNUS93scwZ+Jg149NoP+MqWL5sjxEjl7r8aSs7IQZp766umxXW6+GjrW+ED4QCPirqJCi8pzoHdnkpwtcNPJ55uuMbq1MbGZ979VLM/uwMapvkGBjlh3em9gWPx4PYVYAJ/VQ7gfedc4zlLgp8SIse7RECF60RFeaYzM7yMON2dntqXsjyNXJsxb06WuoixBhcjY+Jxc3WmtH1INXAUm8AmuWuEhvX9wBAhK96XpeejI9ErsALO86g8F4DOvu745O/Jep0up7cvxMA4Kc/S9FopjFElkSBD2mRj7srkmMDuO/NWdzMZXzMsp1dvd3ejpa6NDU+hi11cRkf2spOiEG4BoYmZny4rs1W2squbaDWchdg263sLLbG526tBE0yTfDCMAxe23MRp2/dh5fYBVufHYgAT93M9MAoP3Tyc0OdRI7My2VWPW9TUOBDWsUOLQUsM7LCLLu67GgyO8vYQaVU3EyIcdo7ssJWGR9AM7eL3dlVbKOp7Nr83F3hpi7yLlGfDwB89Mt17DtfBAGfh40zEtE12KvZbfl8Hib3jwAA7Dt3xzon3A4U+JBWjY4LAbvkbM7iYXOOrGBT3fa11GXari4qbibEMOxSV51EbvRuoqoGKfezaa3mhdrYDs7XyutQ1SDVGldhu4wPj8drtrPrwB/FWJ15FQCwYmJvDOsW2OLt2cDn6LUK3K2VWPhs24cCH9KqYG8xFqR0x18SOyE2yNNs98sNKXXyBoZVDVKDfilXUuBDiFHYpW2GAWqNXDJnOzaHeIu48TnWFOApQoy6aeK5wvs2ndOlTdPLpwHnC+9zHZmfG9YFM5KiWr1tTJAn4iN9oVAy+OH3Youfa3tQ4EPa9PKobvhgWjz4fPPtNmAzPlK5slnrdmPV2mFxM/tpVMkAdQZktdjt7DSglBDDiFwEELuq/oQZ28vnlg2XuViJWnO77CbwUWd8cm7ew5zPz0AiVyKlVzBeH9fLoNtPYZe77LyZIQU+xCa0P2W1t87HHrezi101v5Tb2tLOMIxmqYuKmwkxmKm9fG5V2K6wmcXO7fo17y6X+Q73sY+Mz95zRaiok6JXmDfWPdUfAgM/9D4eHw4XPg8Xi6pxvdx+R1hQ4ENsQujC57bKt7fOxx4bGAKAr4Hdm2slcsgUquUwKm4mxHCmjq2wZWEzKzFKtbPrcolqZpefuys3w9BW2F4+ABDkJcKnswZyzWYN4e8hxMgeqsa3e+24pw8FPsRmNE0MTc/4KJUMN0TVnjI+gOHdm9kePu5CgVVb5xPi6LxN7OVzy0Zdm7XFBnnodGkOs3G2BwBXxyl25eO/MweatPTG9vT57kKx3Y6woMCH2Az7SaKhHWMraiVyqLu+21UfH0DzabStjA8VNhNiGq6Xj5FLXWxxsy12dLF4PB6X9QFsX98DAH0ifLB6Wjy+fiEZ8ZG+Jt3HqF6qERbacx7tDQU+xGbYjE99O5a62F94Ihe+TidRe2Bo92bq4UOIaUwZW1HTJOM+bEQH2i7jA2jqfADbbmXXNjWxE/p18jX59mJXAcb3VY+wOG+fPX0o8CE2w2V82hP42GHzQhZb41PdRvdmGlBKiGk0YysMD3wK1dmeQE+RWZuymoLt5wPYR8bHXNiePj9dLNXpAm0vKPAhNsNlfNqx1KVpXmhfy1yAdi8fQ5e6aCs7IcZgd3Wx8/oMceNuHQDb7uhi9VEPLAWcK/AZFO2PCF831ErkyMy1vxEWFPgQm2G3tLcn41NrxxkfH0OXutgBpbSVnRCjsE1LDd3OLlMosfHwDQBo13KOuYhdBUjtEwqxKx/9TaypsUc6IyzssKcPBT7EZsyxq8seJ7OzDN3OTuMqCDGNsUtdm4/m40ppLfw9hEh/tKslT81gq6fF48ySxxDpb/sMlDlNHqAKfI5cvYuKOvsaYUGBD7EZD2H7B5XaY/NCFrtVtbqN7ey0q4sQ02iWutoOfG5W1GNd1jUAwBsTetnNz5vQhW/zWiNLiA3yRHwnH7scYUGBD7EZdxFb42OG4mY7rPFhl7ruG5jxoV1dhBjH0D4+DMPg9b0XIZUr8XC3QExKiLDG6XV49rrcZVLgs2HDBkRHR0MsFiMpKQmnTp1q8ViZTIYVK1YgNjYWYrEY8fHxyMjIaHZcUVERnnnmGQQEBMDNzQ19+/bFmTNnuPt49dVX0bdvX3h4eCA8PBwzZ85EcbFuFBkdHQ0ej6fz9c4775jyFIkVmCfjo/qF50VLXYR0OIaOrPjmzB1k51dC7MrH25P6gscz39xB0jJ2hMUfd6pxvbzO1qfDMTrw2b17NxYuXIhly5bh3LlziI+PR2pqKsrLy/Uev2TJEnzyySdYv349cnNz8eKLL2Ly5Mk4f/48d8z9+/cxdOhQuLq64qeffkJubi5Wr14NPz/VVr+GhgacO3cOb7zxBs6dO4e9e/ciLy8PTzzxRLPHW7FiBUpKSrivl156ydinSKzErBkfO5rMzvLVWupimJY7mFbSgFJCTGLIyIq7tRK8/eNlAMDCx7qjsx3s5uooAjxFGNFdNcLCnnr6GP3XYs2aNZgzZw7S0tIAAJs2bcL//vc/bN26Fa+99lqz43fs2IF///vfGDduHABg3rx5OHToEFavXo2dO3cCAN59911ERkZi27Zt3O26dOnC/dvHxweZmZk69/vRRx9h8ODBKCwsROfOnbnLvby8EBoaauzTIjbg7mqG4ma2xsceMz7qwEemYNAgVeidedMglaNJpppOTwNKCTEO+4GnQaqATKGEq6D5Z/kVB3JR3ShD73BvzB7apdn1xLImD4hA1pVy7D9fjP/3WA/wDRx4aklGZXykUinOnj2LlJQUzR3w+UhJSUF2drbe20gkEojFuh0p3dzccPz4ce7777//HgMHDsS0adMQHByM/v37Y8uWLa2eS3V1NXg8Hnx9fXUuf+eddxAQEID+/fvj/fffh1zecjZBIpGgpqZG54tYj7uTNzB0cxVwPTpa2tJeqd7KLnThw8PGAwoJcTTaRcH6dnb9eqUcP/xeDD4PeGdKP7joCYyIZaX0CoGXSDXC4tQt+xhhYdT/goqKCigUCoSEhOhcHhISgtLSUr23SU1NxZo1a3Dt2jUolUpkZmZi7969KCkp4Y7Jz8/Hxo0b0a1bNxw8eBDz5s3Dyy+/jO3bt+u9z6amJrz66qt4+umn4e3tzV3+8ssv46uvvsKvv/6KF154AStXrsSiRYtafD6rVq2Cj48P9xUZGWnMy0Haia3xqW9Hxqe2yX4bGPJ4PE0vnxa6N2sXNlPdASHGcRFodkQ92MSwXiLHkv1/AgCeG9YFfTv5WP38iKpX0Th2hIWdTGy3ePi7bt06dOvWDT179oRQKER6ejrS0tLA52seWqlUYsCAAVi5ciX69++PuXPnYs6cOdi0aVOz+5PJZHjyySfBMAw2btyoc93ChQsxcuRI9OvXDy+++CJWr16N9evXQyLR30Ng8eLFqK6u5r5u375t3idPWsXW+DhrxgcAfNXnVd1CgTMVNhPSPi318ln981UUVTWik58bFjzW3RanRtTYnj4/XiyxixEWRgU+gYGBEAgEKCvTbUFdVlbWYl1NUFAQ9u/fj/r6ehQUFODKlSvw9PRETEwMd0xYWBji4uJ0bterVy8UFhbqXMYGPQUFBcjMzNTJ9uiTlJQEuVyOW7du6b1eJBLB29tb54tYD7eryywjK+w08GmjezP18CGkfbzYCe1aBc6/367CZyduAgDentyX6xJPbGOw1giLQ5dtP8LCqMBHKBQiMTERWVlZ3GVKpRJZWVlITk5u9bZisRgRERGQy+XYs2cPJk6cyF03dOhQ5OXl6Rx/9epVREVFcd+zQc+1a9dw6NAhBAQEtHm+Fy5cAJ/PR3BwsKFPkVhRe6ezK5WM1sgK+/zF5tPGlvZ73I4uCnwIMQWb7WW3tMsUSry65w8oGWBSQji3q4jYDp/Pw6T+4QDsY7nL6L8WCxcuxKxZszBw4EAMHjwYa9euRX19PbfLa+bMmYiIiMCqVasAADk5OSgqKkJCQgKKioqwfPlyKJVKndqbBQsWYMiQIVi5ciWefPJJnDp1Cps3b8bmzZsBqIKev/zlLzh37hwOHDgAhULB1RT5+/tDKBQiOzsbOTk5eOSRR+Dl5YXs7GwsWLAAzzzzDLctntgXbmSFiRmfeqkcSvUucfvP+Oiv8aEBpYS0j88DTQy3HFONpfBzd8UbE+Jauymxosn9O2HDrzdw5OpdVNZJEOBpu995Rgc+06dPx927d7F06VKUlpYiISEBGRkZXMFzYWGhTv1OU1MTlixZgvz8fHh6emLcuHHYsWOHzm6sQYMGYd++fVi8eDFWrFiBLl26YO3atZgxYwYAVXPD77//HgCQkJCgcz6//vorRo4cCZFIhK+++grLly+HRCJBly5dsGDBAixcuNDYp0ishN3e3SBTgGEYo4t72WJGoYAPkYt97tZos8aHBpQS0i7aYytuVdRj3SHVWIol4+Ns+seV6Ooa7Il+nXzwx51q/PB7MZ61YWsBk9YH0tPTkZ6erve6w4cP63w/YsQI5ObmtnmfEyZMwIQJE/ReFx0d3WoDOAAYMGAATp482ebjEPvBZnwUSgYSuRJiV+O2c2vmdLnY7Y4oP4+2lrqoxoeQ9tCe0P7v/RchkSsxrGsgpgygsRT2ZnL/CPxxpxpHrt51vMCHEHPQLjhskCpMD3zsdJkL0KTh217qosCHEFOwP/97z91BWY1ENZZich+7/TDUkU1MiEBskCeGdg206XnY5/oA6RAEfB7Erqr/gqaMrWB7+HjZ6VZ2QFPj09KgUhpQSkj7sB8uympUGwVeSemOqAAPW54SaYG/hxDDuwdBYOPuzRT4EJtqz6BSe57MzmIHlVIfH0IsQ7uHV1yYN54fRmMpSOso8CE25daOLe2aGh/7z/joW+qSyBWoU2e6aEApIaZhMz58HvDO1L40loK0yX4/KpMOgc34NJqU8bHv5oWAVo2PnowPm+1x4fPstg8RIfZuSGwAhncPQkqvYPTr5Gvr0yEOgH7bEptix1aYUuOjKW623//GbMZHIleiSaZbwM0OKPWjOV2EmMxD5ILPZw+29WkQB0I5QWJTZqnxseOlLk+RC1fI92DWhwqbCSHE+ijwITbVnrEVmjld9pvx4fF4XBPDB+t8qLCZEEKsjwIfYlNc92YTxlY4QsYHAHzc9df5UA8fQgixPgp8iE21Z1dXrQMUNwOasRXNl7poQCkhhFgbBT7EpjzUgY9pu7rsezI7y9dd3cunxaUu2spOCCHWQoEPsSl2bEW7+vg4aMaH3dXlTwNKCSHEaijwITblod7ObmyND8Mwmj4+dl7jw2Z8qhppVxchhNgaBT7EpkzN+DRIFVAoGQCAlx3v6gK0ujc30K4uQgixNQp8iE1xGR8ja3zY+h4XPg9uRk51tzbfNnZ1UcaHEEKshwIfYlNuruqMj5Gdm7kePm6udt/1WN/YCplCiWr10hdlfAghxHoo8CE21d6Mjz03L2Tpq/G5r1724vE01xNCCLE8CnyITbE1PlUNMjAMY/Dtah2keSGg2dVVrVXjw9b3+LkLuZEWhBBCLI8CH2JT3UM8IXLho7SmCZeKawy+nWZchQMEPmyNj1bG514dFTYTQogtUOBDbMpL7IqUuBAAwN5zRQbfzlGaFwKAr5squGmQKiCRq5b0aFwFIYTYBgU+xOam9I8AAHz/ezHkCqVBt3GU5oWAars9W3/NFjRTDx9CCLENCnyIzQ3vHoQADyEq6iQ4dr3CoNuwzQvtvYcPAPD5PG5nV7V6ZxdlfAghxDYo8CE25yrg4/H4cADAPgOXuxwp4wNoja3gMj40oJQQQmyBAh9iFyarl7t+zi1FnQE9fWocaFcXAPiwW9obdJe6KONDCCHWRYEPsQv9OvkgJsgDTTIlfrpY0ubxmgaG9r/UBWgPKlUFPJoBpTSZnRBCrIkCH2IXeDweV+S873zby11cHx8HWeryU29pp+JmQgixLQp8iN2YmKAKfLLzK1FS3djqsY4ymZ3FdmdmOzbTUhchhNgGBT7EbkT6u2NwF38wDLD/fHGrxzpacbP2vC6lkuECIMr4EEKIdVHgQ+yKZrnrTosjLBiGcagGhoBu9+aqRhmU6qfmR4EPIYRYFQU+xK6M7RsGoQsfV8vqWhxh0SRTQqZQRQ5eDpLxYQOf6gYZt5XdW+wCVwH9CBJCiDXRb11iV3zcXPFYL9UIi5aKnNlsD58HeAgFVju39mDHVlQ1SrkdXQG0o4sQQqzOpMBnw4YNiI6OhlgsRlJSEk6dOtXisTKZDCtWrEBsbCzEYjHi4+ORkZHR7LiioiI888wzCAgIgJubG/r27YszZ85w1zMMg6VLlyIsLAxubm5ISUnBtWvXdO7j3r17mDFjBry9veHr64vnnnsOdXV1pjxFYkNsT5/vLugfYcHV97i5gsdzjMnmPu6aGh8qbCaEENsxOvDZvXs3Fi5ciGXLluHcuXOIj49HamoqysvL9R6/ZMkSfPLJJ1i/fj1yc3Px4osvYvLkyTh//jx3zP379zF06FC4urrip59+Qm5uLlavXg0/Pz/umPfeew8ffvghNm3ahJycHHh4eCA1NRVNTU3cMTNmzMClS5eQmZmJAwcO4OjRo5g7d66xT5HY2IgeQfBXj7A4rmeERY2DbWUHNH18qhtkNK6CEEJsiTHS4MGDmfnz53PfKxQKJjw8nFm1apXe48PCwpiPPvpI57IpU6YwM2bM4L5/9dVXmWHDhrX4mEqlkgkNDWXef/997rKqqipGJBIxX375JcMwDJObm8sAYE6fPs0d89NPPzE8Ho8pKioy6LlVV1czAJjq6mqDjieWs3T/RSbq1QPMy1+ea3bdL1fKmKhXDzDjPzxqgzMzTWWdhIl69QAT9eoBZvXPeUzUqweYV7/93danRQghTsGYv99GZXykUinOnj2LlJQU7jI+n4+UlBRkZ2frvY1EIoFYLNa5zM3NDcePH+e+//777zFw4EBMmzYNwcHB6N+/P7Zs2cJdf/PmTZSWluo8ro+PD5KSkrjHzc7Ohq+vLwYOHMgdk5KSAj6fj5ycnBbPraamRueL2IfJAzoBAA5eaj7CwtG2sgOqQmbWzYp6AJTxIYQQWzAq8KmoqIBCoUBISIjO5SEhISgtLdV7m9TUVKxZswbXrl2DUqlEZmYm9u7di5ISzViC/Px8bNy4Ed26dcPBgwcxb948vPzyy9i+fTsAcPfd2uOWlpYiODhY53oXFxf4+/u3eG6rVq2Cj48P9xUZGWnEq0EsKb6TD2ICVSMsMv7Uff+45oUOFPi4CPjcJPn8u6q6Mwp8CCHE+iy+q2vdunXo1q0bevbsCaFQiPT0dKSlpYHP1zy0UqnEgAEDsHLlSvTv3x9z587FnDlzsGnTJoue2+LFi1FdXc193b5926KPRwzH4/G4Iud95+/oXKcpbnaMHj4sdks7m/EJ8KTAhxBCrM2owCcwMBACgQBlZWU6l5eVlSE0NFTvbYKCgrB//37U19ejoKAAV65cgaenJ2JiYrhjwsLCEBcXp3O7Xr16obCwEAC4+27tcUNDQ5sVWMvlcty7d6/FcxOJRPD29tb5IvZjkjrwOXFDd4QFW9zsKD18WH7qsRUNUgUAwN+DtrMTQoi1GRX4CIVCJCYmIisri7tMqVQiKysLycnJrd5WLBYjIiICcrkce/bswcSJE7nrhg4diry8PJ3jr169iqioKABAly5dEBoaqvO4NTU1yMnJ4R43OTkZVVVVOHv2LHfML7/8AqVSiaSkJGOeJrETkf7uGBzdfIQFN5ndwQIfnwfmitG4CkIIsT6jl7oWLlyILVu2YPv27bh8+TLmzZuH+vp6pKWlAQBmzpyJxYsXc8fn5ORg7969yM/Px7FjxzBmzBgolUosWrSIO2bBggU4efIkVq5cievXr+OLL77A5s2bMX/+fACqZY9XXnkF//d//4fvv/8eFy9exMyZMxEeHo5JkyYBUGWIxowZgzlz5uDUqVP47bffkJ6ejqeeegrh4eHteY2IDU0e0HyEhaONq2Cxg0pZVONDCCHWZ/RfjunTp+Pu3btYunQpSktLkZCQgIyMDK7wuLCwUKd+p6mpCUuWLEF+fj48PT0xbtw47NixA76+vtwxgwYNwr59+7B48WKsWLECXbp0wdq1azFjxgzumEWLFqG+vh5z585FVVUVhg0bhoyMDJ0dY7t27UJ6ejpGjRoFPp+PqVOn4sMPPzTldSF2YlzfMCz7/hI3wqJPhA9qHbC4GdD08mFR4EMIIdbHY5gWJkF2QDU1NfDx8UF1dTXV+9iRv+86ix8vluK5YV3wxoQ4TNrwGy7crsKWmQPxWFxI23dgJ1b/nIf1v1wHoBq1cWnFGBufESGEOAdj/n7TrC5i9yb3V/X0YUdYaDo3O9ZSl3aNjz/t6CKEEJugwIfYvRHdg+Dn7sqNsOCKm90cbKlLq8aHdnQRQohtUOBD7J7QhY/H41UF6vvOF2kVNztY4KN1vrSjixBCbIMCH+IQ2GaGGX+WQipXTWz3crClLraBIUCFzYQQYisU+BCHkBDpiy6BHpCogx4eD/AUOm7gQxkfQgixDQp8iEPQHmEBAF4iF/D5PBuekfF83LRrfCjwIYQQW6DAhzgM7cDH0ep7gAd2dVHgQwghNkGBD3EYkf7uGBTtB8DxmhcCqiJtD6EAAA0oJYQQW6HAhziUvySqevqE+4rbONI+hfm6AQAifN1tfCaEENIxOVZ1KOnwpiVGQsDnY2CUn61PxSRrnozHtbI69Aj1svWpEEJIh0SBD3EofD6Py/o4on6dfNGvk6+tT4MQQjosWuoihBBCSIdBgQ8hhBBCOgwKfAghhBDSYVDgQwghhJAOgwIfQgghhHQYFPgQQgghpMOgwIcQQgghHQYFPoQQQgjpMCjwIYQQQkiHQYEPIYQQQjoMCnwIIYQQ0mFQ4EMIIYSQDoMCH0IIIYR0GDSdXQvDMACAmpoaG58JIYQQQgzF/t1m/463hgIfLbW1tQCAyMhIG58JIYQQQoxVW1sLHx+fVo/hMYaERx2EUqlEcXExvLy8wOPxbH06FlNTU4PIyEjcvn0b3t7etj4di+tIz5eeq/PqSM+XnqvzstTzZRgGtbW1CA8PB5/fehUPZXy08Pl8dOrUydanYTXe3t4d4geN1ZGeLz1X59WRni89V+dliefbVqaHRcXNhBBCCOkwKPAhhBBCSIdBgU8HJBKJsGzZMohEIlufilV0pOdLz9V5daTnS8/VednD86XiZkIIIYR0GJTxIYQQQkiHQYEPIYQQQjoMCnwIIYQQ0mFQ4EMIIYSQDoMCH0IIIYR0GBT4OJlVq1Zh0KBB8PLyQnBwMCZNmoS8vLxWb/PZZ5+Bx+PpfInFYiudcfssX7682bn37Nmz1dt888036NmzJ8RiMfr27Ysff/zRSmfbPtHR0c2eK4/Hw/z58/Ue70jv69GjR/H4448jPDwcPB4P+/fv17meYRgsXboUYWFhcHNzQ0pKCq5du9bm/W7YsAHR0dEQi8VISkrCqVOnLPQMjNPa85XJZHj11VfRt29feHh4IDw8HDNnzkRxcXGr92nKz4I1tPXePvvss83Oe8yYMW3erz2+t209V30/vzweD++//36L92mv76shf2uampowf/58BAQEwNPTE1OnTkVZWVmr92vqz7oxKPBxMkeOHMH8+fNx8uRJZGZmQiaTYfTo0aivr2/1dt7e3igpKeG+CgoKrHTG7de7d2+dcz9+/HiLx544cQJPP/00nnvuOZw/fx6TJk3CpEmT8Oeff1rxjE1z+vRpneeZmZkJAJg2bVqLt3GU97W+vh7x8fHYsGGD3uvfe+89fPjhh9i0aRNycnLg4eGB1NRUNDU1tXifu3fvxsKFC7Fs2TKcO3cO8fHxSE1NRXl5uaWehsFae74NDQ04d+4c3njjDZw7dw579+5FXl4ennjiiTbv15ifBWtp670FgDFjxuic95dfftnqfdrre9vWc9V+jiUlJdi6dSt4PB6mTp3a6v3a4/tqyN+aBQsW4IcffsA333yDI0eOoLi4GFOmTGn1fk35WTcaQ5xaeXk5A4A5cuRIi8ds27aN8fHxsd5JmdGyZcuY+Ph4g49/8sknmfHjx+tclpSUxLzwwgtmPjPL+8c//sHExsYySqVS7/WO+r4CYPbt28d9r1QqmdDQUOb999/nLquqqmJEIhHz5Zdftng/gwcPZubPn899r1AomPDwcGbVqlUWOW9TPfh89Tl16hQDgCkoKGjxGGN/FmxB33OdNWsWM3HiRKPuxxHeW0Pe14kTJzKPPvpoq8c4wvvKMM3/1lRVVTGurq7MN998wx1z+fJlBgCTnZ2t9z5M/Vk3FmV8nFx1dTUAwN/fv9Xj6urqEBUVhcjISEycOBGXLl2yxumZxbVr1xAeHo6YmBjMmDEDhYWFLR6bnZ2NlJQUnctSU1ORnZ1t6dM0K6lUip07d2L27Nng8XgtHufI7yvr5s2bKC0t1XnffHx8kJSU1OL7JpVKcfbsWZ3b8Pl8pKSkONx7Dah+jnk8Hnx9fVs9zpifBXty+PBhBAcHo0ePHpg3bx4qKytbPNZZ3tuysjL873//w3PPPdfmsY7wvj74t+bs2bOQyWQ671PPnj3RuXPnFt8nU37WTUGBjxNTKpV45ZVXMHToUPTp06fF43r06IGtW7fiu+++w86dO6FUKjFkyBDcuXPHimdrmqSkJHz22WfIyMjAxo0bcfPmTTz88MOora3Ve3xpaSlCQkJ0LgsJCUFpaak1Ttds9u/fj6qqKjz77LMtHuPI76s29r0x5n2rqKiAQqFwive6qakJr776Kp5++ulWp1kb+7NgL8aMGYPPP/8cWVlZePfdd3HkyBGMHTsWCoVC7/HO8t5u374dXl5ebS79OML7qu9vTWlpKYRCYbNgvbX3yZSfdVO4mO2eiN2ZP38+/vzzzzbXg5OTk5GcnMx9P2TIEPTq1QuffPIJ3nrrLUufZruMHTuW+3e/fv2QlJSEqKgofP311wZ9knJUn376KcaOHYvw8PAWj3Hk95WoyGQyPPnkk2AYBhs3bmz1WEf9WXjqqae4f/ft2xf9+vVDbGwsDh8+jFGjRtnwzCxr69atmDFjRpsbDhzhfTX0b429oIyPk0pPT8eBAwfw66+/olOnTkbd1tXVFf3798f169ctdHaW4+vri+7du7d47qGhoc12FZSVlSE0NNQap2cWBQUFOHToEJ5//nmjbueo7yv73hjzvgUGBkIgEDj0e80GPQUFBcjMzGw126NPWz8L9iomJgaBgYEtnrczvLfHjh1DXl6e0T/DgP29ry39rQkNDYVUKkVVVZXO8a29T6b8rJuCAh8nwzAM0tPTsW/fPvzyyy/o0qWL0fehUChw8eJFhIWFWeAMLauurg43btxo8dyTk5ORlZWlc1lmZqZOZsTebdu2DcHBwRg/frxRt3PU97VLly4IDQ3Ved9qamqQk5PT4vsmFAqRmJiocxulUomsrCyHeK/ZoOfatWs4dOgQAgL+f/t2D9I6GIUB+LtgUu1i5SpFlBQHdXAQLAidBBUHB8WpLuKkqJOgoIsUNwdx6SBOOoqD4OBQENul6KBGFJWCEhChIghKoVVB3zvcez9uf+zfhdaY94EMadLT7+TkkENpfxYcI1cvfFV3d3fi8fHx03WbvbZC/P7G1u12i/b29oLf+1XqmutZ43a7haIoSXWKRCLi9vb20zoV0+vFLp6+kcnJSVRXVyMUCiEajcotHo/Lc0ZGRjA/Py/3FxcXEQgEcHNzg+PjYwwPD6OyshIXFxflSKEgMzMzCIVCMAwD4XAYvb29qK2txcPDA4D0XMPhMCoqKrC8vIyrqyv4fD4oioLz8/NypVCQ9/d3aJqGubm5tGNmrmssFoOu69B1HUIIrKysQNd1+S+mpaUlOBwO7Ozs4OzsDIODg2hqakIikZAxuru74ff75f7m5iZsNhs2NjZweXmJ8fFxOBwO3N/flzy/VNnyfXt7w8DAABobG3F6eprUx6+vrzJGar65eqFcsuUai8UwOzuLg4MDGIaBvb09dHR0oLm5GS8vLzKGWWqb6z4GgOfnZ9jtdqyurmaMYZa65vOsmZiYgKZp2N/fx9HRETweDzweT1Kc1tZWbG9vy/18ev1/cfD5ZoQQGbf19XV5TldXF0ZHR+X+9PQ0NE2DqqpwOp3o7+/HyclJ6RdfBK/Xi/r6eqiqioaGBni9XlxfX8vjqbkCwNbWFlpaWqCqKtra2rC7u1viVRcvEAhACIFIJJJ2zMx1DQaDGe/bv/l8fHxgYWEBTqcTNpsNPT09adfA5XLB5/Mlveb3++U16OzsxOHhYYkyyi5bvoZhfNrHwWBQxkjNN1cvlEu2XOPxOPr6+lBXVwdFUeByuTA2NpY2wJiltrnuYwBYW1tDVVUVnp6eMsYwS13zedYkEglMTU2hpqYGdrsdQ0NDiEajaXH+fU8+vf6/fvz5YCIiIqJvj7/xISIiIsvg4ENERESWwcGHiIiILIODDxEREVkGBx8iIiKyDA4+REREZBkcfIiIiMgyOPgQERGRZXDwISIiIsvg4ENERESWwcGHiIiILOMX0TfO0fZaLF0AAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "to_plot = []\n", "params_history = []\n", "params = best_params.copy()\n", "for baseline_lam in range(2, 41):\n", " params['baseline_lam'] = baseline_lam/2\n", " params_history.append(params['baseline_lam'])\n", " print(params['baseline_lam'])\n", " process_params = {key: params[key] for key in ['baseline_lam', 'baseline_p', 'smooth_window_length', 'smooth_polyorder']}\n", " classifier_params = {key: params[key] for key in best_params.keys() if key not in ['baseline_lam', 'baseline_p', 'smooth_window_length', 'smooth_polyorder']}\n", " X_train, X_test = process_train_test(process_params, experiments_train, metadata_train, experiments_test, metadata_test, scale=True)\n", " to_plot.append(evaluate_classifier_params(RandomForestClassifier, classifier_params, X_train, truth_train, X_test, truth_test, iters=20)[1])\n", "best_params['baseline_lam'] = params_history[to_plot.index(max(to_plot))]\n", "_ = plt.plot(np.array(range(2, 41))/2, to_plot)\n", "_ = plt.title(\"Impact of varying baseline lambdas\")\n", "plt.savefig('../images/random_forest/vary_baseline_lambda.svg', format='svg', dpi=1200)" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-05-01T09:03:59.697213100Z", "start_time": "2024-05-01T08:40:42.295054500Z" } }, "id": "5e1397e0d62bdae5", "execution_count": 16 }, { "cell_type": "code", "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.999997697417558\n", "0.3162270378763362\n", "0.09999976974175581\n", "0.03162270378763363\n", "0.009999976974175576\n", "0.003162270378763361\n", "0.0009999976974175576\n", "0.0003162270378763361\n", "9.999976974175576e-05\n", "3.162270378763361e-05\n" ] }, { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGzCAYAAAAMr0ziAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbxUlEQVR4nO3de1xUdf4/8NeZGWYGGBjuAyiCokLeDZWlNC+RqOWq9S01S+OXVq65Gd+2zV3Tbpttba5WpulqltWmldp+yzCj1Mw7ZpsX8IIIGgwgl4FBGJg5vz9gRkdQGWQ4M8Pr+XjMozicOfM+jDIvP1dBFEURRERERC5MJnUBRERERDfCwEJEREQuj4GFiIiIXB4DCxEREbk8BhYiIiJyeQwsRERE5PIYWIiIiMjlMbAQERGRy2NgISIiIpfHwEIkkfXr1yM+Ph5eXl4ICAiQuhyHjBgxAiNGjJDktQVBwJNPPinJa9/Ijh07IAgCduzYYTv2yCOPICYmRrKanGnEiBEQBAGCIOCee+6RupzrWrp0qa1WQRBQUlIidUnkIAYWanPr1q2DIAg4dOiQ1KXctK1bt+KFF15o8+tmZWXhkUceQWxsLFavXo1Vq1a1+WsQtYf4+HisX78ezzzzjN3xDRs24KGHHkKPHj0gCIJkAddqzJgxWL9+PSZNmiRpHdR6CqkLIHJlW7duxfLly9s8tOzYsQMWiwXLli1D9+7d2/Ta7eHbb7+VugS3sXr1algsFqnLcBqdToeHHnqoyfEVK1YgMzMTgwcPxsWLFyWozF58fDzi4+Nx+vRpbN68WepyqBUYWIgkUFRUBAAu0xVkNBrh6+vb4vOVSqUTq/EsXl5eUpcgifXr16NTp06QyWTo06eP1OWQB2CXELWLRx55BBqNBnl5ebjnnnug0WjQqVMnLF++HADw66+/YtSoUfD19UV0dDQ++eQTu+dbu5l27dqFxx9/HMHBwfD398f06dNRVlZmd+6XX36Ju+++G5GRkVCpVIiNjcXLL78Ms9ncpK79+/dj3LhxCAwMhK+vL/r164dly5bZarbWd2Xf9428++676N27N1QqFSIjIzFnzhyUl5fbvh8TE4NFixYBAEJDQyEIwjVbcP7xj39AEAScO3euyffmz58PpVJpu/8ff/wR999/P7p06QKVSoWoqCg8/fTTuHTpkt3zrO/FmTNnMG7cOPj5+WHatGlYtGgRvLy8UFxc3OS1HnvsMQQEBKCmpgZA0zEs1rEbGzduxN/+9jd07twZarUad955J06fPt3kesuXL0e3bt3g7e2NIUOG4Mcff3R4XMzHH3+MuLg4qNVqJCQkYNeuXXbfP3fuHP7whz8gLi4O3t7eCA4Oxv3334/c3Fy78+rq6vDiiy+iR48eUKvVCA4OxtChQ7F9+3a787KysvA///M/CAoKglqtxqBBg/Cf//znhnVePYYlNzcXgiDgH//4B1atWoXY2FioVCoMHjwYBw8ebPL81r7ula/zz3/+E9HR0fD29sbw4cNx9OhRu3MLCwuRmpqKzp07Q6VSISIiAhMmTGjys3JEVFQUZLKWfcRcuHAB/+///T/odDqoVCr07t0ba9euveHzRFHEyJEjERoaavtHAACYTCb07dsXsbGxMBqNrb4Hci1sYaF2YzabMXbsWNxxxx14/fXX8fHHH+PJJ5+Er68v/vrXv2LatGm49957sXLlSkyfPh1JSUno2rWr3TWefPJJBAQE4IUXXkB2djZWrFiBc+fO2T4wgYZwo9FokJaWBo1Gg++//x4LFy6EwWDAG2+8YbvW9u3bcc899yAiIgJPPfUUwsPDceLECXz11Vd46qmn8Pjjj+O3337D9u3bsX79+hbd4wsvvIAXX3wRycnJmD17tq3GgwcP4qeffoKXlxeWLl2KDz/8EJs3b8aKFSug0WjQr1+/Zq/3wAMP4Nlnn8XGjRvxpz/9ye57GzduxOjRoxEYGAgA+Oyzz1BdXY3Zs2cjODgYBw4cwNtvv43z58/js88+s3tufX09UlJSMHToUPzjH/+Aj48PkpKS8NJLL2HDhg12g1pNJhM+//xz3HfffVCr1de9/9deew0ymQzPPPMMKioq8Prrr2PatGnYv3+/7ZwVK1bgySefxLBhw/D0008jNzcXEydORGBgIDp37tyin/POnTuxYcMG/PGPf4RKpcK7776LMWPG4MCBA7Z/zR88eBB79uzBlClT0LlzZ+Tm5mLFihUYMWIEjh8/Dh8fH9t7tnjxYsycORNDhgyBwWDAoUOHcPjwYdx1110AgGPHjuH2229Hp06d8Nxzz8HX1xcbN27ExIkT8cUXX7RqXMQnn3yCyspKPP744xAEAa+//jruvfde5OTk2Fpl2uJ1P/zwQ1RWVmLOnDmoqanBsmXLMGrUKPz666/Q6XQAgPvuuw/Hjh3D3LlzERMTg6KiImzfvh15eXlOHzCs1+vxu9/9zjaYOjQ0FN988w0effRRGAwGzJs375rPFQQBa9euRb9+/fDEE09g06ZNAIBFixbh2LFj2LFjh0Mth+TiRKI29v7774sAxIMHD9qOzZgxQwQgvvrqq7ZjZWVlore3tygIgvjpp5/ajmdlZYkAxEWLFjW5ZkJCgmgymWzHX3/9dRGA+OWXX9qOVVdXN6np8ccfF318fMSamhpRFEWxvr5e7Nq1qxgdHS2WlZXZnWuxWGz/P2fOHLGlf02KiopEpVIpjh49WjSbzbbj77zzjghAXLt2re3YokWLRABicXHxDa+blJQkJiQk2B07cOCACED88MMPbceau+/FixeLgiCI586dsx2zvhfPPfdcs6+VmJhod2zTpk0iAPGHH36wHRs+fLg4fPhw29c//PCDCEC85ZZbxNraWtvxZcuWiQDEX3/9VRRFUaytrRWDg4PFwYMHi3V1dbbz1q1bJwKwu+a1ABABiIcOHbIdO3funKhWq8VJkyZd9+exd+/eJj+3/v37i3ffffd1X/POO+8U+/bta/vzI4oNf05uu+02sUePHk1+Dlf+rGbMmCFGR0fbvj579qwIQAwODhZLS0ttx7/88ksRgPh///d/Dr9uc6yv4+3tLZ4/f952fP/+/SIA8emnnxZFseHvIQDxjTfeuO71mnP1n4Nr6d279zXPe/TRR8WIiAixpKTE7viUKVNErVbb7Pt4tffee08EIH700Ufivn37RLlcLs6bN6/Zcx35u0euhV1C1K5mzpxp+/+AgADExcXB19cXDzzwgO14XFwcAgICkJOT0+T5jz32mN2YgNmzZ0OhUGDr1q22Y97e3rb/r6ysRElJCYYNG4bq6mpkZWUBAH7++WecPXsW8+bNazKOpCXdPs357rvvYDKZMG/ePLum8FmzZsHf3x9ff/11q647efJkZGZm4syZM7ZjGzZsgEqlwoQJE2zHrrxvo9GIkpIS3HbbbRBFET///HOT686ePbvJsenTp2P//v12r/Xxxx8jKioKw4cPv2GtqampduNbhg0bBgC29/LQoUO4ePEiZs2aBYXicgPvtGnTbC1FLZGUlISEhATb1126dMGECROwbds2W9fflT+Puro6XLx4Ed27d0dAQAAOHz5s+15AQACOHTuGU6dONftapaWl+P777/HAAw/Y/jyVlJTg4sWLSElJwalTp3DhwoUW1241efJku3u++mfVVq87ceJEdOrUyfb1kCFDkJiYaPs74+3tDaVSiR07djTpXnU2URTxxRdfYPz48RBF0XaPJSUlSElJQUVFhd17dS2PPfYYUlJSMHfuXDz88MOIjY3Fq6++2g53QO2JgYXajVqtRmhoqN0xrVaLzp07NwkJWq222V+ePXr0sPtao9EgIiLCrq/92LFjmDRpErRaLfz9/REaGmqbxVBRUQEAtg/kthwMaB1nEhcXZ3dcqVSiW7duzY5DaYn7778fMpkMGzZsANDwS/6zzz7D2LFj4e/vbzsvLy8PjzzyCIKCgqDRaBAaGmoLGdb7tlIoFM12v0yePBkqlQoff/yx7XlfffUVpk2b1qIg16VLF7uvrR/I1vfS+jO4emaUQqFwqOvh6j8HANCzZ09UV1fbxuBcunQJCxcuRFRUFFQqFUJCQhAaGory8nK7n8dLL72E8vJy9OzZE3379sWf/vQn/Pe//7V9//Tp0xBFEc8//zxCQ0PtHtaxSFeOn2ipG/2s2up1r/Wzsv6dUalU+Pvf/45vvvkGOp3O1mVbWFjo8D05qri4GOXl5Vi1alWTe0xNTQVw+R4LCwvtHlePzVqzZg2qq6tx6tQprFu3zi6wkmfgGBZqN3K53KHjoig6/Brl5eUYPnw4/P398dJLLyE2NhZqtRqHDx/Gn//8Z7ecXhoZGYlhw4Zh48aN+Mtf/oJ9+/YhLy8Pf//7323nmM1m3HXXXSgtLcWf//xnxMfHw9fXFxcuXMAjjzzS5L5VKlWzAyIDAwNxzz334OOPP8bChQvx+eefo7a2ttlpq81py/fyZs2dOxfvv/8+5s2bh6SkJGi1WgiCgClTptj9PO644w6cOXMGX375Jb799lv861//wj//+U+sXLkSM2fOtJ37zDPPICUlpdnXas3U9Bv9rJz1us2ZN28exo8fjy1btmDbtm14/vnnsXjxYnz//fcYOHBgm7xGc6z3+NBDD2HGjBnNnmMd3xUREWF3/P3338cjjzxi+3rHjh2ora0F0DCIPykpyQkVk5QYWMitnDp1CiNHjrR9XVVVhYKCAowbNw5Awy+tixcvYtOmTbjjjjts5509e9buOrGxsQCAo0ePIjk5+Zqv50j3UHR0NAAgOzsb3bp1sx03mUw4e/bsdV/nRiZPnow//OEPyM7OxoYNG+Dj44Px48fbvv/rr7/i5MmT+OCDDzB9+nTb8atnurTE9OnTMWHCBBw8eBAff/wxBg4ciN69e7e69itZf0anT5+2ex/r6+uRm5t7zcHHV2uu++bkyZPw8fGxteJ9/vnnmDFjBt58803bOTU1NXYztqyCgoKQmpqK1NRUVFVV4Y477sALL7yAmTNn2t5LLy+vm3oPHdVWr3utn9XVLVqxsbH43//9X/zv//4vTp06hQEDBuDNN9/ERx991OrXvpHQ0FD4+fnBbDbf8B6v/rN85Z/JgoICzJ07F6NHj4ZSqbSFPOufN/IM7BIit7Jq1SrU1dXZvl6xYgXq6+sxduxYAJf/1Xrlv+hNJhPeffddu+vceuut6Nq1K5YuXdrkA+zK51pnGDT3IXe15ORkKJVKvPXWW3bXWLNmDSoqKnD33Xe37Cabcd9990Eul+Pf//43PvvsM9xzzz12sx+au29RFG1TtB0xduxYhISE4O9//zt27tzZ4taVlhg0aBCCg4OxevVq1NfX245//PHHDo2f2Lt3r93Yhvz8fHz55ZcYPXq07Wchl8ubtOy8/fbbTaa3X72omUajQffu3W3/Wg8LC8OIESPw3nvvoaCgoEktzU0Dbwtt9bpbtmyxG+ty4MAB7N+/3/Z3prq62jZd3So2NhZ+fn62n4GzyOVy3Hffffjiiy+aTLUG7O8xOTnZ7nFli8usWbNgsViwZs0arFq1CgqFAo8++qgkLXvkPGxhIbdiMplw55134oEHHkB2djbeffddDB06FL///e8BALfddhsCAwMxY8YM/PGPf4QgCFi/fn2TX1wymQwrVqzA+PHjMWDAAKSmpiIiIgJZWVk4duwYtm3bBgC2gZ1//OMfkZKSArlcjilTpjRbW2hoKObPn48XX3wRY8aMwe9//3tbjYMHD76pD/6wsDCMHDkSS5YsQWVlJSZPnmz3/fj4eMTGxuKZZ57BhQsX4O/vjy+++KJVgyi9vLwwZcoUvPPOO5DL5Zg6dWqr676aUqnECy+8gLlz52LUqFF44IEHkJubi3Xr1iE2NrbFLVp9+vRBSkqK3bRmAHjxxRdt59xzzz1Yv349tFotevXqhb179+K7775DcHCw3bV69eqFESNGICEhAUFBQTh06BA+//xzu6ndy5cvx9ChQ9G3b1/MmjUL3bp1g16vx969e3H+/Hn88ssvbfDTaaotXrd79+4YOnQoZs+ejdraWixduhTBwcF49tlnATS0tlj/TvXq1QsKhQKbN2+GXq+/5p/1lti1a5dtbZzi4mIYjUa88sorABq64awtoK+99hp++OEHJCYmYtasWejVqxdKS0tx+PBhfPfddygtLb3u67z//vv4+uuvsW7dOtu4rLfffhsPPfQQVqxYgT/84Q+tvgdyMe0+L4k83rWmNfv6+jY5d/jw4WLv3r2bHI+Ojrabamq95s6dO8XHHntMDAwMFDUajTht2jTx4sWLds/96aefxN/97neit7e3GBkZKT777LPitm3bmkw3FUVR3L17t3jXXXeJfn5+oq+vr9ivXz/x7bfftn2/vr5enDt3rhgaGioKgtCiKc7vvPOOGB8fL3p5eYk6nU6cPXt2k6nTrZlauXr1ahGA6OfnJ166dKnJ948fPy4mJyeLGo1GDAkJEWfNmiX+8ssvIgDx/ffft513rffiStZp06NHj272+9ea1vzZZ5/ZnWedWnvl64uiKL711ltidHS0qFKpxCFDhog//fSTmJCQII4ZM+b6PwSxYVrznDlzxI8++kjs0aOHqFKpxIEDBzZ5b8vKysTU1FQxJCRE1Gg0YkpKipiVlSVGR0eLM2bMsJ33yiuviEOGDBEDAgJEb29vMT4+Xvzb3/5mN31eFEXxzJkz4vTp08Xw8HDRy8tL7NSpk3jPPfeIn3/+eZOfQ0umNTc3jRhXTedv6es258rXefPNN8WoqChRpVKJw4YNE3/55RfbeSUlJeKcOXPE+Ph40dfXV9RqtWJiYqK4cePG615fFK8/rdn6Z7y5x9X3qNfrxTlz5ohRUVGil5eXGB4eLt55553iqlWrrvv6+fn5olarFcePH9/ke5MmTRJ9fX3FnJycZuvitGb3I4gi28zI9a1btw6pqak4ePAgBg0aJHU5Hu+XX37BgAED8OGHH+Lhhx92+utZLBaEhobi3nvvxerVq53+eh1Bbm4uunbtijfeeKPJxoRtZcSIEairq8OXX34JpVJpN2vN1dTU1KCqqgqvv/463njjDRQXFyMkJETqssgBHMNCRE2sXr0aGo0G9957b5tfu6ampkkX3YcffojS0lLJd/Qlx+3ZswehoaF48MEHpS7lulauXInQ0FC71a7JvXAMCxHZ/N///R+OHz+OVatW2bZNaGv79u3D008/jfvvvx/BwcE4fPgw1qxZgz59+uD+++9v89cj53nzzTdt46SuXmPJ1dx333126y5ptVoJq6HWYGAhIpu5c+dCr9dj3LhxdgNY21JMTAyioqLw1ltvobS0FEFBQZg+fTpee+017gLtZq5cbdjVRUVFISoqSuoy6CY4PIZl165deOONN5CZmYmCggJs3rwZEydOvO5zduzYgbS0NBw7dgxRUVFYsGCB3YI/QMNo+DfeeAOFhYXo378/3n77bQwZMsTR+yEiIiIP5PAYFqPRiP79+2P58uUtOv/s2bO4++67MXLkSBw5cgTz5s3DzJkzbdNGgYZ9UdLS0rBo0SIcPnwY/fv3R0pKSquWuyYiIiLPc1OzhARBuGELy5///Gd8/fXXdosCTZkyBeXl5UhPTwcAJCYmYvDgwXjnnXcANMwYiIqKwty5c/Hcc8+1tjwiIiLyEE4fw7J3794mSy6npKRg3rx5ABoWAsvMzMT8+fNt35fJZEhOTsbevXubvWZtba3dCowWiwWlpaUIDg5u9U67RERE1L5EUURlZSUiIyOb3d/sSk4PLIWFhdDpdHbHdDodDAYDLl26hLKyMpjN5mbPycrKavaaixcvdtqAQCIiImpf+fn5ze4gfyW3nCU0f/58pKWl2b6uqKhAly5dkJ+f79ILFxEREdFlBoMBUVFR8PPzu+G5Tg8s4eHh0Ov1dsf0ej38/f3h7e0NuVwOuVze7Dnh4eHNXlOlUkGlUjU57u/vz8BCRETkZloynMPpK90mJSUhIyPD7tj27duRlJQEoGEztISEBLtzLBYLMjIybOcQERFRx+ZwYKmqqsKRI0dw5MgRAA3Tlo8cOYK8vDwADd0106dPt53/xBNPICcnB88++yyysrLw7rvvYuPGjXj66adt56SlpWH16tX44IMPcOLECcyePRtGoxGpqak3eXtERETkCRzuEjp06BBGjhxp+9o6lmTGjBlYt24dCgoKbOEFALp27Yqvv/4aTz/9NJYtW4bOnTvjX//6F1JSUmznTJ48GcXFxVi4cCEKCwsxYMAApKenNxmIS0RERB2TR+zWbDAYoNVqUVFRwTEsREREbsKRz2/u1kxEREQuj4GFiIiIXB4DCxEREbk8BhYiIiJyeQwsRERE5PIYWIiIiMjlMbAQERGRy2NgISIiIpfnlrs1ExG1pfzSamz5+QICfZW4JcIPceH+0Kj465HIlfBvJBF1WKIoYvPPF7Dwy2Ooqq23+15UkDfiw/1xS4Q/bgn3Q3yEP7oE+UAuu/GuskTU9hhYiKhDMtTUYcHmo/jPL78BAPp31iLQV4msgkoUGmqQX3oJ+aWXsP243vYcby85eob7NQSYxhATH+6HAB+lVLdB1GEwsBBRh3MotxRPfXoEF8ovQS4T8NSdPfCHEbFQyBuG9ZUZTThRaEBWQSWyCg3IKqxEdmElLtWZ8Ut+OX7JL7e7XoRWjfhwP9wS4Y/4xhaZriG+tusR0c3j5odE1GHUmy146/vTeOf7U7CIDd0+y6YMxK1dAm/4XLNFRO5Foy3EnGj87/myS82er1TI0CNM09it5If4cH/ER/ghRKNq69sicluOfH4zsBBRh5B3sRrzNvyMw3nlAIB7B3bCixN6w0/tdVPXNdTU4WRhJU4UGHCisBJZBQZkF1bCaDI3e36IRtUYYPxsY2Riw3yhUshvqg4id8TAQkR0hc0/n8fzWxoG1vqpFHhlUh9MGNDJaa9nsYg4X3apSbdS7kUjmvuNq5AJiA3VIP6Klphbwv2h81dBEDjIlzwXAwsRERpaP57fchRfHmkYWDs4JhBLHhiAqCAfSeqpNtXjpL4KJwoMyLqiRcZQU9/s+QE+Xle0xDT8t6fOD95KtsaQZ2BgIaIO71BuKeZtOILzZc0PrHUVoiiioKLminExDSEmp8QIs6Xpr2eZAMSE+OKWcH+7mUqdA73ZGkNuh4GFiDqserMFb39/Gm9fMbB26eSBSIi+8cBaV1JTZ8bpoipkNY6PsQaaUqOp2fP9VArEhfshPsIPA6ICMSg6ENHBPgwx5NIYWIioQ8ovrcZTn7b9wFpXIYoiiqtqL4+LKajEicJKnC6qRJ256a/yEI0SCdGBGBQdhISYQPSJ1EKpcK0WJurYGFiIqMNp74G1rqTObEFOsRFZhQYc+82AzHNl+PV8BUxmi915KoUM/TsHICGmoQUmITqQi96RpBhYiKjDuHpg7aDoQPxzsnQDa11FTZ0ZRy9U4NC5MhzKLUPmuVKUVdc1Oa97mMYWXgbFBCGG3UjUjhhYiKhDuHpg7R9H9cCcka43sNYViKKInBIjDuWWNgaYMuSUGJucF6JR4tYugRgUE4iE6CD07cRuJHIeBhYi8mieMrBWaherapF5riG8HGI3EkmAgYWIPFZ+aTXmbTiCzHNlADxvYK2U2I1E7Y2BhYg80pafL+D5LUdR2QEH1krB2o2UmVuGQ+dKcehcGXKKb9yN1KeTP7caoBZhYCEij2KoqcPCLUexhQNrJVdqNDV2IZUiM7cM/22mG0mpkKF/Zy0SooNsLTGBvuxGoqYYWIjIY2SeK8VTn3Jgrau6uhvpcF5Zs4vbxYb6YlB0EAbFsBuJLmNgISK3x4G17qml3UjBvo2L2rEbqUNjYCEit3b1wNpJAzvhJQ6sdVvsRqJrYWAhIrfFgbWer7a+sRspt2E6dea55ruR/jiqO9JGx0lQIbUXBhYicjtXD6xNiA7EUg6s7RBEUcTZEmNjgGlY2C6nxAg/tQKZC+7iwnUezJHPb0U71UREdE1XDqyVCcAf7+yBJ0d258DaDkIQBHQL1aBbqAYPDI6CxSIicXEGiitr8dOZEoyMC5O6RHIB/G1ARJKpN1uw9LuTeOC9fThfdgmdA73x2RNJmJfck2GlA5PJBKT01gEAth0tlLgachX8jUBEksgvrcaUVfuw9LtTMFtETBwQia1PDUNCdJDUpZELGNsnAgDw7XE96q8aoEsdE7uEiKjdfXnkAhZsvjyw9uWJfTBxIAfW0mVDugYhwMcLpUYTDuaWISk2WOqSSGJsYSGidlNZU4enNxzBU58eQWVtPRKiA7H1qWEMK9SEl1yGu25p6BZKP1ogcTXkChhYiKhdZJ4rw7i3fsTmny9AJgDzkntgw2O/4ywguqaxfcMBAOnHCmGxuP2EVrpJ7BIiIqeqN1uw/IczeOv7hrEqnQO9sWzKAI5VoRu6vXsINCoF9IZaHDlfjlu7cJXjjowtLETkNNaBtf/87iQH1pLDVAo5RsU3TGlO52yhDq9VgWX58uWIiYmBWq1GYmIiDhw4cM1z6+rq8NJLLyE2NhZqtRr9+/dHenq63TkvvPACBEGwe8THx7emNCJyEV8euYBxy37EoXNl0KgUWDp5AJZOGQh/Lq9PDhjTp7Fb6GghPGCdU7oJDncJbdiwAWlpaVi5ciUSExOxdOlSpKSkIDs7G2FhTRf3WbBgAT766COsXr0a8fHx2LZtGyZNmoQ9e/Zg4MCBtvN69+6N77777nJhCvZWEbmjypo6LPzyGDb/fAEAcGuXACybMpBjVahVRsSFQqWQIa+0GscLDOgdqZW6JJKIw0vzJyYmYvDgwXjnnXcAABaLBVFRUZg7dy6ee+65JudHRkbir3/9K+bMmWM7dt9998Hb2xsfffQRgIYWli1btuDIkSOtugkuzU+uymIRUVNvhrHWjEsmM4ymelSbzKg21aPObIGPUgGNSgFflQK+Kjl8lQr4KOUQBEHq0lsl81wZ5m34GfmlXLGW2s5jHx7Ct8f13FvIAzltaX6TyYTMzEzMnz/fdkwmkyE5ORl79+5t9jm1tbVQq9V2x7y9vbF79267Y6dOnUJkZCTUajWSkpKwePFidOnS5ZrXrK2ttX1tMBgcuQ2iJswWEdWm+sZQ0RAoqk1mGGsvH7tkqm/8nhnVtfWormv8r/WYqfn/d5QgAL7KxgCjagw0SkXj/19xTGV/7MpzNarLz1cpZE4PQBxYS840tm84vj2uxzdHCxlYOjCHAktJSQnMZjN0Op3dcZ1Oh6ysrGafk5KSgiVLluCOO+5AbGwsMjIysGnTJpjNl3+RJyYmYt26dYiLi0NBQQFefPFFDBs2DEePHoWfn1+Tay5evBgvvviiI6WThxBFEYaaelSb6u1aLexaL2xh4urw0BhCrOGj1oxLdQ2hpLbe+Stp+ijl8GlsQfFRyuEll9nuw1hbjypTPUQREEWgqrYeVbX1AGpveN0bUciEK0LOtUOQr0oBX2VzgajhedZjXle1luSXVuPpDUdw6FwZAGDigEi8NLEPx6pQmxkVr4OXXMCpoiqcLqpC9zCN1CWRBJw+UGTZsmWYNWsW4uPjIQgCYmNjkZqairVr19rOGTt2rO3/+/Xrh8TERERHR2Pjxo149NFHm1xz/vz5SEtLs31tMBgQFRXl3BshyVwymbHnTAm+zyrCD1lF+K2ixmmvJRNgCxW+KgW8veTwVcnhrWz4MPdWXu62sYUPldz2ta9S0XCOSg4fL4Xte2qFHDLZ9Vs5RFHEpTozqmqvCDG19Vf81/6Y0VSPqquP1V4+dqmu4R8F9RYRFZfqUHGprk1+RkqF7HL4USpwvuwSqmrroVEp8PLE3pg0sHObvA6RldbbC7fFhmDnyWJsO1aI7mHdpS6JJOBQYAkJCYFcLoder7c7rtfrER4e3uxzQkNDsWXLFtTU1ODixYuIjIzEc889h27dul3zdQICAtCzZ0+cPn262e+rVCqoVCpHSic3k19aje+zivB9VhH25lyE6aoWEIVMuBwarggMPo2BoiFYXA4aPqrLLRs+V4YPWyhp+H57dJ9ciyAIjfegAJo2LDrMbBFhNF0OMnaB54qwYx94zPYhyXT5mPU9MNVbUFpvQqnx8mtxYC0529g+4dh5shjfHC3AnJEMLB2RQ4FFqVQiISEBGRkZmDhxIoCGQbcZGRl48sknr/tctVqNTp06oa6uDl988QUeeOCBa55bVVWFM2fO4OGHH3akPHJjdWYLDuWW4YfshpByuqjK7vudArwxKj4MI+NDkdg1GL4qziK7EblMgL/aq826ZurMFrvWHmuwUcgEDOkaxIG15FR39dLhL5t/xdELBuSXVjMcd0AO/9ZPS0vDjBkzMGjQIAwZMgRLly6F0WhEamoqAGD69Ono1KkTFi9eDADYv38/Lly4gAEDBuDChQt44YUXYLFY8Oyzz9qu+cwzz2D8+PGIjo7Gb7/9hkWLFkEul2Pq1KltdJvkioora7HzZDF+yCrCrlPFqKypt31PLhOQEB2IUfFhGBUfhh5hGredOeMpvOQyBPgoEeCjlLoU6oCCNSoM6RqEfTml2HasEDOHXbuVnjyTw4Fl8uTJKC4uxsKFC1FYWIgBAwYgPT3dNhA3Ly8PMtnlf2nV1NRgwYIFyMnJgUajwbhx47B+/XoEBATYzjl//jymTp2KixcvIjQ0FEOHDsW+ffsQGhp683dILsNiEXH0twrbWJT/XqjAlZPqg32VGB4XipFxYbijRyi0Phy0SUSXje0TgX05pUg/ysDSETm8Dosr4josrquypg67TzUMmN1xshjFlfazXvp08seouDCMjA9Dv84BkN9gYCoRdVyFFTX43eIMCAKwf/6dCPNX3/hJ5NKctg4L0Y2IoogzxUbsaByLcjC3FHXmy5nYVynH0B4hGBUfhhFxYdDxFw4RtVC4Vo2BXQLwc145th0rxMNJMVKXRO2IgYVuWk2dGfvPluKHxlk9eaXVdt/vFuKLkfFhGBkXhsFdA6FSyCWqlIjc3Zje4fg5rxzpDCwdDgMLtUpBxSX8kFWM77OK8NPpEtuaHwCglMuQ2C0II+MaBszGhPhKWCkReZIxfcKx+Jss7MspRZnRhEBfDgLvKBhYqEXMFhE/51mnHRfjRIH9dgg6f5Wtm2do9xBOOyYip4gO9sUtEf44UWDA9hN6PDCIi4Z2FPxUoWsqrzZh58mGVpSdJ4tRXn15pVRBAAZGBTSujRKGXhH+nHZMRO1ibJ9wnCgwIP1oIQNLB8LAQjaiKOJEQSV+yG6Ydnw4rwyWK+aQ+asVGB4XhlHxoRjeMwxBbIolIgmM7ROOJdtPYvepElTW1MGP+1Z1CAwsHVy1qR4/nb7YMO04uwgFV+3TEx/uh5GNi7cNjArgaqZEJLnuYRp0C/VFTrER32cVYcKATlKXRO2AgaUDyrtYje+z9Pg+uxj7rtqnR+0lw+2xIQ2zeuLD0CnAW8JKiYiaEgQBY/uEY/kPZ5B+tJCBpYNgYOkgThdVYsPBfHyfVYQzxUa770UFeWNUXBhGxIchqVsw1F6cdkxErm1M7wgs/+EMdmQX45LJDG8lf295OgaWDmLG2oO4UH4JQMNOx4NiLu/TExvKfXqIyL306eSPzoHeOF92CTtPFmNMn3CpSyInY2DpAIora3Gh/BIEAXh76kDc0TO0zXbwJSKSgiAIGNM7HP/afRbbjhUysHQAHEHZAWQXVgIAYoJ9cU+/SIYVIvII1pDy3Qm93Vg88kwMLB1AVmHDIm9xOj+JKyEiaju3dglEqJ8KlTX1+OlMidTlkJMxsHQA1haWuHAGFiLyHDKZgJTeOgDAtqOFEldDzsbA0gFk6xsCSzwDCxF5mLF9IgAA3x7Xo97MbiFPxsDi4SwWESf1bGEhIs80pGsQAny8UGo04WBumdTlkBMxsHi4vNJq1NRZoPaSITqYuyYTkWfxkstw1y0N3ULpRwskroaciYHFw2U1jl/pEeYHuYxrrRCR5xnbt2G2UPqxQliu3ACNPAoDi4ezDrjtyRlCROShbu8eAo1KAb2hFkfOl0tdDjkJA4uHy9Y3TGnmgFsi8lQqhRyj4sMAAOmcLeSxGFg8XBanNBNRB2BdRC79aCFEkd1CnoiBxYPV1JmRW9Kw0SFbWIjIk42IC4XaS4a80mocLzBIXQ45AQOLBztdVAWLCAT6eCHUTyV1OURETuOjVGB4z1AAXETOUzGweLArV7jlbsxE5Oms3ULfMLB4JAYWD3Z5hVt/iSshInK+UfE6eMkFnCqqwumiKqnLoTbGwOLBOOCWiDoSrbcXbosNAQBsO8ZWFk/DwOLBsht3aeYaLETUUYy1dQtx1VtPw8DiocqrTdAbagGwhYWIOo67eukgE4CjFwzIL62WuhxqQwwsHsraHdQ50BsalULiaoiI2kewRoUhXYMAsFvI0zCweCjrDCGuv0JEHc3YPhEAuOqtp2Fg8VAccEtEHVVK74ZxLJl5ZSgy1EhcDbUVBhYPdVJvDSyc0kxEHUu4Vo2BXQIgiuwW8iQMLB5IFEWcZJcQEXVgYxpbWdIZWDwGA4sHulB+CZW19fCSC+ga4it1OURE7c46jmVfTinKjCaJq6G2wMDigawDbmNDNfCS8y0moo6nS7APekX4w2wRsf2EXupyqA3w08wDccAtEdHlvYU4W8gzMLB4oGwGFiIi26q3u0+VoLKmTuJq6GYxsHggrsFCRAR0D9OgW6gvTGYLvs8qkrocukkMLB7GVG/BmeKGXUo5pZmIOjJBEGytLOwWcn+tCizLly9HTEwM1Go1EhMTceDAgWueW1dXh5deegmxsbFQq9Xo378/0tPTb+qadG1nS4yot4jwUysQqVVLXQ4RkaTG9G6YLbQjuxiXTGaJq6Gb4XBg2bBhA9LS0rBo0SIcPnwY/fv3R0pKCoqKmm9uW7BgAd577z28/fbbOH78OJ544glMmjQJP//8c6uvSdeW1bhDc5zOD4IgSFwNEZG0+nTyR+dAb1yqM2PnyWKpy6Gb4HBgWbJkCWbNmoXU1FT06tULK1euhI+PD9auXdvs+evXr8df/vIXjBs3Dt26dcPs2bMxbtw4vPnmm62+Jl2bdfxKT45fISKCIAi2ReS46q17cyiwmEwmZGZmIjk5+fIFZDIkJydj7969zT6ntrYWarV914S3tzd27959U9c0GAx2D2rAAbdERPas05u/O6GHqd4icTXUWg4FlpKSEpjNZuh0OrvjOp0OhYXNJ9eUlBQsWbIEp06dgsViwfbt27Fp0yYUFBS0+pqLFy+GVqu1PaKiohy5DY9mW4NFx8BCRAQAt3YJRKifCpU19fjpTInU5VArOX2W0LJly9CjRw/Ex8dDqVTiySefRGpqKmSy1r/0/PnzUVFRYXvk5+e3YcXuq7KmDhfKLwEA4jlDiIgIACCTCUjp3fCP4m2cLeS2HEoNISEhkMvl0OvtlznW6/UIDw9v9jmhoaHYsmULjEYjzp07h6ysLGg0GnTr1q3V11SpVPD397d70OUdmsP91dD6eElcDRGR67DuLfTtcT3qzewWckcOBRalUomEhARkZGTYjlksFmRkZCApKem6z1Wr1ejUqRPq6+vxxRdfYMKECTd9TbKXXWhdf4XdQUREV0rsGoQAHy+UGk04mFsmdTnUCg73y6SlpWH16tX44IMPcOLECcyePRtGoxGpqakAgOnTp2P+/Pm28/fv349NmzYhJycHP/74I8aMGQOLxYJnn322xdeklslunNLMAbdERPYUchnuuqWhWyj9aIHE1VBrKBx9wuTJk1FcXIyFCxeisLAQAwYMQHp6um3QbF5ent34lJqaGixYsAA5OTnQaDQYN24c1q9fj4CAgBZfk1qGmx4SEV3b2L7h+CzzPNKPFWLR+N6QybhWlTsRRFEUpS7iZhkMBmi1WlRUVHTY8SyiKGLgy9tRXl2Hr+YORZ9OWqlLIiJyKbX1ZiS8/B2qauux6Q+34dYugVKX1OE58vnNvYQ8RFFlLcqr6yCXCegeppG6HCIil6NSyDEqPgwA9xZyRwwsHsLaHRQT7AO1l1ziaoiIXNOYKzZD9IAOhg6FgcVDXB5w2zG7xIiIWmJEXCjUXjLklVbjeAFXSXcnDCweggNuiYhuzEepwPCeoQC4iJy7YWDxENZF4xhYiIiuz9ot9A0Di1thYPEAZouIU/qGReO4BgsR0fWNitfBSy7gVFEVThdVSV0OtRADiwfIvWhEbb0F3l5yRAX6SF0OEZFL03p74bbYEADAtmNsZXEXDCweILtx/EpPnYYLIRERtcBYW7cQV711FwwsHoADbomIHHNXLx1kAnD0ggH5pdVSl0MtwMDiAaxTmuM4pZmIqEWCNSoM6RoEgN1C7oKBxQNYu4Q44JaIqOXG9okAwFVv3QUDi5urNtXjXGNzJruEiIhaLqV3wziWzLwyFBlqJK6GboSBxc2dLqqCKAIhGiVCNCqpyyEichvhWjUGdgmAKLJbyB0wsLg5DrglImq9MY2tLOkMLC6PgcXNWcevxOk44JaIyFHWcSz7ckpRZjRJXA1dDwOLm7MFlnCNxJUQEbmfLsE+6BXhD7NFxPYTeqnLoetgYHFzl7uE2MJCRNQa1r2FOFvItTGwuLGLVbUoqaqFIDSscktERI6zrnq7+1QJKmvqJK6GroWBxY1Zu4O6BPnAR6mQuBoiIvfUPUyDbqG+MJkt+D6rSOpy6BoYWNyYrTtIxxlCREStJQiCrZWF3UKui4HFjZ3Uc4VbIqK2YJ0ttCO7GJdMZomroeYwsLgxDrglImobvSP90TnQG5fqzNh5sljqcqgZDCxuymIRbS0sXDSOiOjmCIJgW0SOq966JgYWN3W+7BKqTWYoFTLEBPtIXQ4RkduzTm/+7oQepnqLxNXQ1RhY3FRWoQEA0D1UA4WcbyMR0c26tUsgQv1UqKypx09nSqQuh67CTzo3ZZ3SzAG3RERtQyYTkNJbBwDYxtlCLoeBxU1lcfwKEVGbs84W+va4HvVmdgu5EgYWN5XNXZqJiNpcYtcgBPh4odRowsHcMqnLoSswsLih2nozzpYYAQDxnNJMRNRmFHIZ7rqloVso/WiBxNXQlRhY3NCZIiPMFhFaby/o/FVSl0NE5FHG9m1c9fZYISwWUeJqyIqBxQ1l6xtmCMXp/CAIgsTVEBF5ltu7h0CjUkBvqMWR8+VSl0ONGFjcUBbHrxAROY1KIceo+DAA3FvIlTCwuCEOuCUicq4rN0MURXYLuQIGFjfENViIiJxreFwo1F4y5JVW43iBQepyCAwsbqeiug4FFTUAgJ4MLERETuGjVGB4z1AAXETOVTCwuJnsxgXjOgV4w1/tJXE1RESey7q30DcMLC6BgcXNZHOFWyKidjEqXgcvuYBTRVU4XVQldTkdHgOLm8lu3PSQgYWIyLm03l64LTYEALDtGFtZpMbA4mZsM4R0DCxERM421tYtxFVvpdaqwLJ8+XLExMRArVYjMTERBw4cuO75S5cuRVxcHLy9vREVFYWnn34aNTU1tu+/8MILEATB7hEfH9+a0jyaKIpcg4WIqB3d1UsHmQAcvWBAfmm11OV0aA4Hlg0bNiAtLQ2LFi3C4cOH0b9/f6SkpKCoqKjZ8z/55BM899xzWLRoEU6cOIE1a9Zgw4YN+Mtf/mJ3Xu/evVFQUGB77N69u3V35MEKKmpQWVMPhUxAbKhG6nKIiDxesEaFIV2DALBbSGoOB5YlS5Zg1qxZSE1NRa9evbBy5Ur4+Phg7dq1zZ6/Z88e3H777XjwwQcRExOD0aNHY+rUqU1aZRQKBcLDw22PkJCQ1t2RB7N2B3UL9YVSwd48IqL2MLZPBACueis1hz71TCYTMjMzkZycfPkCMhmSk5Oxd+/eZp9z2223ITMz0xZQcnJysHXrVowbN87uvFOnTiEyMhLdunXDtGnTkJeXd806amtrYTAY7B4dweXuIO7QTETUXlJ6N4xjycwrQ5Gh5gZnk7M4FFhKSkpgNpuh0+nsjut0OhQWNp88H3zwQbz00ksYOnQovLy8EBsbixEjRth1CSUmJmLdunVIT0/HihUrcPbsWQwbNgyVlZXNXnPx4sXQarW2R1RUlCO34basM4S4wi0RUfsJ16oxsEsARJHdQlJyer/Cjh078Oqrr+Ldd9/F4cOHsWnTJnz99dd4+eWXbeeMHTsW999/P/r164eUlBRs3boV5eXl2LhxY7PXnD9/PioqKmyP/Px8Z9+GS8jWN6wDwBlCRETty7a3EAOLZBSOnBwSEgK5XA69Xm93XK/XIzw8vNnnPP/883j44Ycxc+ZMAEDfvn1hNBrx2GOP4a9//StksqaZKSAgAD179sTp06ebvaZKpYJKpXKkdLdXZ7bgTOPCRZwhRETUvsb0jsCrW7OwL6cUZUYTAn2VUpfU4TjUwqJUKpGQkICMjAzbMYvFgoyMDCQlJTX7nOrq6iahRC6XA8A1d8CsqqrCmTNnEBER4Uh5Hi23xAiT2QJfpRydArylLoeIqEPpEuyDXhH+MFtEbD+hv/ETqM053CWUlpaG1atX44MPPsCJEycwe/ZsGI1GpKamAgCmT5+O+fPn284fP348VqxYgU8//RRnz57F9u3b8fzzz2P8+PG24PLMM89g586dyM3NxZ49ezBp0iTI5XJMnTq1jW7T/VkH3PYM94NMJkhcDRFRx2PdW4izhaThUJcQAEyePBnFxcVYuHAhCgsLMWDAAKSnp9sG4ubl5dm1qCxYsACCIGDBggW4cOECQkNDMX78ePztb3+znXP+/HlMnToVFy9eRGhoKIYOHYp9+/YhNDS0DW7RM1inNHPALRGRNMb2CceS7Sex+1QJKmvq4McNaNuVIF6rX8aNGAwGaLVaVFRUwN/fM6f8zvzgEL47occL43vhkdu7Sl0OEVGHI4oi7lyyEznFRiybMgATBnSSuiS358jnN1cfcxPZeuumh54ZyIiIXJ0gCJdnC7FbqN0xsLiBqtp65JdeAsAuISIiKVlXvd2RXYxLJrPE1XQsDCxu4JS+YfxKmJ+KU+mIiCTUO9IfnQO9canOjJ0ni6Uup0NhYHED2dyhmYjIJQiCgDGNS/Vz1dv2xcDiBmx7CHGFWyIiyVmnN393Qg9TvUXiajoOBhY3wBYWIiLXcWuXQIT5qVBZU4+fzpRIXU6HwcDi4kRRRLbeugYLZwgREUlNJhNsOzhv42yhdsPA4uKKq2pRajRBJgA9dBqpyyEiIlzuFvr2uB71ZnYLtQcGFhdn7Q6KCfaF2ksucTVERAQAiV2DEODjhVKjCQdzy6Qup0NgYHFxHL9CROR6FHIZ7rqlYUua9KMFElfTMTCwuDgGFiIi1zS2b+Oqt8cKYbG4/S43Lo+BxcVdHnDLwEJE5Epu7x4CjUoBvaEWR86XS12Ox2NgcWFmi4iTjYGlJ9dgISJyKSqFHKPiwwBwb6H2wMDiwvJKq1FTZ4HaS4boYF+pyyEioqtcuRmiKLJbyJkYWFxYdmHDDs09wvwglwkSV0NERFcbHhcKtZcMeaXVOF5gkLocj8bA4sKyOOCWiMil+SgVGN4zFAAXkXM2BhYXZp0hxAG3RESuy7qI3DcMLE7FwOLCrDOE2MJCROS6RsXr4CUXcKqoCqeLqqQux2MxsLiomjozckuMABhYiIhcmdbbC7fFhgAAth1jK4uzMLC4qNNFVbCIQJCvEqEaldTlEBHRdYy1dQtx1VtnYWBxUdYBtz11GggCZwgREbmyu3rpIBOAoxcMyC+tlrocj8TA4qKsU5rjw/0lroSIiG4kWKPCkK5BANgt5CwMLC6KU5qJiNzL2D4RALjqrbMwsLgobnpIROReUno3jGPJzCtDkaFG4mo8DwOLCyozmlBUWQuAewgREbmLcK0aA7sEQBTZLeQMDCwuyLr+SlSQNzQqhcTVEBFRS9n2FmJgaXMMLC7I1h2k44BbIiJ3MqZ3wziWfTmlKDOaJK7GszCwuKDLA241EldCRESO6BLsg14R/jBbRGw/oZe6HI/CwOKCrFOa4zilmYjI7Vj3FuJsobbFwOJiRFHESX3DXhTc9JCIyP1Yx7HsPlWCypo6iavxHAwsLuZ82SVU1dbDSy6ga4iv1OUQEZGDuodp0C3UFyazBd9nFUldjsdgYHEx1gG3saEaeMn59hARuRtBEC7PFmK3UJvhJ6KLsU5pZncQEZH7sq56uyO7GJdMZomr8QwMLC7m8gq3HHBLROSuekf6o3OgNy7VmbHzZLHU5XgEBhYXYw0sbGEhInJfgiBgTG9rt1CBxNV4BgYWF2Kqt+BMccMMoZ4MLEREbm1s38ur3pZyEbmbxsDiQnJKqlBvEeGnViBSq5a6HCIiugm3dglE305a1NRZsG5PrtTluD0GFhdyeUl+PwiCIHE1RER0MwRBwOwRsQCAD/bkwlhbL3FF7o2BxYVcXpKf3UFERJ4gpXc4uob4ouJSHf59IE/qctxaqwLL8uXLERMTA7VajcTERBw4cOC65y9duhRxcXHw9vZGVFQUnn76adTU1NzUNT0RB9wSEXkWuUzA43d0AwD868ezMNVbJK7IfTkcWDZs2IC0tDQsWrQIhw8fRv/+/ZGSkoKiouZX8/vkk0/w3HPPYdGiRThx4gTWrFmDDRs24C9/+Uurr+mpOKWZiMjzTLq1E8L8VCg01GDLkQtSl+O2HA4sS5YswaxZs5CamopevXph5cqV8PHxwdq1a5s9f8+ePbj99tvx4IMPIiYmBqNHj8bUqVPtWlAcvWZtbS0MBoPdw91V1tThQvklAA1jWIiIyDOoFHLMHNYVALBy5xlYLKLEFbknhwKLyWRCZmYmkpOTL19AJkNycjL27t3b7HNuu+02ZGZm2gJKTk4Otm7dinHjxrX6mosXL4ZWq7U9oqKiHLkNl3SycYXbCK0aWh8viashIqK2NHVIF/irFcgpNuLb43qpy3FLDgWWkpISmM1m6HQ6u+M6nQ6Fhc3vl/Dggw/ipZdewtChQ+Hl5YXY2FiMGDHC1iXUmmvOnz8fFRUVtkd+fr4jt+GSrANue7J1hYjI4/ipvTA9KQYAsGLnGYgiW1kc5fRZQjt27MCrr76Kd999F4cPH8amTZvw9ddf4+WXX271NVUqFfz9/e0e7o4DbomIPNsjt8dApZDhl/xy7M25KHU5bsehwBISEgK5XA693r45S6/XIzw8vNnnPP/883j44Ycxc+ZM9O3bF5MmTcKrr76KxYsXw2KxtOqanohTmomIPFuIRoXJgxuGMKzYcUbiatyPQ4FFqVQiISEBGRkZtmMWiwUZGRlISkpq9jnV1dWQyexfRi6XAwBEUWzVNT2NKIpXzBBiYCEi8lSzhnWDXCbgx1Ml+PV8hdTluBWHu4TS0tKwevVqfPDBBzhx4gRmz54No9GI1NRUAMD06dMxf/582/njx4/HihUr8Omnn+Ls2bPYvn07nn/+eYwfP94WXG50TU+nN9Si4lId5DIB3cM0UpdDREROEhXkg9/3jwTQMGOIWk7h6BMmT56M4uJiLFy4EIWFhRgwYADS09Ntg2bz8vLsWlQWLFgAQRCwYMECXLhwAaGhoRg/fjz+9re/tfiani6rsGFadtcQX6gUcomrISIiZ3p8eDds/vkCth4twNkSI7qG+EpdklsQRA8YqmwwGKDValFRUeGWA3BX7TqDV7dm4e5+EVj+4K1Sl0NERE726LqDyMgqwtQhUVh8bz+py5GMI5/f3EvIBVgH3MZzSjMRUYdg3RTxi8wL0BtqbnA2AQwsLsE64LYnB9wSEXUIg2KCMDgmECazBWt3n5W6HLfAwCKxerMFp4qqAHANFiKijsTayvLRvnOoqK6TuBrXx8AisdyL1TDVW+CjlCMq0EfqcoiIqJ2MjAtDnM4PRpMZH+0/J3U5Lo+BRWLW7qAeOj/IZILE1RARUXsRBMHWyrJ291nU1Jklrsi1MbBILLtxSjMH3BIRdTz39ItA50BvXDSa8Nkh998Xz5kYWCTGJfmJiDouhVyGx+7oBgB4b1cO6s0WiStyXQwsEjup56aHREQd2f0JUQj2VeJ82SV8/WuB1OW4LAYWCVWb6nGutBoAW1iIiDoqb6UcqbfHAGjYFNED1nN1CgYWCZ3SV0EUgRCNEsEaldTlEBGRRB7+XQx8lXJkFVZiR3ax1OW4JAYWCXGHZiIiAgCtjxem/S4aQEMrCzXFwCIh24Bbnfvtf0RERG3r0aFdoZTLcCC3FIdyS6Uux+UwsEgoW984pZktLEREHZ7OX417b+0EgK0szWFgkRC7hIiI6EqP3dENggBkZBUhq3GdLmrAwCKRkqpalFSZIAhATy4aR0REALqFajC2TzgA4L2dORJX41oYWCRysrF1JTrIB95KucTVEBGRq5g9vDsA4D+//Ib8xqUviIFFMtYBt2xdISKiK/XtrMWwHiEwW0T860e2slgxsEjEOn6FA26JiOhqs4c3bIr46cF8lFTVSlyNa2BgkUiW3jrgllOaiYjIXlJsMPp31qK23oIP9uRKXY5LYGCRgMUi4pSeM4SIiKh5giBg9oiGVpYP9uSiqrZe4oqkx8AigfyyalSbzFAqZIgJ9pG6HCIickGje4WjW6gvDDX1+Pf+PKnLkRwDiwSsA257hGmgkPMtICKipmQyAU/c0dDK8q/dOaitN0tckbT4aSkBLhhHREQtMWFgJML91dAbarHl5wtSlyMpBhYJZOs5Q4iIiG5MpZBj5rCuABoWkjNbRIkrkg4DiwSyuQYLERG10JQhXaD19kJOiRHfHiuUuhzJMLC0s9p6M86WGAEA8ZzSTEREN6BRKTAjKRoAsGLnGYhix2xlYWBpZ6eLqmC2iNB6e0Hnr5K6HCIicgMzbouB2kuG/56vwJ4zF6UuRxIMLO3sygG3giBIXA0REbmDYI0KUwZ3AQCs2HFG4mqkwcDSzrgkPxERtcbMYV0hlwnYfboE/z1fLnU57Y6BpZ1lcUozERG1QudAH0zoHwmgY7ayMLC0M7awEBFRaz3euCli+rFCnCmukria9sXA0o4qqutQaKgBwCnNRETkuLhwPyTfEgZRBFbtzJG6nHbFwNKOrAvGdQrwhp/aS+JqiIjIHVk3Rdz083kUVtRIXE37YWBpR9mFBgAcv0JERK2XEB2EIV2DUGcWsWZ3x2llYWBpRxxwS0REbcHayvLJ/jyUV5skrqZ9MLC0Iw64JSKitjCiZyjiw/1gNJmxfu85qctpFwws7UQURdsYFrawEBHRzRAEwdbK8v6eXFwymSWuyPkYWNrJbxU1qKyph0ImoFuIRupyiIjIzd3dNwJRQd4oNZqw8VC+1OU4XasCy/LlyxETEwO1Wo3ExEQcOHDgmueOGDECgiA0edx99922cx555JEm3x8zZkxrSnNZJxu7g2JDNVAqmBOJiOjmKOQyPHZHQyvLql05qDNbJK7IuRz+5NywYQPS0tKwaNEiHD58GP3790dKSgqKioqaPX/Tpk0oKCiwPY4ePQq5XI7777/f7rwxY8bYnffvf/+7dXfkojjgloiI2tr9CZ0RolHiQvklfPXf36Qux6kcDixLlizBrFmzkJqail69emHlypXw8fHB2rVrmz0/KCgI4eHhtsf27dvh4+PTJLCoVCq78wIDA1t3Ry6KU5qJiKitqb3kSL29K4CG5fotFlHiipzHocBiMpmQmZmJ5OTkyxeQyZCcnIy9e/e26Bpr1qzBlClT4Ovra3d8x44dCAsLQ1xcHGbPno2LF6+9fXZtbS0MBoPdw9XZWli4wi0REbWhh34XDY1KgZP6KvyQ3XxvhydwKLCUlJTAbDZDp9PZHdfpdCgsLLzh8w8cOICjR49i5syZdsfHjBmDDz/8EBkZGfj73/+OnTt3YuzYsTCbmx/1vHjxYmi1WtsjKirKkdtod3Vmi23PB7awEBFRW9J6e2Ha77oA8OxNEdt19OeaNWvQt29fDBkyxO74lClT8Pvf/x59+/bFxIkT8dVXX+HgwYPYsWNHs9eZP38+KioqbI/8fNceHX22xIg6swiNSoHOgd5Sl0NERB7m0du7QimX4dC5MhzMLZW6HKdwKLCEhIRALpdDr9fbHdfr9QgPD7/uc41GIz799FM8+uijN3ydbt26ISQkBKdPn272+yqVCv7+/nYPV2btDuqp00AQBImrISIiTxPmr8Z9CZ0BeG4ri0OBRalUIiEhARkZGbZjFosFGRkZSEpKuu5zP/vsM9TW1uKhhx664eucP38eFy9eREREhCPluazLA25dO1gREZH7evyObpAJwPdZRThR4PpjOx3lcJdQWloaVq9ejQ8++AAnTpzA7NmzYTQakZqaCgCYPn065s+f3+R5a9aswcSJExEcHGx3vKqqCn/605+wb98+5ObmIiMjAxMmTED37t2RkpLSyttyLdmFDeNXuCQ/ERE5S0yIL8b2bfiH/ns7Pa+VReHoEyZPnozi4mIsXLgQhYWFGDBgANLT020DcfPy8iCT2eeg7Oxs7N69G99++22T68nlcvz3v//FBx98gPLyckRGRmL06NF4+eWXoVKpWnlbriVbzynNRETkfLOHx+Lr/xbg//5bgP8dHYeoIB+pS2ozgiiKbj9p22AwQKvVoqKiwuXGs1TV1qPPom0AgJ+fvwuBvkqJKyIiIk/28Jr9+PFUCR7+XTRenthH6nKuy5HPb64R72QnGzc8DPNTMawQEZHTWTdF3HgoH8WVtRJX03YYWJwsm0vyExFRO0rqFoz+UQGorbdg3Z6zUpfTZhhYnMwaWDjgloiI2oMgCJg9vKGV5cO951BZUydxRW2DgcXJsjilmYiI2tnoXjrEhvqisqYen+zPk7qcNsHA4kSiKLKFhYiI2p1MJuCJxlaWf+0+i5q65re6cScMLE5UXFWLsuo6yASge5hG6nKIiKgDmTCgEyK0ahRX1mLzzxekLuemMbA4kbV1JSbYF2ovucTVEBFRR6JUyDBzWDcADQvJmS3uvYoJA4sTcYYQERFJacrgKAT4eCH3YjXSjxZKXc5NYWBxoiwGFiIikpCvSoEZSTEAgBU7T8Od14plYHEiDrglIiKpzbgtBt5echy9YMDu0yVSl9NqDCxOYraItlVuOaWZiIikEuSrxJQhUQCAFTvcd1NEBhYnOXfRiNp6C9ReMnTxoM2niIjI/cwc1g0KmYA9Zy7iSH651OW0CgOLk1i7g3rq/CCXCRJXQ0REHVmnAG9MGNAJALDSTVtZGFicJNvaHaTj+BUiIpLeE8MbpjhvO16I00VVElfjOAYWJ+GUZiIiciU9dH64q5cOogis2uV+rSwMLE7CwEJERK5m9oiG5fo3/3wBBRWXJK7GMQwsTlBTZ0buRSMABhYiInIdt3YJRGLXINSZRfzrx7NSl+MQBhYnOKWvgkVsmEoWqlFJXQ4REZGNtZXl3wfyUGY0SVxNyzGwOEFWoQFAw4BbQeAMISIich3De4bilgh/VJvM+HDvOanLaTEGFifg+BUiInJVgiDYWlnW7TmLalO9xBW1DAOLE1inNHNJfiIickXj+oSjS5APyqrrsOFgvtTltAgDixOwhYWIiFyZQi7DY3c0rMuyelcO6swWiSu6MQaWNlZmNKGoshZAw5x3IiIiV/Q/CZ0RolHht4oa/OfIb1KXc0MMLG0sq7F1JSrIGxqVQuJqiIiImqf2kuPRoV0BACt3noHFIkpc0fUxsLSxbNsMIe7QTERErm3a77rAT6XAqaIqZGQVSV3OdTGwtDEOuCUiInfhr/bCQ0nRAIB3d5yGKLpuKwsDSxvL4oBbIiJyI6m3x0CpkOHnvHIcOFsqdTnXxMDShiwWEScL2cJCRETuI8xPjfsTOgMAVux03U0RGVja0IXySzCazFDKZYgJ8ZW6HCIiohZ57I5ukAnAjuxiHP/NIHU5zWJgaUPW9VdiwzTwkvNHS0RE7iE62Bd394sE0DBjyBXxU7UNWQfcxuk0EldCRETkmCeGNywk99V/f0PexWqJq2mKgaUNXR5wyynNRETkXnpHajG8ZygsIrDqR9drZWFgaUPWNVg44JaIiNyRdVPEjYfOo6iyRuJq7DGwtBFTvQU5xUYAnNJMRETuKbFrEAZ2CYCp3oL3f8qVuhw7DCxt5ExxFeotIvzUCkRo1VKXQ0RE5DBBEDB7eEMry0d7z8FQUydxRZcxsLSR7CvWXxEEQeJqiIiIWif5Fh26h2lQWVuPj/flSV2ODQNLG+EKt0RE5AlkMgFPNLayrNl9FjV1ZokrasDA0kZO6jlDiIiIPMPv+0ciUqtGSVUtvjh8XupyADCwtBlrl1Ccji0sRETk3pQKGWYOa1iX5b2dOag3WySuqJWBZfny5YiJiYFarUZiYiIOHDhwzXNHjBgBQRCaPO6++27bOaIoYuHChYiIiIC3tzeSk5Nx6tSp1pQmCUNNHS6UXwLAwEJERJ5hypAoBPh4Ia+0Gt8cLZS6HMcDy4YNG5CWloZFixbh8OHD6N+/P1JSUlBUVNTs+Zs2bUJBQYHtcfToUcjlctx///22c15//XW89dZbWLlyJfbv3w9fX1+kpKSgpsa15oBfi3XDwwitGlofL4mrISIiunk+SgUeuS0GALBixxmIoihpPQ4HliVLlmDWrFlITU1Fr169sHLlSvj4+GDt2rXNnh8UFITw8HDbY/v27fDx8bEFFlEUsXTpUixYsAATJkxAv3798OGHH+K3337Dli1bburm2gsH3BIRkSeakRQDH6UcxwsM2HWqRNJaHAosJpMJmZmZSE5OvnwBmQzJycnYu3dvi66xZs0aTJkyBb6+DbsZnz17FoWFhXbX1Gq1SExMvOY1a2trYTAY7B5SymZgISIiDxToq8TUIV0AACt2nJa0FocCS0lJCcxmM3Q6nd1xnU6HwsIb928dOHAAR48excyZM23HrM9z5JqLFy+GVqu1PaKiohy5jTZ35RosREREnmTmsK7wkgvIPFeG/FLpNkVs11lCa9asQd++fTFkyJCbus78+fNRUVFhe+Tn57dRhY4TRRFZjXsIxek4pZmIiDxLhNYbbz4wALueHYmoIB/J6nAosISEhEAul0Ov19sd1+v1CA8Pv+5zjUYjPv30Uzz66KN2x63Pc+SaKpUK/v7+dg+p6A21MNTUQy4TEBvmK1kdREREzvL7/pGI0HpLWoNDgUWpVCIhIQEZGRm2YxaLBRkZGUhKSrrucz/77DPU1tbioYcesjvetWtXhIeH213TYDBg//79N7ymK7C2rnQN8YVKIZe4GiIiIs+kcPQJaWlpmDFjBgYNGoQhQ4Zg6dKlMBqNSE1NBQBMnz4dnTp1wuLFi+2et2bNGkycOBHBwcF2xwVBwLx58/DKK6+gR48e6Nq1K55//nlERkZi4sSJrb+zdsIBt0RERM7ncGCZPHkyiouLsXDhQhQWFmLAgAFIT0+3DZrNy8uDTGbfcJOdnY3du3fj22+/bfaazz77LIxGIx577DGUl5dj6NChSE9Ph1rt+rse2wbccsE4IiIipxFEqVeCaQMGgwFarRYVFRXtPp5l3LIfcbzAgFUPJ2B07+uP4yEiIqLLHPn85l5CN6HebMHp4ioAQDw3PSQiInIaBpabkHvRCFO9BT5KOToHSjt6moiIyJMxsNwE65L8PXV+kMkEiashIiLyXAwsN8G66SF3aCYiInIuBpabwE0PiYiI2gcDy03I1nMPISIiovbAwNJK1aZ65DVuAsUWFiIiIudiYGmlk/oqiCIQolEhWKOSuhwiIiKPxsDSStmNewixO4iIiMj5GFhaiQNuiYiI2g8DSytx00MiIqL2w8DSSif1XIOFiIiovTCwtEJJVS1KqkwQhIZVbomIiMi5GFhawdodFB3kA2+lXOJqiIiIPB8DSytwwC0REVH7YmBpBeuU5rhwf4krISIi6hgYWFrB2iXENViIiIjaBwOLgywWESf1VQDYJURERNReGFgclF9WjUt1ZigVMsQE+0pdDhERUYfAwOIg64DbHmEayGWCxNUQERF1DAwsDuIKt0RERO2PgcVBHHBLRETU/hhYHJTFKc1ERETtjoHFATV1ZuRerAbAFhYiIqL2xMDigNNFVTBbRAT4eCHMTyV1OURERB0GA4sDbANudX4QBM4QIiIiai8MLA44qeeAWyIiIikwsDjAugZLTwYWIiKidsXA4gBOaSYiIpIGA0sLVVTXodBQAwDoqWNgISIiak8MLC1kXX+lU4A3/NReEldDRETUsTCwtFA2B9wSERFJhoGlhbK4hxAREZFkGFhaiJseEhERSYeBpQVEUcRJBhYiIiLJMLC0wG8VNaisrYdCJqBbiEbqcoiIiDocBpYWyG6cIRQbqoFSwR8ZERFRe+OnbwtwwC0REZG0GFhagANuiYiIpNWqwLJ8+XLExMRArVYjMTERBw4cuO755eXlmDNnDiIiIqBSqdCzZ09s3brV9v0XXngBgiDYPeLj41tTmlNwSX4iIiJpKRx9woYNG5CWloaVK1ciMTERS5cuRUpKCrKzsxEWFtbkfJPJhLvuugthYWH4/PPP0alTJ5w7dw4BAQF25/Xu3Rvffffd5cIUDpfmFHVmC84UVwFgCwsREZFUHE4FS5YswaxZs5CamgoAWLlyJb7++musXbsWzz33XJPz165di9LSUuzZswdeXg1L2sfExDQtRKFAeHi4o+U4XU6xEXVmERqVAp0CvKUuh4iIqENyqEvIZDIhMzMTycnJly8gkyE5ORl79+5t9jn/+c9/kJSUhDlz5kCn06FPnz549dVXYTab7c47deoUIiMj0a1bN0ybNg15eXnXrKO2thYGg8Hu4SzWJfl76jQQBMFpr0NERETX5lBgKSkpgdlshk6nszuu0+lQWFjY7HNycnLw+eefw2w2Y+vWrXj++efx5ptv4pVXXrGdk5iYiHXr1iE9PR0rVqzA2bNnMWzYMFRWVjZ7zcWLF0Or1doeUVFRjtyGQ6xTmuPC/Z32GkRERHR9Th8oYrFYEBYWhlWrVkEulyMhIQEXLlzAG2+8gUWLFgEAxo4dazu/X79+SExMRHR0NDZu3IhHH320yTXnz5+PtLQ029cGg8FpoYUDbomIiKTnUGAJCQmBXC6HXq+3O67X6685/iQiIgJeXl6Qy+W2Y7fccgsKCwthMpmgVCqbPCcgIAA9e/bE6dOnm72mSqWCSqVypPRW4xosRERE0nOoS0ipVCIhIQEZGRm2YxaLBRkZGUhKSmr2ObfffjtOnz4Ni8ViO3by5ElEREQ0G1YAoKqqCmfOnEFERIQj5bW5qtp6nC+7BIAtLERERFJyeB2WtLQ0rF69Gh988AFOnDiB2bNnw2g02mYNTZ8+HfPnz7edP3v2bJSWluKpp57CyZMn8fXXX+PVV1/FnDlzbOc888wz2LlzJ3Jzc7Fnzx5MmjQJcrkcU6dObYNbbD2LKGLB3bfgkdtiEODTfLgiIiIi53N4DMvkyZNRXFyMhQsXorCwEAMGDEB6erptIG5eXh5ksss5KCoqCtu2bcPTTz+Nfv36oVOnTnjqqafw5z//2XbO+fPnMXXqVFy8eBGhoaEYOnQo9u3bh9DQ0Da4xdbzV3th5rBuktZAREREgCCKoih1ETfLYDBAq9WioqIC/v6czUNEROQOHPn85l5CRERE5PIYWIiIiMjlMbAQERGRy2NgISIiIpfHwEJEREQuj4GFiIiIXB4DCxEREbk8BhYiIiJyeQwsRERE5PIYWIiIiMjlMbAQERGRy2NgISIiIpfn8G7Nrsi6f6PBYJC4EiIiImop6+d2S/Zh9ojAUllZCQCIioqSuBIiIiJyVGVlJbRa7XXPEcSWxBoXZ7FY8Ntvv8HPzw+CILTptQ0GA6KiopCfn3/Dra/J+fh+uBa+H66H74lr4ftxfaIoorKyEpGRkZDJrj9KxSNaWGQyGTp37uzU1/D39+cfNhfC98O18P1wPXxPXAvfj2u7UcuKFQfdEhERkctjYCEiIiKXx8ByAyqVCosWLYJKpZK6FALfD1fD98P18D1xLXw/2o5HDLolIiIiz8YWFiIiInJ5DCxERETk8hhYiIiIyOUxsBAREZHLY2AhIiIil8fAcgPLly9HTEwM1Go1EhMTceDAAalL6pB27dqF8ePHIzIyEoIgYMuWLVKX1KEtXrwYgwcPhp+fH8LCwjBx4kRkZ2dLXVaHtWLFCvTr18+2mmpSUhK++eYbqcuiRq+99hoEQcC8efOkLsWtMbBcx4YNG5CWloZFixbh8OHD6N+/P1JSUlBUVCR1aR2O0WhE//79sXz5cqlLIQA7d+7EnDlzsG/fPmzfvh11dXUYPXo0jEaj1KV1SJ07d8Zrr72GzMxMHDp0CKNGjcKECRNw7NgxqUvr8A4ePIj33nsP/fr1k7oUt8d1WK4jMTERgwcPxjvvvAOgYZPFqKgozJ07F88995zE1XVcgiBg8+bNmDhxotSlUKPi4mKEhYVh586duOOOO6QuhwAEBQXhjTfewKOPPip1KR1WVVUVbr31Vrz77rt45ZVXMGDAACxdulTqstwWW1iuwWQyITMzE8nJybZjMpkMycnJ2Lt3r4SVEbmeiooKAA0fkiQts9mMTz/9FEajEUlJSVKX06HNmTMHd999t93nCLWeR+zW7AwlJSUwm83Q6XR2x3U6HbKysiSqisj1WCwWzJs3D7fffjv69OkjdTkd1q+//oqkpCTU1NRAo9Fg8+bN6NWrl9RldViffvopDh8+jIMHD0pdisdgYCGimzJnzhwcPXoUu3fvlrqUDi0uLg5HjhxBRUUFPv/8c8yYMQM7d+5kaJFAfn4+nnrqKWzfvh1qtVrqcjwGA8s1hISEQC6XQ6/X2x3X6/UIDw+XqCoi1/Lkk0/iq6++wq5du9C5c2epy+nQlEolunfvDgBISEjAwYMHsWzZMrz33nsSV9bxZGZmoqioCLfeeqvtmNlsxq5du/DOO++gtrYWcrlcwgrdE8ewXINSqURCQgIyMjJsxywWCzIyMtgvTB2eKIp48sknsXnzZnz//ffo2rWr1CXRVSwWC2pra6Uuo0O688478euvv+LIkSO2x6BBgzBt2jQcOXKEYaWV2MJyHWlpaZgxYwYGDRqEIUOGYOnSpTAajUhNTZW6tA6nqqoKp0+ftn199uxZHDlyBEFBQejSpYuElXVMc+bMwSeffIIvv/wSfn5+KCwsBABotVp4e3tLXF3HM3/+fIwdOxZdunRBZWUlPvnkE+zYsQPbtm2TurQOyc/Pr8l4Ll9fXwQHB3Oc101gYLmOyZMno7i4GAsXLkRhYSEGDBiA9PT0JgNxyfkOHTqEkSNH2r5OS0sDAMyYMQPr1q2TqKqOa8WKFQCAESNG2B1///338cgjj7R/QR1cUVERpk+fjoKCAmi1WvTr1w/btm3DXXfdJXVpRG2G67AQERGRy+MYFiIiInJ5DCxERETk8hhYiIiIyOUxsBAREZHLY2AhIiIil8fAQkRERC6PgYWIiIhcHgMLERERuTwGFiIiInJ5DCxERETk8hhYiIiIyOX9f/C4TjnH5ctrAAAAAElFTkSuQmCC" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "to_plot = []\n", "params_history = []\n", "params = best_params.copy()\n", "for baseline_p in range(10):\n", " params['baseline_p'] = 10**(-baseline_p/2-0.000001)\n", " params_history.append(params['baseline_p'])\n", " print(params['baseline_p'])\n", " process_params = {key: params[key] for key in ['baseline_lam', 'baseline_p', 'smooth_window_length', 'smooth_polyorder']}\n", " classifier_params = {key: params[key] for key in best_params.keys() if key not in ['baseline_lam', 'baseline_p', 'smooth_window_length', 'smooth_polyorder']}\n", " X_train, X_test = process_train_test(process_params, experiments_train, metadata_train, experiments_test, metadata_test, scale=True)\n", " to_plot.append(evaluate_classifier_params(RandomForestClassifier, classifier_params, X_train, truth_train, X_test, truth_test, iters=20)[1])\n", "best_params['baseline_p'] = params_history[to_plot.index(max(to_plot))]\n", "_ = plt.plot(np.array(range(10))/2, to_plot)\n", "_ = plt.title(\"Impact of varying baseline ps [1e-x]\")\n", "plt.savefig('../images/random_forest/vary_baseline_p.svg', format='svg', dpi=1200)" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-05-01T09:20:12.170803Z", "start_time": "2024-05-01T09:12:32.692614500Z" } }, "id": "5562f44317c1d060", "execution_count": 20 }, { "cell_type": "code", "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3\n", "4\n", "5\n", "6\n", "7\n", "8\n" ] }, { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGzCAYAAADXFObAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABdC0lEQVR4nO3deVxU5f4H8M/MwCwwDCj7AALigriAkpKWWYmSW2ik1u2GYt2Wa3bN26JlmnbL6t6fV1Mz85qatliimFZutFqmBrjighvIDiIMgqzz/P5Ajk6MyygwMHzer9e8iodnzvmemQE+nuc555EJIQSIiIiIWjm5tQsgIiIiagwMNURERGQTGGqIiIjIJjDUEBERkU1gqCEiIiKbwFBDRERENoGhhoiIiGwCQw0RERHZBIYaIiIisgkMNdQmrVmzBsHBwbC3t4eLi4u1y7HIvffei3vvvdfaZbR6P/74I2QyGdavX3/DvhMnTkRAQEDTF9UMzp49C5lMhlWrVlm7lEZxOz8PMpkMb7zxRqPWY4k33ngDMpnMavu3RQw1NmbVqlWQyWT4448/rF3Kbfv222+b5BfOsWPHMHHiRAQFBWH58uX46KOPGn0f1HJ89tlnWLBggbXLIKJmYGftAoiu5dtvv8WSJUsaPdj8+OOPMBqNWLhwITp16tSo224O27dvt3YJrcpnn32Gw4cPY+rUqbe8jeXLl8NoNDZeUdRo+PNAV+OZGmpz8vPzAaDFDDuVlZVZ1F+pVEKpVDZRNWSOvb09VCqVtcsgM1ryz0NNTQ2qqqqabX/l5eXNtq+WiqGmDZg4cSK0Wi0yMjIwcuRIaLVa+Pj4YMmSJQCAQ4cO4f7774ejoyP8/f3x2WefmTy/fkjr559/xtNPPw1XV1fodDrExsbiwoULJn03bdqEESNGQK/XQ6VSISgoCG+++SZqa2sb1LVnzx4MHz4c7dq1g6OjI3r16oWFCxdKNdfXJ5PJpMeNfPDBB+jevTtUKhX0ej0mT56M4uJi6fsBAQGYPXs2AMDd3f26Y+r/+c9/IJPJkJ6e3uB7M2bMgFKplI7/l19+wdixY9GhQweoVCr4+fnhhRdewKVLl0yeV/9enDp1CsOHD4eTkxMee+wxzJ49G/b29igoKGiwr6eeegouLi6oqKgA0HAOQf3ckC+//BJvvfUWfH19oVarMXjwYJw8ebLB9pYsWYKOHTtCo9GgX79++OWXX256XsKOHTtw9913w8XFBVqtFl27dsWrr75qtpY5c+bAx8cHTk5OePjhh1FSUoLKykpMnToVHh4e0Gq1iIuLQ2Vlpck+ampq8OabbyIoKAgqlQoBAQF49dVXG/QDbvx+33vvvfjmm2+Qnp4ufYb+PDfGaDTe8HX785ya+nkp//nPf/DRRx9Jtfbt2xf79u1rUOdXX32FkJAQqNVq9OjRAxs3brzpeToBAQEYOXIktm/fjrCwMKjVaoSEhGDDhg0N+p4+fRpjx45F+/bt4eDggDvvvBPffPPNdbe/cuVKyGQypKSkNPje22+/DYVCgaysLAB1r2ePHj2QmpqK++67Dw4ODvDx8cF7773X4Ln5+fl44okn4OnpCbVajdDQUKxevdqkz9WvY/3n0sHBAUOHDsW5c+cghMCbb74JX19faDQaREdHo6ioyGQbf/7sVlVVYdasWQgPD4ezszMcHR0xcOBA/PDDD9d9Ha7H0mNZsGCB9JlITU0FAOzatQt9+/aFWq1GUFAQli1bds39rV27FuHh4dBoNGjfvj0eeeQRnDt3rsFx9+jRA0lJSbjnnnvg4OBg8rPYZgmyKStXrhQAxL59+6S2CRMmCLVaLUJCQsQzzzwjlixZIgYMGCAAiJUrVwq9Xi9eeuklsWjRItG9e3ehUCjE6dOnG2yzZ8+eYuDAgeL9998XkydPFnK5XNxzzz3CaDRKfUePHi3GjRsn/v3vf4ulS5eKsWPHCgDixRdfNKlz+/btQqlUCn9/fzF79myxdOlS8fzzz4vIyEghhBC//fabGDJkiAAg1qxZIz2uZ/bs2QKAiIyMFIsWLRLPPfecUCgUom/fvqKqqkoIIcTGjRvFmDFjBACxdOlSsWbNGnHgwAGz20tPTxcymUy89957Db7XsWNHMWLECOnrKVOmiOHDh4u3335bLFu2TDzxxBNCoVCIhx9+2OR5EyZMECqVSgQFBYkJEyaIDz/8UHzyySciLS1NABCLFi0y6V9ZWSnatWsnJk2aJLUNGjRIDBo0SPr6hx9+EABE7969RXh4uPjvf/8r3njjDeHg4CD69etnsr0PPvhAAJDex2nTpon27duLoKAgk22ac/jwYaFUKsUdd9whFi5cKD788EPx4osvinvuuadBLWFhYaJ///7i/fffF88//7yQyWTikUceEX/5y1/EsGHDxJIlS8Tjjz8uAIg5c+Y0eI0AiIcfflgsWbJExMbGCgBi9OjRJv1u5v3evn27CAsLE25ubtJnaOPGjRa/bhMmTBD+/v7S12fOnJGe26lTJ/Huu++K9957T7i5uQlfX19p/0IIsWXLFiGTyUSvXr3E/Pnzxeuvvy7atWsnevToYbLNa/H39xddunQRLi4uYvr06WL+/PmiZ8+eQi6Xi+3bt0v9cnNzhaenp3BychKvvfaamD9/vggNDRVyuVxs2LChQe0rV64UQghhMBiERqMR//znPxvsOyQkRNx///3S14MGDRJ6vV74+fmJf/zjH+KDDz4Q999/vwAgvv32W6lfeXm56Natm7C3txcvvPCCeP/998XAgQMFALFgwYIGtYSFhYmQkBAxf/58MXPmTKFUKsWdd94pXn31VTFgwACTz1FcXJxJjX/+eSgoKBDe3t5i2rRpYunSpeK9994TXbt2Ffb29iIlJcXkuQDE7Nmzr/v6W3osISEhomPHjuKdd94R//3vf0V6ero4ePCg0Gg0okOHDmLevHnizTffFJ6enqJXr17iz3+G//WvfwmZTCbGjx8vPvjgAzFnzhzh5uYmAgICxIULF0yO28vLS7i7u4spU6aIZcuWiYSEhOseS1vAUGNjrhVqAIi3335bartw4YLQaDRCJpOJL774Qmo/duxYgx/0+m2Gh4eb/LJ+7733BACxadMmqa28vLxBTU8//bRwcHAQFRUVQgghampqRGBgoPD39zf5IRVCmASkyZMnN/iBv5b8/HyhVCrF0KFDRW1trdS+ePFiAUB8/PHHUlv9H8OCgoIbbrd///4iPDzcpG3v3r0CgPjkk0+kNnPHPW/ePCGTyUR6errUVv9eTJ8+3ey+IiIiTNo2bNggAIgffvhBartWqOnWrZuorKyU2hcuXCgAiEOHDgkh6gKSq6ur6Nu3r6iurpb6rVq1SgC4Yaj573//e8PXrb6WHj16mHxWHn30USGTycSwYcMaHPPVf9j3798vAIgnn3zSpN+LL74oAIjvv/9eCGHZ+z1ixAiz4eFmXzchrh1qXF1dRVFRkdS+adMmAUBs3rxZauvZs6fw9fUVpaWlUtuPP/4oANx0qAEg4uPjpbaSkhLh7e0tevfuLbVNnTpVABC//PKL1FZaWioCAwNFQECA9Dr9OdQIUff+6PV6k9cyOTm5Qb9BgwY1+OxXVlYKLy8vERMTI7UtWLBAABBr166V2qqqqkT//v2FVqsVBoPBpBZ3d3dRXFws9Z0xY4YAIEJDQ00+q48++qhQKpXS75L6mq7+7NbU1Ji8n0LU/b7z9PQ0+ceBEDcXaiw9Fp1OJ/Lz8022MXr0aKFWq01+F6SmpgqFQmHyO+7s2bNCoVCIt956y+T5hw4dEnZ2dibt9e/Fhx9+eN362xoOP7UhTz75pPT/Li4u6Nq1KxwdHTFu3DipvWvXrnBxccHp06cbPP+pp56Cvb299PWzzz4LOzs7fPvtt1KbRqOR/r+0tBSFhYUYOHAgysvLcezYMQBASkoKzpw5g6lTpzaY13Krlzfu3LkTVVVVmDp1KuTyKx/rv/3tb9DpdDc8BX8t48ePR1JSEk6dOiW1rVu3DiqVCtHR0VLb1cddVlaGwsJCDBgwAEIIs6f1n3322QZtsbGx2LNnj8m+Pv30U/j5+WHQoEE3rDUuLs5kbsHAgQMBQHov//jjD5w/fx5/+9vfYGd35RqBxx57DO3atbvh9uvfq02bNt1w0mxsbKzJZyUiIgJCCEyaNMmkX0REBM6dO4eamhoAkD5L06ZNM+n3z3/+EwCk97Ex3+8bvW7XM378eJPX7s/Pzc7OxqFDhxAbGwutViv1GzRoEHr27HnTNer1eowZM0b6un74NyUlBbm5uQDqXrt+/frh7rvvlvpptVo89dRTOHv2rDQMYk5sbCyys7NNhmg+/fRTaDQaxMTEmPTVarX461//Kn2tVCrRr18/k9fr22+/hZeXFx599FGpzd7eHs8//zwuXryIn376yWSbY8eOhbOzs/R1REQEAOCvf/2ryWc1IiICVVVV0nCYOQqFQno/jUYjioqKUFNTgzvuuAPJycnXfN61WHosMTExcHd3l76ura3Ftm3bMHr0aHTo0EFq79atG6Kiokyeu2HDBhiNRowbNw6FhYXSw8vLC507d24whKZSqRAXF2fxMdkyhpo2Qq1Wm/ygAYCzszN8fX0bBAlnZ+cGc2UAoHPnziZfa7VaeHt74+zZs1LbkSNHMGbMGDg7O0On08Hd3V36BVhSUgIA0h/tHj163PZx1auf99K1a1eTdqVSiY4dO5qdF3Mzxo4dC7lcjnXr1gEAhBD46quvMGzYMOh0OqlfRkYGJk6ciPbt20Or1cLd3V0KIvXHXc/Ozg6+vr4N9jV+/HioVCp8+umn0vO2bNmCxx577KbC3tW/MAFIf2zr38v61+DPV3zZ2dnd1NyO8ePH46677sKTTz4JT09PPPLII/jyyy/NBpw/11L/B8vPz69Bu9FolF6j9PR0yOXyBjV6eXnBxcVFOobGfL9v9LrdznOv9Zpfq+1aOnXq1OAz0KVLFwCQfv7S09MbvB5A3R/Pq2sxZ8iQIfD29pY+e0ajEZ9//jmio6Ph5ORk0tfc74x27dqZvF7p6eno3LmzSeC8Xi2WfF6AG783q1evRq9evaBWq+Hq6gp3d3d88803DX4Wb4alxxIYGGjydUFBAS5dutTg9yfQ8POblpYGIQQ6d+4Md3d3k8fRo0elixzq+fj4tNhJ0tbCS7rbCIVCYVG7EMLifRQXF2PQoEHQ6XSYO3cugoKCoFarkZycjFdeeaVVXhKr1+sxcOBAfPnll3j11Vfx+++/IyMjA++++67Up7a2FkOGDEFRURFeeeUVBAcHw9HREVlZWZg4cWKD41apVA1+QQJ1fxhGjhyJTz/9FLNmzcL69etRWVlp8q/i62nM99IcjUaDn3/+GT/88AO++eYbbN26FevWrcP999+P7du3m+z/dj9vzXlDstt53Zr6NW8uCoUCf/nLX7B8+XJ88MEH+PXXX5GdnW32s9cUx9yYv5/Wrl2LiRMnYvTo0XjppZfg4eEBhUKBefPmmZwFbSpXn7W1lNFohEwmw3fffWf22K8+23e7+7JVPFNDNy0tLc3k64sXLyInJ0f6V/6PP/6I8+fPY9WqVfjHP/6BkSNHIjIyssHQRlBQEADg8OHD192fJX/Y/P39AQDHjx83aa+qqsKZM2ek79+K8ePH48CBAzh+/DjWrVsHBwcHjBo1Svr+oUOHcOLECfzf//0fXnnlFURHRyMyMhJ6vd7ifcXGxuLEiRPYt28fPv30U/Tu3Rvdu3e/5dqvVv8a/PnKnpqaGpOzbdcjl8sxePBgzJ8/H6mpqXjrrbfw/fff39aVJX+u0Wg0Nvis5eXlobi4WDoGS95va96x9Vqv+bXaruXkyZMN/pCfOHECAKSfP39//wavBwBp2PdGPwOxsbEwGAzYvHkzPv30U7i7uzcYHrlZ/v7+SEtLaxDob7aW27F+/Xp07NgRGzZswOOPP46oqChERkZKVw9a6naPxd3dHRqNpsFnGmj4+Q0KCoIQAoGBgYiMjGzwuPPOO2/pGNoShhq6aR999BGqq6ulr5cuXYqamhoMGzYMwJV/VV39y7eqqgoffPCByXb69OmDwMBALFiwwOTy2z8/19HREQAa9DEnMjISSqUS77//vsk2VqxYgZKSEowYMeLmDtKMmJgYKBQKfP755/jqq68wcuRIqTbA/HELIaTL0y0xbNgwuLm54d1338VPP/1002dpbsYdd9wBV1dXLF++XJrDAtTNnbiZoZY/X0oLAGFhYQBg9nLrWzF8+HAAaHAH4Pnz5wOA9D5a8n47Ojre0rBDY9Dr9ejRowc++eQTXLx4UWr/6aefcOjQoZveTnZ2NjZu3Ch9bTAY8MknnyAsLAxeXl4A6l67vXv3Yvfu3VK/srIyfPTRRwgICEBISMh199GrVy/06tUL//vf/xAfH49HHnnEZD6LJYYPH47c3Fxp2BaoC8+LFi2CVqu9qTlit8rcz+OePXtMXhdL3O6xKBQKREVFISEhARkZGVL70aNHsW3bNpO+Dz30EBQKBebMmdMgxAohcP78+Vs6hraEw09006qqqjB48GCMGzcOx48fxwcffIC7774bDz74IABgwIABaNeuHSZMmIDnn38eMpkMa9asafDDKZfLsXTpUowaNQphYWGIi4uDt7c3jh07hiNHjkg/6OHh4QCA559/HlFRUVAoFHjkkUfM1ubu7o4ZM2Zgzpw5eOCBB/Dggw9KNfbt2/e2woGHhwfuu+8+zJ8/H6WlpRg/frzJ94ODgxEUFIQXX3wRWVlZ0Ol0iI+Pv6mg8Gf29vZ45JFHsHjxYigUCpPJibdLqVTijTfewJQpU3D//fdj3LhxOHv2LFatWoWgoKAbntGYO3cufv75Z4wYMQL+/v7Iz8/HBx98AF9fX5PJqbcjNDQUEyZMwEcffSQNZ+7duxerV6/G6NGjcd999wGw7P0ODw/HunXrMG3aNPTt2xdardbkTFtTe/vttxEdHY277roLcXFxuHDhAhYvXowePXqYBJ3r6dKlC5544gns27cPnp6e+Pjjj5GXl4eVK1dKfaZPn47PP/8cw4YNw/PPP4/27dtj9erVOHPmDOLj480Oef5ZbGwsXnzxRQC4rZ+Zp556CsuWLcPEiRORlJSEgIAArF+/Hr/++isWLFjQYJ5OYxo5ciQ2bNiAMWPGYMSIEThz5gw+/PBDhISE3PTrfbXGOJY5c+Zg69atGDhwIP7+979Loah79+44ePCg1C8oKAj/+te/MGPGDJw9exajR4+Gk5MTzpw5g40bN+Kpp56S3h+6hma80oqawbUu6XZ0dGzQd9CgQaJ79+4N2v39/U3uwVK/zZ9++kk89dRTol27dkKr1YrHHntMnD9/3uS5v/76q7jzzjuFRqMRer1evPzyy2Lbtm0NLksWQohdu3aJIUOGCCcnJ+Ho6Ch69eplcp+WmpoaMWXKFOHu7i5kMtlNXd69ePFiERwcLOzt7YWnp6d49tlnG1w2bskl3fWWL18uAAgnJydx6dKlBt9PTU0VkZGRQqvVCjc3N/G3v/1NHDhwoMElsdd6L65Wf8n40KFDzX7/Wpd0f/XVVyb9zF26K4QQ77//vvD39xcqlUr069dP/PrrryI8PFw88MAD160rMTFRREdHC71eL5RKpdDr9eLRRx8VJ06cuGEt5j6XQph/L6qrq8WcOXNEYGCgsLe3F35+fmLGjBkml/HWu5n3++LFi+Ivf/mLcHFxMbmM2pLX7VqXdP/73/9uUBPMXCb8xRdfiODgYKFSqUSPHj3E119/LWJiYkRwcHCD5/9Z/c/jtm3bRK9evYRKpRLBwcEN6hZCiFOnTomHH35YuLi4CLVaLfr16ye2bNlyw+Orl5OTIxQKhejSpYvZWq71O+PPr48QQuTl5Ym4uDjh5uYmlEql6NmzZ4N9Xut1tORz9OefB6PRKN5++23pM967d2+xZcsWszWae6/MuZ1jqffTTz+J8PBwoVQqRceOHcWHH34off7/LD4+Xtx9993C0dFRODo6iuDgYDF58mRx/Phxk+M29160dTIhWtmMNmp2q1atQlxcHPbt24c77rjD2uXYvAMHDiAsLAyffPIJHn/88Sbfn9FohLu7Ox566CEsX768yfdHdcLCwuDu7o4dO3Zct19AQAB69OiBLVu2NHlNhYWF8Pb2xqxZs/D66683+f6IGhvn1BC1MMuXL4dWq8VDDz3U6NuuqKhoMBz4ySefoKio6KaWSSDLVVdXm8xhAuom1R84cKDFvearVq1CbW1ts4RpoqbAOTVELcTmzZuRmpqKjz76CM8995zJZOTG8vvvv+OFF17A2LFj4erqiuTkZKxYsQI9evTA2LFjG31/BGRlZSEyMhJ//etfodfrcezYMXz44Yfw8vLCM888Y+3yAADff/+9dDXb6NGjb+q+RUQtEUMNUQsxZcoU5OXlYfjw4ZgzZ06T7CMgIAB+fn54//33UVRUhPbt2yM2NhbvvPMOb+LVRNq1a4fw8HD873//Q0FBARwdHTFixAi88847cHV1tXZ5AOomgf/222+46667sGjRImuXQ3TLOKeGiIiIbALn1BAREZFNYKghIiIim9Bm5tQYjUZkZ2fDycnJqrdNJyIiopsnhEBpaSn0ev0NbyLZZkJNdnZ2gxVfiYiIqHU4d+4cfH19r9unzYSa+ltZnzt3DjqdzsrVEBER0c0wGAzw8/O7qSUp2kyoqR9y0ul0DDVEREStzM1MHeFEYSIiIrIJDDVERERkExhqiIiIyCYw1BAREZFNYKghIiIim8BQQ0RERDaBoYaIiIhsAkMNERER2QSGGiIiIrIJDDVERERkExhqiIiIyCYw1BAREZFNaDMLWlLrJIRAnqESqTklOJpTCnuFDCN66eHjorF2aURE1MIw1FCLUV1rxKmCiziaY0BqtgGpOQYczSlFUVmVSb953x3DgCBXPBzui6juXnBQ8mNMREQMNWQlhopqHL0cXFKzDTiaa8CJ3IuoqjU26KuQyxDk7ohu3jrkGSrw++ki/HryPH49eR6OysMY3tMbD4f7om9Ae8jlN16anoiIbBNDDTUpIQQyL1y6fNblyhmYzAuXzPbXquzQzdsJId46hOh16OatQxdPJ6jtFVKfc0Xl2JCchfjkTGQUleOrpEx8lZQJv/YaxPTxRUwfX/i1d2iuQyQiohZCJoQQ1i6iORgMBjg7O6OkpAQ6nc7a5dikyppapOVdlM6+1AeZ0ooas/19XDTodjm8hHg7IcTbGb7tNDd9tkUIgX1nLyA+KRPfHMrBxcor++kX2B4Ph/tieE9vaFXM7kRErZUlf78ZauiWFJVVSWdejubUBZiT+RdRY2z4cbJXyNDZw+mqAKNDN28nuDgoG62eS1W12HYkF/HJmdh1shD1n2qNvQIP9PDCw+G+6N/RlcNTREStDEONGQw1t8ZoFEgvKjcZOkrNNiDXUGG2v7PGXho6qgsvOnTy0EJp13x3D8guvoSNKVmIT8rE6cIyqV3vrMZDfXwRE+6LQDfHZquHiIhuHUONGQw1N3apqhbH80ovh5e6S6iP5hhQXlVrtr+/q0NdgLkcXkL0Ong7qyGTtYyzIUIIpJwrRnxSJr4+kG0yDNangwseDvfDiF7ecNbYW7FKIiK6HoYaMxhqTOWXVphcNp2aXYIzhWUwM3oElZ0cwV5O0sTdEG8duno5wUndesJARXUtdh7Nw/qkTPx8okA6TqWdHENDPPFwuC8GdnaHgsNTREQtCkONGW011NTUGnGmsKxu2EiaA1OKwouVZvu7aZUmc19CvHUIdHOEncJ2bj6db6hAwv4srE/KxIm8i1K7h5MKY3r7ICbcF108naxYIRER1WOoMaMthJqLlTU4ZhJeDDiWW4rKmob3fpHLgEA3R4TonaWJuyF6HTyc1Fao3DqEEDicZcD6pHPYdCAbxeXV0vd6+Trj4XBfjOqlRzvHxpvQTERElmGoMcOWQo0QAjklFSZXHqXmGJB+vtxsfwelAt3qg4u3M0L0OnT1dIJGqTDbvy2qqjHi+2P5WJ+UiR+P50tXcdkrZBgcXDc8NairO+xt6IwVEVFrwFBjRmsNNVU1dUsHpP7p7rtXn1W4mrezWpr3Uj8Hxr+9Ay9ltkDhxUps2p+N+KRMpOYYpHY3rRLRYT6I6eOLEH3r+QwREbVmDDVmtIZQU1JeLZ11qb+EOi2/FNW1Dd8iO7kMnTy0JuGlm7cO7TlU0qiO5hgQn5SJhP1ZKLx4ZQ2qbt46PBzui+gwPdy0KitWSERk2xhqzGhJoUYIgXNFl5CaU4LUnFJpGCmr2PzSAU5qO5PLpkO8dejsqYXKjsNHzaW61oifTxRgfVImEo/mS2tU2clluLerBx4O98H9wZ7Nej8eIqK2gKHGDGuFmorqWpzIKzW5ed2xnFKUVppfOsCvvQbdvExvXufbTtNi7v1CQHF5FTYfyMb6pEwcyCyR2l0c7BEdqkdMuC96+jjzPSMiagQMNWY0R6gpvFjZYOmAUwVlqDVz8xelQo4uXtorZ2C8dQj21vFGcK1MWl4p1idnIiElC3mGK5fJd/HUIqaPL8b09oGHru1cUUZE1NgYasxoqlBzMr8U//rmKFKzDcgvNX/vl/aOSpPLpkO8ndHR3ZFX0tiQWqPArpOFWJ+Uie1HcqXL6OUy4J4u7ojp44shIZ4mq40TEdGNWfL3m8sX3yaVnQI/Hi8AAMhkQKCr458WbtTBU6fiUISNU8hlGNTFHYO6uKPkUjW+OZiD+ORMJKVfwI/HC/Dj8QLo1HYYGapHTB9f9Ongws8EEVEj45ma2ySEwGd7MxDspUOwlxMcVcyJdMXpgovYkJyFDcmZyC65sghoRzdHxITXDU/pXTRWrJCIqGXj8JMZLenqJ2p7jEaB3afPIz4pE98dzsWl6rpFQmUy4K4gN8SE++CB7t68ISIR0Z8w1JjBUEMtxcXKGnx7KAfxSZnYc6ZIateq7DC8pxdi+viiX2B7Dk8REYGhxiyGGmqJzhWVIz45ExuSs5BRdGWZiw7tHfBQn7q7F/u1d7BihURE1sVQYwZDDbVkQgjsO3sB65PO4dtDubh41X2MIgLbIybcF8N7ekPLOVtE1MYw1JjBUEOtxaWqWmw7kov1SZn49VQh6n9CNfYKDOvhhZhwX/Tv6Mr1vIioTWCoMYOhhlqj7OJL2JiShfikTJwuLJPafVw0GNPbBzHhvgh0c7RihURETYuhxgyGGmrNhBBIOVeM9UmZ2HwgG6UVV4anwv3bIaaPL0b08uYdqYnI5jDUmMFQQ7aioroWO1LzEJ+ciZ9PFKB+FQ6VnRxDu3shpo8PBnZ2h4LDU0RkAyz5+31L9+lfsmQJAgICoFarERERgb17916zb3V1NebOnYugoCCo1WqEhoZi69atJn1qa2vx+uuvIzAwEBqNBkFBQXjzzTdxdd4SQmDWrFnw9vaGRqNBZGQk0tLSbqV8olZNba/AqFA9VsX1w+4ZgzFjWDC6eGpRWWPE5gPZmLhyHwa8k4h53x1FWl6ptcslImo2FoeadevWYdq0aZg9ezaSk5MRGhqKqKgo5Ofnm+0/c+ZMLFu2DIsWLUJqaiqeeeYZjBkzBikpKVKfd999F0uXLsXixYtx9OhRvPvuu3jvvfewaNEiqc97772H999/Hx9++CH27NkDR0dHREVFoaKiwtxuidoET50aTw8Kwrap9+Dr5+7ChP7+cHGwR56hEst+Oo0h//0Z0Yt34ZPdZ1FcXmXtcomImpTFw08RERHo27cvFi9eDAAwGo3w8/PDlClTMH369Ab99Xo9XnvtNUyePFlqi4mJgUajwdq1awEAI0eOhKenJ1asWGG2jxACer0e//znP/Hiiy8CAEpKSuDp6YlVq1bhkUceuWHdHH6itqKyphY/HMvH+qQs/Hg8HzWXx6eUCjkGd/PAw+G+uKeLOxdUJaJWocmGn6qqqpCUlITIyMgrG5DLERkZid27d5t9TmVlJdRqtUmbRqPBrl27pK8HDBiAxMREnDhxAgBw4MAB7Nq1C8OGDQMAnDlzBrm5uSb7dXZ2RkRExHX3azAYTB5EbYHKToEHenjjfxPuwO+vDsbrI0MQ4q1DVa0R3x3OxROr/0D/eYl4c0sqjubw54KIbIdFd/IqLCxEbW0tPD09Tdo9PT1x7Ngxs8+JiorC/Pnzcc899yAoKAiJiYnYsGEDamtrpT7Tp0+HwWBAcHAwFAoFamtr8dZbb+Gxxx4DAOTm5kr7+fN+67/3Z/PmzcOcOXMsOTwim+OmVeGJuwPxxN2BSM02ID45E5v2Z6HwYhVW7DqDFbvOIMRbh4fDfREdpoerVmXtkomIblmTn39euHAhOnfujODgYCiVSjz33HOIi4uDXH5l119++SU+/fRTfPbZZ0hOTsbq1avxn//8B6tXr77l/c6YMQMlJSXS49y5c41xOEStVoheh9dHhmD3jMH4X+wdGNbDC0qFHKk5BszdkoqItxPx5Oo/sPVwLqpqjNYul4jIYhadqXFzc4NCoUBeXp5Je15eHry8vMw+x93dHQkJCaioqMD58+eh1+sxffp0dOzYUerz0ksvYfr06dLcmJ49eyI9PR3z5s3DhAkTpG3n5eXB29vbZL9hYWFm96tSqaBS8V+dRH9mr5AjMsQTkSGeuFBWhc0HsxGflIkDmSXYeTQPO4/mwUllh256HUK8dQi5/N/Onlqo7LiKOBG1XBaFGqVSifDwcCQmJmL06NEA6iYKJyYm4rnnnrvuc9VqNXx8fFBdXY34+HiMGzdO+l55ebnJmRsAUCgUMBrr/rUYGBgILy8vJCYmSiHGYDBgz549ePbZZy05BCK6SjtHJWL7ByC2fwDS8kqxPjkTG5OzkF9aib1nirD3qlXE7eQydPLQIsRbh26Xw043bx3aOyqteARERFdYvDretGnTMGHCBNxxxx3o168fFixYgLKyMsTFxQEAYmNj4ePjg3nz5gEA9uzZg6ysLISFhSErKwtvvPEGjEYjXn75ZWmbo0aNwltvvYUOHTqge/fuSElJwfz58zFp0iQAgEwmw9SpU/Gvf/0LnTt3RmBgIF5//XXo9XopXBHR7ens6YQZw7rh5ahgHM8txdEcA1JzDNJ/i8urcSy3FMdyS4GULOl5Xjq1dDanPuj4t3fg2lRE1OwsDjXjx49HQUEBZs2ahdzcXISFhWHr1q3SJN6MjAyTsy4VFRWYOXMmTp8+Da1Wi+HDh2PNmjVwcXGR+ixatAivv/46/v73vyM/Px96vR5PP/00Zs2aJfV5+eWXUVZWhqeeegrFxcW4++67sXXr1gZXVhHR7VHIZXUhRa9DzOU2IQRySiqQmn0l5KTmGJB+vhy5hgrkGirw/bEr96pyUCrQzVuHbt5OCPF2Roheh66eTtAoOXxFRE2HyyQQ0S0rrajG8dzSK2d0sg04lluKSjMTjeUyINDNESF658thpy44eTjxHyZEdG1c+8kMhhqi5lFTa8SZwjLpbE792Z3Ci+bvaOymVdWFnPohLG8dAt0cYcebAxIRGGrMYqghsq780vrhq9LLYacEZwrLpAU5r6aykyPYy0makBzirUOwtw5alcUj5kTUyjHUmMFQQ9TyXKqqxfG8UpO5OkdzDCivqjXb39/VQTqbUx94vJ3VkMk4KZnIVjHUmMFQQ9Q6GI0C6UXl0hyd+qCTU2J+8VoXB3t087pyRqebtw6dPLRQ2nH4isgWMNSYwVBD1LoVlVXh6FUTklNzDDiZf1FasPNq9goZOnuYDl+FeOvg7GBvhcqJ6HYw1JjBUENkeyprapGWd9FkQnJqjgGlFTVm+/u4aK4KOnWXm/u113D4iqgFY6gxg6GGqG0QQiDzwqUr99PJNuBorgHnii6Z7e+kskPwVZeYd/PWoYunE9T2vKcOUUvAUGMGQw1R21ZyqRrH/nSX5BO5F1FV2/CeOgq5DEHujg2WhHDjKuZEzY6hxgyGGiL6s+paI04XlCE1p0S63PxIdgkulFeb7e/hpDKZkByi1yHA1REKLglB1GQYasxgqCGimyGEQJ6hEqk5JXX31Lk8Kfns+TKY+22psVcg2PvypOTLQSfYywkOSt5Th6gxMNSYwVBDRLejrLIGxxosCWFARXXD4SuZDAh0dUS3q668qlsSQsVJyUQWYqgxg6GGiBpbrVHg7Pkyk/vppGYbkF9aabZ/e0elFHBCvHXo6euMIHdtM1dN1Low1JjBUENEzaWgtPLKPXUuB53ThWWoNXNPnf+OD8WY3r5WqJKodbDk7zcHfYmIGpm7kwruTu64p4u71FZRXYsTVy0JsedMEY7lluLT3zMYaogaCUMNEVEzUNsr0MvXBb18XQAAeYYK3DkvEX+kX8C5onL4tXewboFENoCLoxARWYGnTo27gtwAAJv2Z1m5GiLbwFBDRGQl0WF6AMDGlCy0kemNRE2KoYaIyEoe6OEFlZ0cpwrKcCTbYO1yiFo9hhoiIitxUttjSIgngLqzNUR0exhqiIisaHSYDwDg6wPZZi/5JqKbx1BDRGRF93RxRzsHexSUVuK3U4XWLoeoVWOoISKyIqWdHCN6eQPgEBTR7WKoISKysjG964agth3OxaWqWitXQ9R6MdQQEVlZnw7t4Ndeg7KqWuw4mmftcohaLYYaIiIrk8lk0oThBA5BEd0yhhoiohYg+nKo+flEAc5fNL/KNxFdH0MNEVEL0MlDi54+zqgxCnxzKMfa5RC1Sgw1REQtxOjeHIIiuh0MNURELcSoUG/IZUByRjHSz5dZuxyiVoehhoiohfBwUuOuTnUrdyekZFu5GqLWh6GGiKgFqb9nzab9XLmbyFIMNURELUhUdy9o7BU4XViGg5kl1i6HqFVhqCEiakEcVXbSyt0J+zlhmMgSDDVERC1M/RDU5gPZqKk1WrkaotaDoYaIqIW5u7Mb2jsqUXixCrtOcuVuopvFUENE1MLYK+QYdXnl7k37eRUU0c1iqCEiaoHqb8S39XAuyiprrFwNUevAUENE1AKF+bnA39UBl6prsSOVK3cT3QyGGiKiFshk5W5eBUV0UxhqiIhaqPohqF/SClHIlbuJboihhoiohQp0c0SonwtqjQJbDnDCMNGNMNQQEbVgY8L0AICNvAqK6IYYaoiIWrCRoXoo5DIcOFeMM4VcuZvoehhqiIhaMDetCgM716/czQnDRNfDUENE1MJdfRUUV+4mujaGGiKiFm5od084KBVIP1+O/eeKrV0OUYvFUENE1MI5KO0Q1d0LAIegiK6HoYaIqBWIvnwV1OaDOajmyt1EZt1SqFmyZAkCAgKgVqsRERGBvXv3XrNvdXU15s6di6CgIKjVaoSGhmLr1q0mfQICAiCTyRo8Jk+eLPU5deoUxowZA3d3d+h0OowbNw55ebx1OBG1DXd3coObVomisirsSuPK3UTmWBxq1q1bh2nTpmH27NlITk5GaGgooqKikJ+fb7b/zJkzsWzZMixatAipqal45plnMGbMGKSkpEh99u3bh5ycHOmxY8cOAMDYsWMBAGVlZRg6dChkMhm+//57/Prrr6iqqsKoUaNgNPJfLERk++wUcowKvXzPGg5BEZklExZOpY+IiEDfvn2xePFiAIDRaISfnx+mTJmC6dOnN+iv1+vx2muvmZx1iYmJgUajwdq1a83uY+rUqdiyZQvS0tIgk8mwfft2DBs2DBcuXIBOpwMAlJSUoF27dti+fTsiIyNvWLfBYICzszNKSkqkbRARtSYHzhUjesmvUNvL8cfMIdCq7KxdElGTs+Tvt0VnaqqqqpCUlGQSIuRyOSIjI7F7926zz6msrIRarTZp02g02LVr1zX3sXbtWkyaNAkymUzahkwmg0qlkvqp1WrI5fJrbqeyshIGg8HkQUTUmvXydUZHN0dUVBux/UiutcshanEsCjWFhYWora2Fp6enSbunpydyc83/gEVFRWH+/PlIS0uD0WjEjh07sGHDBuTk5Jjtn5CQgOLiYkycOFFqu/POO+Ho6IhXXnkF5eXlKCsrw4svvoja2tprbmfevHlwdnaWHn5+fpYcKhFRiyOTyRB9+Z41HIIiaqjJr35auHAhOnfujODgYCiVSjz33HOIi4uDXG5+1ytWrMCwYcOg1+ulNnd3d3z11VfYvHkztFotnJ2dUVxcjD59+lxzOzNmzEBJSYn0OHfuXJMcHxFRcxrdu+53468nC5FfWmHlaohaFotCjZubGxQKRYOrjvLy8uDl5WX2Oe7u7khISEBZWRnS09Nx7NgxaLVadOzYsUHf9PR07Ny5E08++WSD7w0dOhSnTp1Cfn4+CgsLsWbNGmRlZZndDgCoVCrodDqTBxFRa+fv6og+HVxgFMDmA+bPVBO1VRaFGqVSifDwcCQmJkptRqMRiYmJ6N+//3Wfq1ar4ePjg5qaGsTHxyM6OrpBn5UrV8LDwwMjRoy45nbc3Nzg4uKC77//Hvn5+XjwwQctOQQiolZvdO/LyyZwCIrIhMXDT9OmTcPy5cuxevVqHD16FM8++yzKysoQFxcHAIiNjcWMGTOk/nv27MGGDRtw+vRp/PLLL3jggQdgNBrx8ssvm2zXaDRi5cqVmDBhAuzsGs7oX7lyJX7//XecOnUKa9euxdixY/HCCy+ga9eulh4CEVGrNqKnN+zkMhzKKsHJ/IvWLoeoxbD4esDx48ejoKAAs2bNQm5uLsLCwrB161Zp8nBGRobJPJeKigrMnDkTp0+fhlarxfDhw7FmzRq4uLiYbHfnzp3IyMjApEmTzO73+PHjmDFjBoqKihAQEIDXXnsNL7zwgqXlExG1eq5aFe7p4o7vj+Vj0/4s/HMo/3FHBNzCfWpaK96nhohsydcHsvH85ynwa6/Bzy/dJ90Cg8jWNNl9aoiIqGUY0s0TjkoFzhVdQnLGBWuXQ9QiMNQQEbVCGqUCUT3qrjrlPWuI6jDUEBG1UmMuXwX1zcEcVNVwHTwihhoiolZqQJAb3J1UuFBejZ9PFFi7HCKrY6ghImqlFHIZHqxfuXs/h6CIGGqIiFqx+iGonal5KK2otnI1RNbFUENE1Ip11+sQ5O6Iyhojth7myt3UtjHUEBG1YjKZTDpbs2l/tpWrIbIuhhoiolYuOqwu1Px6qhB5Bq7cTW0XQw0RUSvn194Bd/i3gxDA1zxbQ20YQw0RkQ2QVu7mVVDUhjHUEBHZgPqVu49kG5CWV2rtcoisgqGGiMgGtHNU4t6uHgB4tobaLoYaIiIbUX8VVEJKNoxGYeVqiJofQw0RkY0Y3M0DWpUdsoov4Y90rtxNbQ9DDRGRjVDbKzDs8srdHIKitoihhojIhoy+auXuyppaK1dD1LwYaoiIbMidHV3hqVOh5FI1fjzOlbupbWGoISKyIQq5TLrD8CYOQVEbw1BDRGRjosP0AICdR/Nh4Mrd1IYw1BAR2ZgQbx26eGpRVWPE1kNcuZvaDoYaIiIbI5PJpAnDG1M4BEVtB0MNEZENejC0bgjq9zPnkVNyycrVEDUPhhoiIhvk284B/QLbc+VualMYaoiIbNToMA5BUdvCUENEZKNG9PSGUiHHsdxSHMs1WLscoibHUENEZKOcHexxX7A7gLpFLolsHUMNEZENqx+C+np/FlfuJpvHUENEZMPuC/aAk9oO2SUV2Hu2yNrlEDUphhoiIhumtldgeA9vAEACJwyTjWOoISKycdLK3YdyUFHNlbvJdjHUEBHZuIjA9vB2VqO0ogY/Hs+3djlETYahhojIxsnlMjx4eZFL3rOGbBlDDRFRGzDm8hDUD8cKUFLOlbvJNjHUEBG1AcFeOgR7OaGq1ohvD+dYuxyiJsFQQ0TURnDlbrJ1DDVERG3Eg6F6yGTA3jNFyCrmyt1kexhqiIjaCL2LBhGB7QEAm/bzbA3ZHoYaIqI2pH7CcEJKFoTgsglkWxhqiIjakAd6eENpJ8eJvIs4mlNq7XKIGhVDDRFRG+KsscfgYA8AQAKHoMjGMNQQEbUx9VdBfb0/G7VcuZtsCEMNEVEbc29Xd+jUdsg1VGDP6fPWLoeo0TDUEBG1MSo7BUb0qls2gUNQZEsYaoiI2qD6q6C+O5TLlbvJZjDUEBG1QXf4t4OPiwallTVIPMqVu8k2MNQQEbVBcrkM0WEcgiLbwlBDRNRG1V8F9ePxfFwoq7JyNUS3j6GGiKiN6uLphBBvHaprBb45xJW7qfW7pVCzZMkSBAQEQK1WIyIiAnv37r1m3+rqasydOxdBQUFQq9UIDQ3F1q1bTfoEBARAJpM1eEyePFnqk5ubi8cffxxeXl5wdHREnz59EB8ffyvlExHRZfUThrkWFNkCi0PNunXrMG3aNMyePRvJyckIDQ1FVFQU8vPNTzSbOXMmli1bhkWLFiE1NRXPPPMMxowZg5SUFKnPvn37kJOTIz127NgBABg7dqzUJzY2FsePH8fXX3+NQ4cO4aGHHsK4ceNMtkNERJYZdXnl7n1nL+BcUbm1yyG6LTJh4YpmERER6Nu3LxYvXgwAMBqN8PPzw5QpUzB9+vQG/fV6PV577TWTsy4xMTHQaDRYu3at2X1MnToVW7ZsQVpaGmQyGQBAq9Vi6dKlePzxx6V+rq6uePfdd/Hkk0/esG6DwQBnZ2eUlJRAp9NZcshERDbtsf/9jl9PnsdLUV0x+b5O1i6HyIQlf78tOlNTVVWFpKQkREZGXtmAXI7IyEjs3r3b7HMqKyuhVqtN2jQaDXbt2nXNfaxduxaTJk2SAg0ADBgwAOvWrUNRURGMRiO++OILVFRU4N57773mfg0Gg8mDiIgaGh1WNwS1ITmTK3dTq2ZRqCksLERtbS08PT1N2j09PZGbm2v2OVFRUZg/fz7S0tJgNBqxY8cObNiwATk55ielJSQkoLi4GBMnTjRp//LLL1FdXQ1XV1eoVCo8/fTT2LhxIzp1Mv+vinnz5sHZ2Vl6+Pn5WXKoRERtxgM9vKCyk+NUQRmOZPMfgNR6NfnVTwsXLkTnzp0RHBwMpVKJ5557DnFxcZDLze96xYoVGDZsGPR6vUn766+/juLiYuzcuRN//PEHpk2bhnHjxuHQoUNmtzNjxgyUlJRIj3PnzjX6sRER2QIntT0iQ+r+sZqQwgnD1HpZFGrc3NygUCiQl5dn0p6XlwcvLy+zz3F3d0dCQgLKysqQnp6OY8eOQavVomPHjg36pqenY+fOnQ3myJw6dQqLFy/Gxx9/jMGDByM0NBSzZ8/GHXfcgSVLlpjdr0qlgk6nM3kQEZF59UNQXx/gyt3UelkUapRKJcLDw5GYmCi1GY1GJCYmon///td9rlqtho+PD2pqahAfH4/o6OgGfVauXAkPDw+MGDHCpL28vG5G/p/P7igUChiNRksOgYiIzBjUxR0uDvbIL63E7lNcuZtaJ4uHn6ZNm4bly5dj9erVOHr0KJ599lmUlZUhLi4OQN2l1zNmzJD679mzBxs2bMDp06fxyy+/4IEHHoDRaMTLL79ssl2j0YiVK1diwoQJsLOzM/lecHAwOnXqhKeffhp79+7FqVOn8H//93/YsWMHRo8efQuHTUREV1PayTGylzcAYCOHoKiVsjjUjB8/Hv/5z38wa9YshIWFYf/+/di6das0eTgjI8NkEnBFRQVmzpyJkJAQjBkzBj4+Pti1axdcXFxMtrtz505kZGRg0qRJDfZpb2+Pb7/9Fu7u7hg1ahR69eqFTz75BKtXr8bw4cMtPQQiIjKjfghq6+EcXKriyt3U+lh8n5rWivepISK6PiEEBr73AzIvXMKiR3tjVKj+xk8iamJNdp8aIiKyXTKZTDpbw6ugqDViqCEiIsno3nVnZ346UYAirtxNrQxDDRERSTp5OKGnjzNqjALfHMy2djlEFmGoISIiE9FhdWdreBUUtTYMNUREZOLBUD3kMiA5oxgZ57lyN7UeDDVERGTCQ6fGXZ3cAAAJ+3m2hloPhhoiImrg6qug2sidP8gGMNQQEVEDUT28oLaX43RhGQ5llVi7HKKbwlBDREQNaFV2GBJSt1AxJwxTa8FQQ0REZo25fM+azQdyUFPLxYOp5WOoISIiswZ2dkd7RyUKL1biV67cTa0AQw0REZllr7iycjeXTaDWgKGGiIiuaXTvuqugth3JRXlVjZWrIbo+hhoiIrqm3n4u8Hd1QHlVLXak5lm7HKLrYqghIqJrkslkiL58zxpeBUUtHUMNERFd1+jLa0H9klaIwouVVq6G6NoYaoiI6Lo6umsR6uuMWqPAlgNcuZtaLoYaIiK6ofoJwwn7GWqo5WKoISKiGxrZSw+FXIb954pxprDM2uUQmcVQQ0REN+TupMLd9St3c8IwtVAMNUREdFPGXB6C2rSfK3dTy8RQQ0REN2VIiCc09gqcPV+O/eeKrV0OUQMMNUREdFMcVXaI6u4JANjECcPUAjHUEBHRTau/CmrzgWxUc+VuamEYaoiI6Kbd3ckNblolzpdVYVdaobXLITLBUENERDfNTiHHyF51dxhO2M+roKhlYaghIiKLXL1y98VKrtxNLQdDDRERWSTU1xmBbo6oqDZi+5Fca5dDJGGoISIii8hkMowO47IJ1PIw1BARkcWiL6/cvSutAPmlFVauhqgOQw0REVkswM0RvTu4wCiALQdyrF0OEQCGGiIiukVXhqB4FRS1DAw1RER0S0b28oZCLsPBzBKcKrho7XKIGGqIiOjWuGpVGNTFHQCwiSt3UwvAUENERLesfsJwwv5srtxNVsdQQ0REt2xoiBcclQpkFJUjOaPY2uVQG8dQQ0REt0yjVCCqhxcAIIFDUGRlDDVERHRb6q+C2nKQK3eTdTHUEBHRbRkQ5Ap3JxUulFfj5xMF1i6H2jCGGiIiui12CjlGXV65eyOHoMiKGGqIiOi2jbm8cveO1DyUVlRbuRpqqxhqiIjotvXw0SHI3RGVNUZsO5Jn7XKojWKoISKi22aycjeHoMhKGGqIiKhRRF8ONb+dKkSegSt3U/NjqCEiokbRwdUB4f7tYBTA5gPZ1i6H2iCGGiIiajSjL08Y5lVQZA0MNURE1GhG9vSGnVyGI9kGpOWVWrscamMYaoiIqNG0c1Ti3q51K3cn7OfZGmpetxRqlixZgoCAAKjVakRERGDv3r3X7FtdXY25c+ciKCgIarUaoaGh2Lp1q0mfgIAAyGSyBo/JkycDAM6ePWv2+zKZDF999dWtHAIRETWR+iGoTfuzYTRy5W5qPhaHmnXr1mHatGmYPXs2kpOTERoaiqioKOTn55vtP3PmTCxbtgyLFi1CamoqnnnmGYwZMwYpKSlSn3379iEnJ0d67NixAwAwduxYAICfn5/J93NycjBnzhxotVoMGzbsVo6biIiaSGQ3T2hVdsi8cAlJGResXQ61ITIhhEUxOiIiAn379sXixYsBAEajEX5+fpgyZQqmT5/eoL9er8drr70mnXUBgJiYGGg0Gqxdu9bsPqZOnYotW7YgLS0NMpnMbJ/evXujT58+WLFixU3VbTAY4OzsjJKSEuh0upt6DhER3ZoXvzqA9UmZ+EtEB7w9pqe1y6FWzJK/3xadqamqqkJSUhIiIyOvbEAuR2RkJHbv3m32OZWVlVCr1SZtGo0Gu3btuuY+1q5di0mTJl0z0CQlJWH//v144oknrllrZWUlDAaDyYOIiJpH/bIJ3xzMQVUNV+6m5mFRqCksLERtbS08PT1N2j09PZGbm2v2OVFRUZg/fz7S0tJgNBqxY8cObNiwATk5OWb7JyQkoLi4GBMnTrxmHStWrEC3bt0wYMCAa/aZN28enJ2dpYefn9+ND5CIiBrFnR1d4eGkQsmlavx43Pz0BKLG1uRXPy1cuBCdO3dGcHAwlEolnnvuOcTFxUEuN7/rFStWYNiwYdDr9Wa/f+nSJXz22WfXPUsDADNmzEBJSYn0OHfu3G0fCxER3RyFXIbosLrf47wKipqLRaHGzc0NCoUCeXmmi5Xl5eXBy8vL7HPc3d2RkJCAsrIypKen49ixY9BqtejYsWODvunp6di5cyeefPLJa9awfv16lJeXIzY29rq1qlQq6HQ6kwcRETWf+qugdh7Nh4Erd1MzsCjUKJVKhIeHIzExUWozGo1ITExE//79r/tctVoNHx8f1NTUID4+HtHR0Q36rFy5Eh4eHhgxYsQ1t7NixQo8+OCDcHd3t6R0IiJqZiHeOnT20KKqxoith8xPUSBqTBYPP02bNg3Lly/H6tWrcfToUTz77LMoKytDXFwcACA2NhYzZsyQ+u/ZswcbNmzA6dOn8csvv+CBBx6A0WjEyy+/bLJdo9GIlStXYsKECbCzszO775MnT+Lnn3++7pkcIiJqGWQymXS2hkNQ1BzMp4frGD9+PAoKCjBr1izk5uYiLCwMW7dulSYPZ2RkmMyXqaiowMyZM3H69GlotVoMHz4ca9asgYuLi8l2d+7ciYyMDEyaNOma+/7444/h6+uLoUOHWlo2ERFZQXSYHv/edhy7T59HTskleDtrrF0S2TCL71PTWvE+NURE1jHuw93Ye7YIM4YF4+lBQdYuh1qZJrtPDRERkaWuDEFlW7kSsnUMNURE1KSG9/SCvUKGozkGHM/lyt3UdBhqiIioSbk4KHFfVw8AnDBMTYuhhoiImpy0cndKFlfupibDUENERE3u/mAPOKnskF1Sgb1ni6xdDtkohhoiImpyansFhvf0BgBs4hAUNRGGGiIiahbRvevWgtpyMAcV1bVWroZsEUMNERE1izsDXeHtrEZpRQ1X7qYmwVBDRETNQi6X4cH6lbtTeM8aanwMNURE1GxGh9VdBfX9sXyUlHPlbmpcDDVERNRsunnrEOzlhKpaI747nGPtcsjGMNQQEVGzir58tmZjCq+CosbFUENERM0q+vK8mj1nipBVfMnK1ZAtYaghIqJmpXfR4M6O7QEAX3ORS2pEDDVERNTs6icMJ3AIihoRQw0RETW7YT29oVTIcTyvFEdzDNYuh2wEQw0RETU7Z4097g++vHI3z9ZQI2GoISIiq5BW7t6fjVqu3E2NgKGGiIis4r5gd+jUdsg1VGDPmfPWLodsAEMNERFZhcpOgRG96lbu5hAUNQaGGiIispr6q6C+O5TLlbvptjHUEBGR1fQNaA8fFw1KK2vw/TGu3E23h6GGiIis5uqVu7lsAt0uhhoiIrKqMZevgvrxeD6Ky6usXA21Zgw1RERkVV08ndDNW4fqWoFvDnHlbrp1DDVERGR1Y3rXDUHxKii6HQw1RERkdQ+G+kAmA/advYBzReXWLodaKYYaIiKyOi9nNfp3dAUAfH2AK3fTrWGoISKiFqF+2YSNKVkQgssmkOUYaoiIqEV4oIcXlHZynMy/iCPZXLmbLMdQQ0RELYJObY8h3TwBcMIw3RqGGiIiajHqh6C+PsCVu8lyDDVERNRiDOriDhcHe+SXVmL3Ka7cTZZhqCEiohZDaSfHiJ6XV+7ezyEosgxDDRERtSj1Q1BbD+fiUhVX7qabx1BDREQtSniHdvBtp8HFyhrsPJpn7XKoFWGoISKiFkUul2F0WN3Zmk0cgiILMNQQEVGLM/ryWlA/Hi9AURlX7qabw1BDREQtTicPJ/Tw0aHGKPDNQS6bQDeHoYaIiFqk+iGohP0MNXRzGGqIiKhFejBUD7kMSEq/gIzzXLmbboyhhoiIWiQPnRp3dXIDwAnDdHMYaoiIqMWKvjwEtXE/V+6mG2OoISKiFiuquyfU9nKcLijDoawSa5dDLRxDDRERtVhOansMCfECACSkcMIwXR9DDRERtWijw+ruWfP1gWzU1BqtXA21ZAw1RETUot3TxR3tHOxReLESv3HlbroOhhoiImrR7BVyjOxVd7YmIYVXQdG1MdQQEVGLJ63cfSQX5VU1Vq6GWqpbCjVLlixBQEAA1Go1IiIisHfv3mv2ra6uxty5cxEUFAS1Wo3Q0FBs3brVpE9AQABkMlmDx+TJk0367d69G/fffz8cHR2h0+lwzz334NKlS7dyCERE1Ir06eCCDu0dUF5Vix2pXLmbzLM41Kxbtw7Tpk3D7NmzkZycjNDQUERFRSE/P99s/5kzZ2LZsmVYtGgRUlNT8cwzz2DMmDFISUmR+uzbtw85OTnSY8eOHQCAsWPHSn12796NBx54AEOHDsXevXuxb98+PPfcc5DLebKJiMjWyWQyacIwh6DoWmTCwrsZRUREoG/fvli8eDEAwGg0ws/PD1OmTMH06dMb9Nfr9XjttddMzrrExMRAo9Fg7dq1ZvcxdepUbNmyBWlpaZDJZACAO++8E0OGDMGbb75pSbkSg8EAZ2dnlJSUQKfT3dI2iIjIek4VXMTg//sJCrkMe14dDDetytolUTOw5O+3Rac5qqqqkJSUhMjIyCsbkMsRGRmJ3bt3m31OZWUl1Gq1SZtGo8GuXbuuuY+1a9di0qRJUqDJz8/Hnj174OHhgQEDBsDT0xODBg265jbq92swGEweRETUegW5axHq64xao8A3B3OsXQ61QBaFmsLCQtTW1sLT09Ok3dPTE7m5uWafExUVhfnz5yMtLQ1GoxE7duzAhg0bkJNj/gOZkJCA4uJiTJw4UWo7ffo0AOCNN97A3/72N2zduhV9+vTB4MGDkZaWZnY78+bNg7Ozs/Tw8/Oz5FCJiKgFkpZN4BAUmdHkE1IWLlyIzp07Izg4GEqlEs899xzi4uKuORdmxYoVGDZsGPR6vdRmNNbdbOnpp59GXFwcevfujf/+97/o2rUrPv74Y7PbmTFjBkpKSqTHuXPnGv/giIioWY0K1UMhl2H/uWKcLSyzdjnUwlgUatzc3KBQKJCXZzrzPC8vD15eXmaf4+7ujoSEBJSVlSE9PR3Hjh2DVqtFx44dG/RNT0/Hzp078eSTT5q0e3t7AwBCQkJM2rt164aMjAyz+1WpVNDpdCYPIiJq3dydVNLK3QlcuZv+xKJQo1QqER4ejsTERKnNaDQiMTER/fv3v+5z1Wo1fHx8UFNTg/j4eERHRzfos3LlSnh4eGDEiBEm7QEBAdDr9Th+/LhJ+4kTJ+Dv72/JIRARUSs3pveVq6C4cjddzc7SJ0ybNg0TJkzAHXfcgX79+mHBggUoKytDXFwcACA2NhY+Pj6YN28eAGDPnj3IyspCWFgYsrKy8MYbb8BoNOLll1822a7RaMTKlSsxYcIE2NmZliWTyfDSSy9h9uzZCA0NRVhYGFavXo1jx45h/fr1t3rsRETUCg0N8YLG/jDOni/HgcwShPm5WLskaiEsDjXjx49HQUEBZs2ahdzcXISFhWHr1q3S5OGMjAyT+TIVFRWYOXMmTp8+Da1Wi+HDh2PNmjVwcXEx2e7OnTuRkZGBSZMmmd3v1KlTUVFRgRdeeAFFRUUIDQ3Fjh07EBQUZOkhEBFRK+aossPQ7p7YtD8bCSlZDDUksfg+Na0V71NDRGQ7fjiej7iV++DqqMTvrw6GvYI3YrVVTXafGiIiopZgYCc3uDoqcb6sCrtOFlq7HGohGGqIiKjVsVPIMSqUyyaQKYYaIiJqlepX7t5+JA9llVy5mxhqiIiolQr1dUaAqwMuVddie6r5u9pT28JQQ0RErZJMJpPO1mxMybZyNdQSMNQQEVGrNfryWlC70gpQUFpp5WrI2hhqiIio1Qpwc0SYnwuMAth8gGdr2jqGGiIiatXGXB6C2sS1oNo8hhoiImrVRvTyhkIuw4HMEpwquGjtcsiKGGqIiKhVc9OqcE/nupW7N/GeNW0aQw0REbV69VdBJezP5srdbRhDDRERtXpDQjzhoFQgo6gcyRnF1i6HrIShhoiIWj0HpR0e6O4FgBOG2zKGGiIisgnRl4egNh/IRnWt0crVkDUw1BARkU24K8gVbloVLpRX4+cTBdYuh6yAoYaIiGyCnUKOB+tX7t7PG/G1RQw1RERkM0b3rgs124/korSi2srVUHNjqCEiIpvR08cZHd0dUVljxLYjedYuh5oZQw0REdkMmUwmLXLJq6DaHoYaIiKyKfWh5teThcg3VFi5GmpODDVERGRTOrg6INy/HYwC+Jord7cpDDVERGRzRofVXwXFIai2hKGGiIhszoheetjJZTicZcDJ/FJrl0PNhKGGiIhsTntHJe7t6g4ASEjhEFRbwVBDREQ2KTqsfuXuLK7c3UYw1BARkU2K7OYJrcoOmRcuISn9grXLoWbAUENERDZJo1Qg6vLK3c9+mox53x1FWh7n19gymWgj5+QMBgOcnZ1RUlICnU5n7XKIiKgZnMwvxaPL96CgtFJqC/V1Rky4L0b10qOdo9KK1dHNsOTvN0MNERHZtKoaI74/lo/1SZn48Xg+aox1f/bsFTJEdvNETB9fDOrqDnsFBy9aIoYaMxhqiIio8GIlNu3PRnxSJlJzDFK7m1aJ6DAfxPTxRYiefyNaEoYaMxhqiIjoaqnZBsQnZ2LT/iwUXqyS2kO8dYgJ90V0mB5uWpUVKySAocYshhoiIjKnutaIn44XID45E4lH81FVawQA2MlluLerBx4O98H9wZ5Q2nF4yhoYasxgqCEiohu5UFaFzQfrhqcOZJZI7e0c7PFgqB4x4b7o6eMMmUxmxSrbFoYaMxhqiIjIEml5pVifnImElCzkGa5cPdXFU4uYPr4Y09sHHjq1FStsGxhqzGCoISKiW1FrFNh1shDrkzKx/UguKmvqhqfkMuCeLu6I6eOLISGeUNsrrFypbWKoMYOhhoiIblfJpWp8czAH8cmZJncp1qntMDJUj5g+vujTwYXDU42IocYMhhoiImpMpwsuYkNyFjYkZyK7pEJq7+jmiJjwuuEpvYvGihXaBoYaMxhqiIioKRiNArtPn0d8Uia+O5yLS9W1AACZDLgryA0x4T54oLs3NEoOT90KhhozGGqIiKipXayswbeHchCflIk9Z4qkdq3KDsN7eiGmjy/6Bbbn8JQFGGrMYKghIqLmdK6oHPHJmdiQnIWMonKpvUN7BzzUp+7uxX7tHaxYYevAUGMGQw0REVmDEAL7zl7A+qRz+PZQLi5W1kjfiwhsj5hwXwzv6Q2tys6KVbZcDDVmMNQQEZG1XaqqxbYjuViflIlfTxWi/i+wxl6BYT288HC4L+7s6Aq5nMNT9RhqzGCoISKiliS7+BI2pmQhPikTpwvLpHYfFw3G9PZBTLgvAt0crVhhy8BQYwZDDRERtURCCKScK8b6pExsPpCN0oorw1Ph/u3wcLgvRvTyhk5tb8UqrYehxgyGGiIiaukqqmuxIzUP8cmZ+PlEAYyX/0Kr7OQY2r1ueOruTm5QtKHhKYYaMxhqiIioNckzVCAhJQvxyZk4kXdRavfUqTCmty8eDvdBJw8nK1bYPBhqzGCoISKi1kgIgUNZJYhPysSmA9koLq+Wvhfq64yHw30xKlQPFwelFatsOgw1ZjDUEBFRa1dVY8T3x/KxPikTPx7PR83l8SmlQo7IEA/E9PHFPV3cYa+QW7nSxmPJ3+9bOuolS5YgICAAarUaERER2Lt37zX7VldXY+7cuQgKCoJarUZoaCi2bt1q0icgIAAymazBY/LkyVKfe++9t8H3n3nmmVspn4iIqFVS2snxQA8v/G/CHfj91cF4fWQIQrx1qKo14ttDuXhi9R/oPy8R/9qSiqM5BmuX2+wsPlOzbt06xMbG4sMPP0RERAQWLFiAr776CsePH4eHh0eD/q+88grWrl2L5cuXIzg4GNu2bcO0adPw22+/oXfv3gCAgoIC1NbWSs85fPgwhgwZgh9++AH33nsvgLpQ06VLF8ydO1fq5+DgcNNnXXimhoiIbFVqtgHxyZnYtD8LhRerpPbueh1i+vgiOkwPV63KihXeuiYdfoqIiEDfvn2xePFiAIDRaISfnx+mTJmC6dOnN+iv1+vx2muvmZx1iYmJgUajwdq1a83uY+rUqdiyZQvS0tKk9THuvfdehIWFYcGCBZaUK2GoISIiW1dda8RPxwsQn5yJxKP5qKo1AgDs5DLcF1w3PHV/sAeUdq1neMqSv98W3ZO5qqoKSUlJmDFjhtQml8sRGRmJ3bt3m31OZWUl1Gq1SZtGo8GuXbuuuY+1a9di2rRpDRb8+vTTT7F27Vp4eXlh1KhReP311+HgYH7djMrKSlRWVkpfGwxt7zQcERG1LfYKOSJDPBEZ4okLZVXYfDAb8UmZOJBZgh2pediRmod2DvaIDqtbe6qHj86mFte0KNQUFhaitrYWnp6eJu2enp44duyY2edERUVh/vz5uOeeexAUFITExERs2LDBZLjpagkJCSguLsbEiRNN2v/yl7/A398fer0eBw8exCuvvILjx49jw4YNZrczb948zJkzx5LDIyIishntHJWI7R+A2P4BSMsrxfrkTGxMzkJ+aSVW/XYWq347i66eTogJ98HoMB946NQ33mgLZ9HwU3Z2Nnx8fPDbb7+hf//+UvvLL7+Mn376CXv27GnwnIKCAvztb3/D5s2bIZPJEBQUhMjISHz88ce4dOlSg/5RUVFQKpXYvHnzdWv5/vvvMXjwYJw8eRJBQUENvm/uTI2fnx+Hn4iIqM2qqTVi18lCxCdnYfuRXFTW1A1PyWXAoC7uiAn3RWQ3T6jtFVau9IomG35yc3ODQqFAXl6eSXteXh68vLzMPsfd3R0JCQmoqKjA+fPnodfrMX36dHTs2LFB3/T0dOzcufOaZ1+uFhERAQDXDDUqlQoqVeucFEVERNQU7BRy3NvVA/d29UDJpWp8czAH8cmZSEq/gB+OF+CH4wXQqe0wKlSPmHBf9PZzaVXDUxbNFFIqlQgPD0diYqLUZjQakZiYaHLmxhy1Wg0fHx/U1NQgPj4e0dHRDfqsXLkSHh4eGDFixA1r2b9/PwDA29vbkkMgIiIiAM4ae/wlogPinx2A7/85CM/d1wl6ZzUMFTX4dE8GHvrgNwye/xOW/HASOSUNR1Zaolu6pHvChAlYtmwZ+vXrhwULFuDLL7/EsWPH4OnpidjYWPj4+GDevHkAgD179iArKwthYWHIysrCG2+8gTNnziA5ORkuLi7Sdo1GIwIDA/Hoo4/inXfeMdnnqVOn8Nlnn2H48OFwdXXFwYMH8cILL8DX1xc//fTTTdXNq5+IiIiuz2gU2H36POKTMvHd4Vxcqq6b/yqTAXd3ckNMH19EdfeCRtl8w1NNNvwEAOPHj0dBQQFmzZqF3NxchIWFYevWrdLk4YyMDMjlV04AVVRUYObMmTh9+jS0Wi2GDx+ONWvWmAQaANi5cycyMjIwadKkBvtUKpXYuXMnFixYgLKyMvj5+SEmJgYzZ860tHwiIiK6Brlchrs6ueGuTm6YO7oG3x7KQXxSJvacKcIvaYX4Ja0QWpUdRvT0Rky4L/oGtGtRw1NcJoGIiIiu61xROeKTMxGfnIlzRVeGovxdHfBQb1881McHfu3N32LldnHtJzMYaoiIiG6P0Siw72wR4pMz8c3BHJRVXbk9y50d2yOmjy9G9/Zp1LWnGGrMYKghIiJqPOVVNdh2JBfxSVn49VQhhAA8dSr8Nn0wFPLGG5Jq0jk1RERERA5KO4zp7YsxvX2RXXwJG1Oy4KBUNGqgsRRDDREREd0WvYsGk+/rZO0yLLtPDREREVFLxVBDRERENoGhhoiIiGwCQw0RERHZBIYaIiIisgkMNURERGQTGGqIiIjIJjDUEBERkU1gqCEiIiKbwFBDRERENoGhhoiIiGwCQw0RERHZBIYaIiIisgltZpVuIQQAwGAwWLkSIiIiuln1f7fr/45fT5sJNaWlpQAAPz8/K1dCREREliotLYWzs/N1+8jEzUQfG2A0GpGdnQ0nJyfIZLJG3bbBYICfnx/OnTsHnU7XqNumK/g6Nw++zs2Dr3Pz4WvdPJrqdRZCoLS0FHq9HnL59WfNtJkzNXK5HL6+vk26D51Oxx+YZsDXuXnwdW4efJ2bD1/r5tEUr/ONztDU40RhIiIisgkMNURERGQTGGoagUqlwuzZs6FSqaxdik3j69w8+Do3D77OzYevdfNoCa9zm5koTERERLaNZ2qIiIjIJjDUEBERkU1gqCEiIiKbwFBDRERENoGhhoiIiGwCQ81tWLp0KXr16iXdPbF///747rvvrF2WTXvnnXcgk8kwdepUa5dic9544w3IZDKTR3BwsLXLsklZWVn461//CldXV2g0GvTs2RN//PGHtcuyKQEBAQ0+zzKZDJMnT7Z2aTaltrYWr7/+OgIDA6HRaBAUFIQ333zzphafbAptZpmEpuDr64t33nkHnTt3hhACq1evRnR0NFJSUtC9e3drl2dz9u3bh2XLlqFXr17WLsVmde/eHTt37pS+trPjr4jGduHCBdx1112477778N1338Hd3R1paWlo166dtUuzKfv27UNtba309eHDhzFkyBCMHTvWilXZnnfffRdLly7F6tWr0b17d/zxxx+Ii4uDs7Mznn/++Wavh7+xbsOoUaNMvn7rrbewdOlS/P777ww1jezixYt47LHHsHz5cvzrX/+ydjk2y87ODl5eXtYuw6a9++678PPzw8qVK6W2wMBAK1Zkm9zd3U2+fueddxAUFIRBgwZZqSLb9NtvvyE6OhojRowAUHeG7PPPP8fevXutUg+HnxpJbW0tvvjiC5SVlaF///7WLsfmTJ48GSNGjEBkZKS1S7FpaWlp0Ov16NixIx577DFkZGRYuySb8/XXX+OOO+7A2LFj4eHhgd69e2P58uXWLsumVVVVYe3atZg0aRJkMpm1y7EpAwYMQGJiIk6cOAEAOHDgAHbt2oVhw4ZZpR6eqblNhw4dQv/+/VFRUQGtVouNGzciJCTE2mXZlC+++ALJycnYt2+ftUuxaREREVi1ahW6du2KnJwczJkzBwMHDsThw4fh5ORk7fJsxunTp7F06VJMmzYNr776Kvbt24fnn38eSqUSEyZMsHZ5NikhIQHFxcWYOHGitUuxOdOnT4fBYEBwcDAUCgVqa2vx1ltv4bHHHrNOQYJuS2VlpUhLSxN//PGHmD59unBzcxNHjhyxdlk2IyMjQ3h4eIgDBw5IbYMGDRL/+Mc/rFdUG3HhwgWh0+nE//73P2uXYlPs7e1F//79TdqmTJki7rzzTitVZPuGDh0qRo4cae0ybNLnn38ufH19xeeffy4OHjwoPvnkE9G+fXuxatUqq9TDMzW3SalUolOnTgCA8PBw7Nu3DwsXLsSyZcusXJltSEpKQn5+Pvr06SO11dbW4ueff8bixYtRWVkJhUJhxQptl4uLC7p06YKTJ09auxSb4u3t3eBsbrdu3RAfH2+limxbeno6du7ciQ0bNli7FJv00ksvYfr06XjkkUcAAD179kR6ejrmzZtnlTOPDDWNzGg0orKy0tpl2IzBgwfj0KFDJm1xcXEIDg7GK6+8wkDThC5evIhTp07h8ccft3YpNuWuu+7C8ePHTdpOnDgBf39/K1Vk21auXAkPDw9pIis1rvLycsjlptNzFQoFjEajVephqLkNM2bMwLBhw9ChQweUlpbis88+w48//oht27ZZuzSb4eTkhB49epi0OTo6wtXVtUE73Z4XX3wRo0aNgr+/P7KzszF79mwoFAo8+uij1i7NprzwwgsYMGAA3n77bYwbNw579+7FRx99hI8++sjapdkco9GIlStXYsKECbw9QRMZNWoU3nrrLXTo0AHdu3dHSkoK5s+fj0mTJlmlHr7LtyE/Px+xsbHIycmBs7MzevXqhW3btmHIkCHWLo3IYpmZmXj00Udx/vx5uLu74+6778bvv//e4NJYuj19+/bFxo0bMWPGDMydOxeBgYFYsGCB9SZW2rCdO3ciIyPDan9g24JFixbh9ddfx9///nfk5+dDr9fj6aefxqxZs6xSj0wIK932j4iIiKgR8T41REREZBMYaoiIiMgmMNQQERGRTWCoISIiIpvAUENEREQ2gaGGiIiIbAJDDREREdkEhhoiIiKyCQw1REREZBMYaoiIiMgmMNQQERGRTfh/ILO/myT6pUAAAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "to_plot = []\n", "params_history = []\n", "params = best_params.copy()\n", "for smooth_polyorder in range(3, params['smooth_window_length']):\n", " params['smooth_polyorder'] = smooth_polyorder\n", " params_history.append(params['smooth_polyorder'])\n", " print(params['smooth_polyorder'])\n", " process_params = {key: params[key] for key in ['baseline_lam', 'baseline_p', 'smooth_window_length', 'smooth_polyorder']}\n", " classifier_params = {key: params[key] for key in best_params.keys() if key not in ['baseline_lam', 'baseline_p', 'smooth_window_length', 'smooth_polyorder']}\n", " X_train, X_test = process_train_test(process_params, experiments_train, metadata_train, experiments_test, metadata_test, scale=True)\n", " to_plot.append(evaluate_classifier_params(RandomForestClassifier, classifier_params, X_train, truth_train, X_test, truth_test, iters=20)[1])\n", "best_params['smooth_polyorder'] = params_history[to_plot.index(max(to_plot))]\n", "_ = plt.plot(np.array(range(3, params['smooth_window_length'])), to_plot)\n", "_ = plt.title(\"Impact of varying smoothing polynomial order\")\n", "plt.savefig('../images/random_forest/vary_smooth_order.svg', format='svg', dpi=1200)" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-05-01T09:30:43.220739900Z", "start_time": "2024-05-01T09:26:59.619274800Z" } }, "id": "e763853b27eb8b33", "execution_count": 22 }, { "cell_type": "code", "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "5\n", "6\n", "7\n", "8\n", "9\n", "10\n", "11\n", "12\n", "13\n", "14\n", "15\n", "16\n", "17\n", "18\n", "19\n", "20\n" ] }, { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGzCAYAAADXFObAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/pklEQVR4nO3dd3hUVfoH8O/0SQ/phUBCKCEQEmqkW6IIiAgWdBEwWBFwgV0UlCaui7iCICCoPwsi7oJSVFA0REBQmoQeIEhJID2EdNJm7u+PyVwyJIFMMj3fz/PM88CdO/eeOzOZeeec9z1HIgiCACIiIiI7J7V2A4iIiIhMgUENEREROQQGNUREROQQGNQQERGRQ2BQQ0RERA6BQQ0RERE5BAY1RERE5BAY1BAREZFDYFBDREREDoFBDZEJrFu3DhEREVAoFPD09LR2c4xy99134+6777Z2M+ze7t27IZFI8O23395x32eeeQahoaHmb5SJXL58GRKJBF988YVNH9Nc+DdiPxjU0G198cUXkEgk+PPPP63dlGb78ccfsWDBApMf9+zZs3jmmWcQHh6OTz75BB9//LHJz0G24+uvv8ayZcus3Qwiqofc2g0gspQff/wRq1atMnlgs3v3bmi1Wixfvhzt27c36bEt4ZdffrF2E+zK119/jVOnTmHatGlNPsYnn3wCrVZrukaZWdu2bXHjxg0oFAprN8Uq+DdiPxjUEDVTTk4OANjMsFNpaSlcXFwavb9SqTRja6g+9hYcSCQSqNVqazfDavg3Yj84/ERGe+aZZ+Dq6oq0tDQ89NBDcHV1RXBwMFatWgUAOHnyJO699164uLigbdu2+Prrrw0erx/S+u233/Diiy/C29sb7u7uGD9+PK5fv26w73fffYfhw4cjKCgIKpUK4eHheOutt6DRaOq06+DBgxg2bBhatWoFFxcXdOvWDcuXLxfbrG+fRCIRb3fy4YcfokuXLlCpVAgKCsLkyZNRUFAg3h8aGor58+cDAHx9fSGRSBrsCXrvvfcgkUiQmppa577Zs2dDqVSK17937148/vjjaNOmDVQqFUJCQjB9+nTcuHHD4HH61+LChQsYNmwY3NzcMHbsWMyfPx8KhQK5ubl1zvXCCy/A09MT5eXlAOrmC+hzQzZu3Ii3334brVu3hlqtxn333Ye//vqrzvFWrVqFdu3awcnJCX369MHevXsbnYOQkJCAAQMGwNPTE66urujUqRNef/31etvy5ptvIjg4GG5ubnjsscdQWFiIiooKTJs2DX5+fnB1dUV8fDwqKioMzlFdXY233noL4eHhUKlUCA0Nxeuvv15nP+DOr/fdd9+N7du3IzU1VXwP3Zobo9Vq7/i83ZpTo88vee+99/Dxxx+Lbe3duzcOHz5cp53ffPMNIiMjoVar0bVrV2zZsqVReTozZsyAt7c3BEEQt02dOhUSiQQffPCBuC07OxsSiQSrV682aF/t/Bf9ey89PR2PPPIIXF1d4evri3/+8591/j4LCgrwzDPPwMPDA56enpgwYYLB81rbr7/+ioEDB8LFxQWenp4YOXIkzpw5I95/4sQJSCQSfP/99+K2I0eOQCKRoEePHgbHGjp0KGJjY2/7nGRlZSE+Ph6tW7eGSqVCYGAgRo4cicuXL4v73Pp+Dg0NNfgcqX3bvXu3uF96ejomTpwIf39/qFQqdOnSBZ999tlt20PNw54aahKNRoOhQ4di0KBBePfdd7F+/XpMmTIFLi4ueOONNzB27FiMHj0aa9aswfjx49G3b1+EhYUZHGPKlCnw9PTEggULcO7cOaxevRqpqaniFxmgC4BcXV0xY8YMuLq64tdff8W8efNQVFSE//znP+KxEhIS8NBDDyEwMBB///vfERAQgDNnzmDbtm34+9//jhdffBEZGRlISEjAunXrGnWNCxYswJtvvom4uDhMmjRJbOPhw4fx+++/Q6FQYNmyZfjyyy+xZcsWrF69Gq6urujWrVu9x3viiSfw6quvYuPGjZg5c6bBfRs3bsQDDzyAVq1aAdB9aZWVlWHSpEnw9vbGoUOHsGLFCly9ehXffPONwWOrq6sxZMgQDBgwAO+99x6cnZ3Rt29fLFy4EBs2bMCUKVPEfSsrK/Htt9/i0UcfveMv73feeQdSqRT//Oc/UVhYiHfffRdjx47FwYMHxX1Wr16NKVOmYODAgZg+fTouX76MRx55BK1atULr1q1ve/zTp0/joYceQrdu3bBw4UKoVCr89ddf+P333+vsu2jRIjg5OWHWrFn466+/sGLFCigUCkilUly/fh0LFizAgQMH8MUXXyAsLAzz5s0TH/vcc89h7dq1eOyxx/CPf/wDBw8exKJFi3DmzBls2bJF3K8xr/cbb7yBwsJCXL16Fe+//z4AwNXV1ejnrSFff/01iouL8eKLL0IikeDdd9/F6NGjcfHiRbF3Z/v27RgzZgyioqKwaNEiXL9+Hc8++yyCg4PvePyBAwfi/fffx+nTp9G1a1cAugBaKpVi7969eOWVV8RtADBo0KDbHk+j0WDIkCGIjY3Fe++9h507d2LJkiUIDw/HpEmTAACCIGDkyJHYt28fXnrpJXTu3BlbtmzBhAkT6hxv586dGDp0KNq1a4cFCxbgxo0bWLFiBfr374+kpCSEhoaia9eu8PT0xG+//YaHH37Y4BqOHz+OoqIiuLu7Q6vV4o8//sALL7xw22t49NFHcfr0aUydOhWhoaHIyclBQkIC0tLSGgwSly1bhpKSEoNt77//Po4dOwZvb28AusDwrrvugkQiwZQpU+Dr64uffvoJzz77LIqKipo1fEm3IRDdxueffy4AEA4fPixumzBhggBA+Pe//y1uu379uuDk5CRIJBLhf//7n7j97NmzAgBh/vz5dY7Zs2dPobKyUtz+7rvvCgCE7777TtxWVlZWp00vvvii4OzsLJSXlwuCIAjV1dVCWFiY0LZtW+H69esG+2q1WvHfkydPFhr7ls/JyRGUSqXwwAMPCBqNRty+cuVKAYDw2Wefidvmz58vABByc3PveNy+ffsKPXv2NNh26NAhAYDw5Zdfitvqu+5FixYJEolESE1NFbfpX4tZs2bVe67Y2FiDbZs3bxYACLt27RK3DR48WBg8eLD4/127dgkAhM6dOwsVFRXi9uXLlwsAhJMnTwqCIAgVFRWCt7e30Lt3b6Gqqkrc74svvhAAGByzPu+///4dnzd9W7p27WrwXnnqqacEiUQiDB06tM41t23bVvz/sWPHBADCc889Z7DfP//5TwGA8OuvvwqCYNzrPXz4cINz3NrWOz1vgqB73Wof49KlSwIAwdvbW8jPzxe3f/fddwIA4YcffhC3RUVFCa1btxaKi4vFbbt37xYA1Nuu2nJycgQAwocffigIgiAUFBQIUqlUePzxxwV/f39xv1deeUXw8vIS/3707fv8888NrgGAsHDhQoNzdO/e3eA9vnXrVgGA8O6774rbqqurhYEDB9Y5ZkxMjODn5ydcu3ZN3Hb8+HFBKpUK48ePF7cNHz5c6NOnj/j/0aNHC6NHjxZkMpnw008/CYIgCElJSXU+T251/fp1AYDwn//857bP261/I7fauHFjnefi2WefFQIDA4W8vDyDfZ988knBw8Oj3r9xaj4OP1GTPffcc+K/PT090alTJ7i4uOCJJ54Qt3fq1Amenp64ePFince/8MILBrkFkyZNglwux48//ihuc3JyEv9dXFyMvLw8DBw4EGVlZTh79iwA4OjRo7h06RKmTZtWJ6+lMUNM9dm5cycqKysxbdo0SKU3/0yef/55uLu7Y/v27U067pgxY3DkyBFcuHBB3LZhwwaoVCqMHDlS3Fb7uktLS5GXl4d+/fpBEAQcPXq0znH1v4prGz9+PA4ePGhwrvXr1yMkJASDBw++Y1vj4+MNcgkGDhwIAOJr+eeff+LatWt4/vnnIZff7PQdO3as2ON0O/rX6rvvvrtj0uz48eMN3iuxsbEQBAETJ0402C82NhZXrlxBdXU1AIjvpRkzZhjs949//AMAxNfRlK/3nZ632xkzZozBc3frYzMyMnDy5EmMHz/eoIdo8ODBiIqKuuPxfX19ERERgd9++w0A8Pvvv0Mmk2HmzJnIzs7G+fPnAeh6PgYMGNCov5+XXnrJ4P8DBw40uNYff/wRcrnc4D0qk8kwdepUg8dlZmbi2LFjeOaZZ+Dl5SVu79atG+6//36Dz4WBAwciKSkJpaWlAIB9+/Zh2LBhiImJEXuZ9u7dC4lEggEDBjTYdicnJyiVSuzevbvO0HdjJScnY+LEiRg5ciTmzJkDQNc7tWnTJowYMQKCICAvL0+8DRkyBIWFhUhKSmrS+ej2GNRQk6jVavj6+hps8/DwQOvWret8EHp4eNT7gdGhQweD/7u6uiIwMNBgLPv06dMYNWoUPDw84O7uDl9fXzz99NMAgMLCQgAQv7T13emmoM976dSpk8F2pVKJdu3a1ZsX0xiPP/44pFIpNmzYAED34ffNN99g6NChcHd3F/dLS0sTP9z1uQr6QER/3XpyubzeoZ4xY8ZApVJh/fr14uO2bduGsWPHNurLqk2bNgb/13/Z6l9L/XNwa8WXXC5v1BwsY8aMQf/+/fHcc8/B398fTz75JDZu3FhvgHNrWzw8PAAAISEhdbZrtVrxOUpNTYVUKq3TxoCAAHh6eorXYMrX+07PW3Me29Bz3tC2+gwcONDgi79Xr17o1asXvLy8sHfvXhQVFeH48eNiQHU79X0OtGrVyuBaU1NTERgYWGeY7tbnuqHXAAA6d+6MvLw8MYgZOHAgqqursX//fpw7dw45OTkYOHAgBg0aZHBtkZGRBgHSrVQqFRYvXoyffvoJ/v7+4nB6VlbWHa8dAIqKijB69GgEBwfjyy+/FP+ucnNzUVBQgI8//hi+vr4Gt/j4eAA3CwzItBjUUJPIZDKjtgu1EhMbq6CgAIMHD8bx48excOFC/PDDD0hISMDixYsBwK5KYvWCgoIwcOBAbNy4EQBw4MABpKWlYcyYMeI+Go0G999/P7Zv347XXnsNW7duRUJCgpikeet1q1Qqg94FvVatWuGhhx4Sg5pvv/0WFRUVYlB4J6Z8Levj5OSE3377DTt37sS4ceNw4sQJjBkzBvfff3+dRNPmvt+a2mPXFM153sz9nAPAgAEDkJ6ejosXL2Lv3r0YOHCg2KOxd+9e/PHHH9BqtY0Kahpqr7n16tULarUav/32G/bu3Qs/Pz907NgRAwcOxKFDh1BRUSFe251MmzYNKSkpWLRoEdRqNebOnYvOnTvX2yN6q2eeeQYZGRnYunWrwY8S/d/o008/jYSEhHpv/fv3b/oTQA1iUENWo+/q1ispKUFmZqb4K3/37t24du0avvjiC/z973/HQw89hLi4uDpDG+Hh4QCAU6dO3fZ8xnyxtW3bFgBw7tw5g+2VlZW4dOmSeH9TjBkzBsePH8e5c+ewYcMGODs7Y8SIEeL9J0+eREpKCpYsWYLXXnsNI0eORFxcHIKCgow+1/jx45GSkoLDhw9j/fr16N69O7p06dLkttemfw5ureyprq426G27HalUivvuuw9Lly5FcnIy3n77bfz666/YtWuXydqo1WrrvNeys7NRUFAgXoMxr7clA6RbNfScN7StPvov+oSEBBw+fFj8v76XY+/evXBxcUHPnj1N1ubMzMw6ibW3PtcNvQaAboJLHx8fcaoCpVIpVtrVDl4GDhyIiooKrF+/HtnZ2XdMdNYLDw/HP/7xD/zyyy84deoUKisrsWTJkts+5p133sHWrVvx5ZdfIiIiwuA+X19fuLm5QaPRIC4urt6bn59fo9pGxmFQQ1bz8ccfo6qqSvz/6tWrUV1djaFDhwK4+Suw9q/UyspKfPjhhwbH6dGjB8LCwrBs2bI6ZaK1H6v/QGyolLS2uLg4KJVKfPDBBwbH+PTTT1FYWIjhw4c37iLr8eijj0Imk+G///0vvvnmGzz00EMG88rUd92CIIjl6cYYOnQofHx8sHjxYuzZs6fRvTSN0atXL3h7e+OTTz4Rc1gAXd5OY4Za8vPz62yLiYkBgHrLrZti2LBhAFBnBuClS5cCgPg6GvN6u7i41BkCtJSgoCB07doVX375pUGQsGfPHpw8ebJRxwgLC0NwcDDef/99VFVViT0GAwcOxIULF/Dtt9/irrvuMsiTao5hw4ahurpaLA8HdL2RK1asMNgvMDAQMTExWLt2rcHf6KlTp/DLL7+Ir6XewIEDcfDgQezatUsManx8fNC5c2exN/dOPTVlZWXi1AZ64eHhcHNzu+17cOfOnZgzZw7eeOMNPPLII3Xul8lkePTRR7Fp06Z6f2zVN9UCmQZLuslqKisrcd999+GJJ57AuXPn8OGHH2LAgAFimWa/fv3QqlUrTJgwAa+88gokEgnWrVtXpyteKpVi9erVGDFiBGJiYhAfH4/AwECcPXsWp0+fxs8//wwA4i/PV155BUOGDIFMJsOTTz5Zb9t8fX0xe/ZsvPnmm3jwwQfx8MMPi23s3bt3s4IDPz8/3HPPPVi6dCmKi4sNhp4AICIiAuHh4fjnP/+J9PR0uLu7Y9OmTU1KZFQoFHjyySexcuVKyGQyPPXUU01u962USiUWLFiAqVOn4t5778UTTzyBy5cv44svvkB4ePgdezQWLlyI3377DcOHD0fbtm2Rk5ODDz/8EK1bt75tcqcxoqOjMWHCBHz88cficOahQ4ewdu1aPPLII7jnnnsAGPd69+zZExs2bMCMGTPQu3dvuLq6GvS0mdu///1vjBw5Ev3790d8fDyuX7+OlStXomvXrnV6QxoycOBA/O9//0NUVJTY89mjRw+4uLggJSUFf/vb30zW3hEjRqB///6YNWsWLl++jMjISGzevLnewPA///kPhg4dir59++LZZ58VS7o9PDzqzP80cOBAvP3227hy5YpB8DJo0CB89NFHCA0NveO0AikpKeJnUGRkJORyObZs2YLs7OwGPxsA4KmnnoKvry86dOiAr776yuC++++/H/7+/njnnXewa9cuxMbG4vnnn0dkZCTy8/ORlJSEnTt31hvUkwlYvN6K7EpDJd0uLi519h08eLDQpUuXOtvbtm0rDB8+vM4x9+zZI7zwwgtCq1atBFdXV2Hs2LEGpZyCIAi///67cNdddwlOTk5CUFCQ8Oqrrwo///xznbJkQRCEffv2Cffff7/g5uYmuLi4CN26dRNWrFgh3l9dXS1MnTpV8PX1FSQSSaPKu1euXClEREQICoVC8Pf3FyZNmlSnbNyYkm69Tz75RAAguLm5CTdu3Khzf3JyshAXFye4uroKPj4+wvPPPy8cP3683rLa+l6L2vQl4w888EC99zdU0v3NN98Y7FdfWa8gCMIHH3wgtG3bVlCpVEKfPn2E33//XejZs6fw4IMP3rZdiYmJwsiRI4WgoCBBqVQKQUFBwlNPPSWkpKTcsS31vS8Fof7XoqqqSnjzzTeFsLAwQaFQCCEhIcLs2bPFKQFqa8zrXVJSIvztb38TPD09DcqojXneGirprq+0GLdMiSAIgvC///1PiIiIEFQqldC1a1fh+++/Fx599FEhIiKizuPrs2rVKgGAMGnSJIPtcXFxAgAhMTGxUddQ33tP/xrUdu3aNWHcuHGCu7u74OHhIYwbN044evRove+nnTt3Cv379xecnJwEd3d3YcSIEUJycnKd8xQVFQkymUxwc3MTqqurxe1fffWVAEAYN27cHZ+HvLw8YfLkyUJERITg4uIieHh4CLGxscLGjRsN9rv1bwRAg7fan0vZ2dnC5MmThZCQEEGhUAgBAQHCfffdJ3z88cd3bBs1jUQQTJiBRtQIX3zxBeLj43H48GH06tXL2s1xeMePH0dMTAy+/PJLjBs3zuzn02q18PX1xejRo/HJJ5+Y/XykExMTA19fXyQkJFi7KURWw5waIgf3ySefwNXVFaNHjzb5scvLy+sMB3755ZfIz89v1DIJZLyqqiqDHCZAl1R//PhxPufU4jGnhshB/fDDD0hOTsbHH38sLmFhagcOHMD06dPx+OOPw9vbG0lJSfj000/RtWtXPP744yY/H+nWE4qLi8PTTz+NoKAgnD17FmvWrEFAQECdifCIWhoGNUQOaurUqcjOzsawYcPw5ptvmuUcoaGhCAkJwQcffID8/Hx4eXlh/PjxeOedd7iysZm0atUKPXv2xP/93/8hNzcXLi4uGD58ON555x1x3SGiloo5NUREROQQmFNDREREDoFBDRERETmEFpNTo9VqkZGRATc3N6tOc05ERESNJwgCiouLERQUVO86d7W1mKAmIyOjzoq+REREZB+uXLlyx1miW0xQ4+bmBkD3pNReTZWIiIhsV1FREUJCQsTv8dtpMUGNfsjJ3d2dQQ0REZGdaUzqCBOFiYiIyCEwqCEiIiKHwKCGiIiIHAKDGiIiInIIDGqIiIjIITCoISIiIofAoIaIiIgcAoMaIiIicggMaoiIiMghMKghIiIih8CghoiIiBwCgxoiIiJyCAxqiIjIYWm0Av5v70WcSi+0dlPIAhjUEBGRw/rtfC7+tf0MZm8+ae2mkAU0KahZtWoVQkNDoVarERsbi0OHDjW4b1VVFRYuXIjw8HCo1WpER0djx44dBvtoNBrMnTsXYWFhcHJyQnh4ON566y0IgmCw35kzZ/Dwww/Dw8MDLi4u6N27N9LS0ppyCURE1AJcyi0FAJzJLEJFtcbKrSFzMzqo2bBhA2bMmIH58+cjKSkJ0dHRGDJkCHJycurdf86cOfjoo4+wYsUKJCcn46WXXsKoUaNw9OhRcZ/Fixdj9erVWLlyJc6cOYPFixfj3XffxYoVK8R9Lly4gAEDBiAiIgK7d+/GiRMnMHfuXKjV6iZcNhERtQTpBTcAANVaAeezS6zcGjI3iXBrd8gdxMbGonfv3li5ciUAQKvVIiQkBFOnTsWsWbPq7B8UFIQ33ngDkydPFrc9+uijcHJywldffQUAeOihh+Dv749PP/20wX2efPJJKBQKrFu3zvirBFBUVAQPDw8UFhbC3d29SccgIiL78tK6I9hxOgsAsPjRKIzp3cbKLSJjGfP9bVRPTWVlJY4cOYK4uLibB5BKERcXh/3799f7mIqKijq9KU5OTti3b5/4/379+iExMREpKSkAgOPHj2Pfvn0YOnQoAF3gtH37dnTs2BFDhgyBn58fYmNjsXXr1gbbWlFRgaKiIoMbERG1LPqeGgA4ncHvAUdnVFCTl5cHjUYDf39/g+3+/v7Iysqq9zFDhgzB0qVLcf78eWi1WiQkJGDz5s3IzMwU95k1axaefPJJREREQKFQoHv37pg2bRrGjh0LAMjJyUFJSQneeecdPPjgg/jll18watQojB49Gnv27Kn3vIsWLYKHh4d4CwkJMeZSiYjIAVy9Xib+m0GN4zN79dPy5cvRoUMHREREQKlUYsqUKYiPj4dUevPUGzduxPr16/H1118jKSkJa9euxXvvvYe1a9cC0PXUAMDIkSMxffp0xMTEYNasWXjooYewZs2aes87e/ZsFBYWircrV66Y+1KJiMiGlFVW43pZlfj/M5lF0GiNyrggO2NUUOPj4wOZTIbs7GyD7dnZ2QgICKj3Mb6+vti6dStKS0uRmpqKs2fPwtXVFe3atRP3mTlzpthbExUVhXHjxmH69OlYtGiReF65XI7IyEiDY3fu3LnB6ieVSgV3d3eDGxERtRzp13VDT24qOdQKKcoqNbh8rdTKrSJzMiqoUSqV6NmzJxITE8VtWq0WiYmJ6Nu3720fq1arERwcjOrqamzatAkjR44U7ysrKzPouQEAmUwm9tAolUr07t0b586dM9gnJSUFbdu2NeYSiIiohbhak0/T2ssZEQG6H7YcgnJscmMfMGPGDEyYMAG9evVCnz59sGzZMpSWliI+Ph4AMH78eAQHB4u9LAcPHkR6ejpiYmKQnp6OBQsWQKvV4tVXXxWPOWLECLz99tto06YNunTpgqNHj2Lp0qWYOHGiuM/MmTMxZswYDBo0CPfccw927NiBH374Abt3727mU0BERI7oak1PTbCnE/zdVTh2pQCnMwrxcHSQlVtG5mJ0UDNmzBjk5uZi3rx5yMrKQkxMDHbs2CEmD6elpRn0upSXl2POnDm4ePEiXF1dMWzYMKxbtw6enp7iPitWrMDcuXPx8ssvIycnB0FBQXjxxRcxb948cZ9Ro0ZhzZo1WLRoEV555RV06tQJmzZtwoABA5px+URE5Kj0w0+tWzmho78bACCZPTUOzeh5auwV56khImpZpv73KH44noE3hnVGnzAvjFz1O1o5K5A0935IJBJrN48ayWzz1BAREdmL9Jpy7tatnNApwA0yqQTXy6qQWVhu5ZaRuTCoISIihyTm1LRyglohQ3tfVwBMFnZkDGqIiMjhVFRrkFNcAUCXKAwAXYL0FVCFVmsXmReDGiIicjiZBbohJrVCCi8XJQAgMohl3Y6OQQ0RETkc/ZpPwZ5OYlJwlyAPAKyAcmQMaoiIyOHcLOd2Frfpe2rSC27gemmlVdpF5sWghoiIHI5+IcvgVk7iNg8nBUK8dP9PzmRvjSNiUENERA7naq3hp9q61gxBMVnYMTGoISIih1N7NuHaujBZ2KExqCEiIoejTxSuG9Toe2oY1DgiBjVERORQqjVacdbgYE9ng/v0PTUXc0tQVllt8baReTGoISIih5JdXAGNVoBCJoGfm8rgPj93NXxcVdAKwJnMYiu1kMyFQQ0RETkUfT5NoIcTpNK6C1fqe2uSmSzscBjUEBGRQ0kvuLmQZX2YLOy4GNQQEZFDuZpffzm3HpOFHReDGiIicijiEgl36Kk5l1WMKo3WYu0i82NQQ0REDiW9gYn39Np4OcNVJUelRou/ckos2TQyMwY1RETkUPSJwg311EilEkQGMq/GETGoISIihyEIgthTE9LKucH9IsVkYVZAORIGNURE5DBySypQUa2FVAIEeKgb3I8VUI6JQQ0RETkM/dCTv7saClnDX3Fdg3UVUGcyiqDVChZpG5kfgxoiInIYd0oS1mvv5wqlXIriimpcuV5miaaRBTCoISIih9HQ6ty3Usik6OTvBoBDUI6EQQ0RETmMq3eofKqtC5OFHQ6DGiIichg3h58arnzS0wc1p9LZU+MoGNQQEZHDuNMcNbVFcrkEh8OghoiIHELtOWrulFMDAJ0D3SCRAHklFcgpKjd388gCGNQQEZFDKLxRhZKKagB3rn4CAGelHO18XACwt8ZRMKghIiKHoE8S9nFVQq2QNeoxN1fsZrKwI2BQQ0REDqGxc9TUxpmFHQuDGiIicgjGJAnrdWGysENhUENERA7hqjjx3p3LufX0PTVp+WUoKq8yS7vIchjUEBGRQ0gv0C13YMzwUysXpbh/Mntr7B6DGiIicghNyakBgEjm1TgMBjVEROQQmpJTA3C5BEfCoIaIiOxeaUU1rpfpcmKMD2p0ycIcfrJ/DGqIiMju6Yee3NVyuKsVRj1W31NzPqcE5VUak7eNLIdBDRER2b2bQ0+Nr3zSC/RQo5WzAhqtgHNZxaZuGlkQgxoiIrJ7V5uYJAwAEomE89U4CAY1RERk99KvN34hy/owWdgxMKghIiK7d/W6bo6apgY1LOt2DAxqiIjI7jV1jho9/fDT2awiaLSCydpFltWkoGbVqlUIDQ2FWq1GbGwsDh061OC+VVVVWLhwIcLDw6FWqxEdHY0dO3YY7KPRaDB37lyEhYXByckJ4eHheOuttyAI9b+xXnrpJUgkEixbtqwpzSciIgfT1Dlq9MJ8XOCkkKG8SouLuSWmbBpZkNFBzYYNGzBjxgzMnz8fSUlJiI6OxpAhQ5CTk1Pv/nPmzMFHH32EFStWIDk5GS+99BJGjRqFo0ePivssXrwYq1evxsqVK3HmzBksXrwY7777LlasWFHneFu2bMGBAwcQFBRkbNOJiMgBVVRrkFNcAaDpPTUyqQSdA90AcAjKnhkd1CxduhTPP/884uPjERkZiTVr1sDZ2RmfffZZvfuvW7cOr7/+OoYNG4Z27dph0qRJGDZsGJYsWSLu88cff2DkyJEYPnw4QkND8dhjj+GBBx6o0wOUnp6OqVOnYv369VAojJuHgIiIHFNGQTkAwEkhg5eLssnHuVkBxWRhe2VUUFNZWYkjR44gLi7u5gGkUsTFxWH//v31PqaiogJqtdpgm5OTE/bt2yf+v1+/fkhMTERKSgoA4Pjx49i3bx+GDh0q7qPVajFu3DjMnDkTXbp0uWNbKyoqUFRUZHAjIiLHU3voSSKRNPk4XYOZLGzv5MbsnJeXB41GA39/f4Pt/v7+OHv2bL2PGTJkCJYuXYpBgwYhPDwciYmJ2Lx5MzSam7M2zpo1C0VFRYiIiIBMJoNGo8Hbb7+NsWPHivssXrwYcrkcr7zySqPaumjRIrz55pvGXB4REdmhpqzOXZ/ac9UIgtCsAImsw+zVT8uXL0eHDh0QEREBpVKJKVOmID4+HlLpzVNv3LgR69evx9dff42kpCSsXbsW7733HtauXQsAOHLkCJYvX44vvvii0W+y2bNno7CwULxduXLFLNdHRETW1dwkYb0O/q6QSyUovFElVlORfTEqqPHx8YFMJkN2drbB9uzsbAQEBNT7GF9fX2zduhWlpaVITU3F2bNn4erqinbt2on7zJw5E7NmzcKTTz6JqKgojBs3DtOnT8eiRYsAAHv37kVOTg7atGkDuVwOuVyO1NRU/OMf/0BoaGi951WpVHB3dze4ERGR49HPJtzUOWr0VHIZOvgzWdieGRXUKJVK9OzZE4mJieI2rVaLxMRE9O3b97aPVavVCA4ORnV1NTZt2oSRI0eK95WVlRn03ACATCaDVqsFAIwbNw4nTpzAsWPHxFtQUBBmzpyJn3/+2ZhLICIiB3P1evPmqKmtCyfhs2tG5dQAwIwZMzBhwgT06tULffr0wbJly1BaWor4+HgAwPjx4xEcHCz2shw8eBDp6emIiYlBeno6FixYAK1Wi1dffVU85ogRI/D222+jTZs26NKlC44ePYqlS5di4sSJAABvb294e3sbtEOhUCAgIACdOnVq8sUTEZH9a+4SCbV1CXLHt0eA0+msgLJHRgc1Y8aMQW5uLubNm4esrCzExMRgx44dYvJwWlqaQa9LeXk55syZg4sXL8LV1RXDhg3DunXr4OnpKe6zYsUKzJ07Fy+//DJycnIQFBSEF198EfPmzWv+FRIRkcOq1miRVaQr6Q72NH6F7ltxYUv7JhEamrbXwRQVFcHDwwOFhYXMryEichDpBTfQ/51foZBJcO6toZBKm1exVFxehagFvwAAjsyJg7eryhTNpGYw5vubaz8REZHdupqvK+cO8nRqdkADAG5qBUK9dT0+7K2xPwxqiIjIbjV3Icv6cAjKfjGoISIiu5VuwsonvUixAorJwvaGQQ0REdktsafGBJVPevqy7mT21NgdBjVERGS3rorl3M2vfNLTDz9dulaK0opqkx2XzI9BDRER2S1z5NT4uqng766CIABnMtlbY08Y1BARkV3SagUxqDHFxHu1MVnYPjGoISIiu5RXWoHKai2kEiDAQ23SY3dhsrBdYlBDRER2SV/5FOCuhkJm2q8zrgFlnxjUEBGRXRIXsjTx0BNwc/gpJbsYldVakx+fzINBDRER2SVzJAnrtW7lBHe1HFUaASnZxSY/PpkHgxoiIrJL6WbsqZFIJOIkfJyvxn4wqCEiIrt0s6fGdHPU1HazAorJwvaCQQ0REdmlq9d1i1maupxbj8nC9odBDRER2R1BEMw6/ATc7Kk5k1kErVYwyznItBjUEBGR3Sm8UYXSSg0A8yQKA0C4rwtUcilKKzW4fK3ULOcg02JQQ0REdkdfzu3jqoRaITPLOeQyKSIC3ABwCMpeMKghIiK7c3OOGvMkCetFcrkEu8KghoiI7I645pOZhp70ugZzuQR7wqCGiIjsjrmThPX0ycLJGUUQBCYL2zoGNUREZHfSC3Tl3OZKEtaLCHCDTCrBtdJKZBdVmPVc1HwMaoiIyO7oc2rMNUeNnlohQ7ivCwAOQdkDBjVERGR3xNmEzRzUADeHoE6lM1nY1jGoISIiu1JaUY2CsioA5h9+AmrPLMyeGlvHoIaIiOyKvpfGXS2Hm1ph9vNFcrkEu8GghoiI7Eq6heao0esSqBt+Si+4gYKySouck5qGQQ0REdkVcy9keSsPZ4V4rmT21tg0BjVERGRXruqThC2QT6PHFbvtA4MaIiKyK+kWKueurYu4XAKThW0ZgxoiIrIr6eypoQYwqCEiIrtyc+I9yyQKA0DXYF1PzYXcEtyo1FjsvGQcBjVEZBMKy6rw9cE0MQmUqD7lVRrkFuuWK7DExHt6fm4q+LgqoRWAs1nsranP3K2nsPVoOsqrrBf0MaghIpvw9o/JeH3LSdzz3m7M3nySwQ3VK7OwHADgpJChlbP556jRk0gkiBTzahjU3OpcVjHWHUjFzG+Po8yKPVkMaojI6rRaAYlncgAAVRoB/z2Uhrv/sxuzNp3AlXwGN3RT7dW5JRKJRc/NvJqGbT56FQBwTyc/eLkordYOBjVEZHUn0wtxrbQSrio5vn4+FgPa+6BaK+B/h6/gnvd247VvTyDtGoMbsvwcNbXpg5pkVkAZ0GgFbD2aDgAY3aO1Vdsit+rZiYgA7D6XCwAY0N4H/cJ1tz8v52N54nnsPZ+HDX9ewbdJVzG6ezCm3Nsebb1drNxishZrVD7p6cu6z2QVo0qjhULGfgEA+ONCHrKLKuDhpMA9Eb5WbQtfESKyul3ndENPtT8Qe4V6Yd2zsdg0qR8GdfSFRivgmyNXce+SPfjHxuO4nFdqreaSFdUefrK0tl7OcFXJUVmtxYXcEouf31ZtTtL10oyIDoRKLrNqWxjUEJFVXSupwPGrBQCAwR396tzfs20rfDmxDza/3A93d9IFN5uSruLeJbsxY+MxXGJw06JYYzZhPalUgs6BbgCA0+nMqwF0K6bvOJUFwPpDTwCDGiKysr3n8yAIQOdAdwR4qBvcr0ebVvgivg+2Tu6Pezr5QivofiHet2Q3pm84xl/OLYQ1ZhOurQsroAzsOJWFG1UahPm4oHuIp7Wbw6CGiKxLHHrq1Lix+JgQT3we3wffTe6P+yL8oBWALUfTcf/SPfj7/47irxwGN46qWqNFVpGupNuSE+/VFilWQDFZGLhZ9TSqe7DFq9Hqw6CGiKxGoxXwW4ouSfjuTnWHnm4nOsQTnz7TGz9MGYC4zv7QCsB3xzJw//t7MPW/R3E+u9gcTSYryioqh0YrQCmTwtdVZZU2iBVQmUUQBMEqbbAVmYU38MeFawB0QY0tYFBDRFZz/GoBrpdVwU0tR482nk06RlRrD/zfhF7YNnUA7o/0hyAAPxzPwAPLfsOUr5OQwuDGYeiHngI91ZBKrdMr0MHPDQqZBMXl1biSf8MqbbAVW49mQBCAPqFeCPGyTs/ZrZoU1KxatQqhoaFQq9WIjY3FoUOHGty3qqoKCxcuRHh4ONRqNaKjo7Fjxw6DfTQaDebOnYuwsDA4OTkhPDwcb731lhgFV1VV4bXXXkNUVBRcXFwQFBSE8ePHIyMjoynNJyIbsfusbuhpUAdfyJtZHts12AOfjO+F7a8MwJAuuuBm24lMDFn2GyavT8K5LAY39s6a5dx6SrkUHf1rkoVb8BCUIAjYnKQbehrdwzZ6aYAmBDUbNmzAjBkzMH/+fCQlJSE6OhpDhgxBTk5OvfvPmTMHH330EVasWIHk5GS89NJLGDVqFI4ePSrus3jxYqxevRorV67EmTNnsHjxYrz77rtYsWIFAKCsrAxJSUmYO3cukpKSsHnzZpw7dw4PP/xwEy+biGzBbnHoyXRzW3QJ8sBH43rhx1cGYmjXAAgCsP2kLriZ9NURnMlkgqe9umrlJGG9rkwWxumMIpzPKYFSLsWwboHWbo7I6Mn3li5diueffx7x8fEAgDVr1mD79u347LPPMGvWrDr7r1u3Dm+88QaGDRsGAJg0aRJ27tyJJUuW4KuvvgIA/PHHHxg5ciSGDx8OAAgNDcV///tfsQfIw8MDCQkJBsdduXIl+vTpg7S0NLRp06bOeSsqKlBRUSH+v6io5b75iGxRbnEFTlzV/dIdbMKgRi8yyB2rn+6JM5lFWPHrefx4Mgs/ndLdHuwSgFfu6yAmfZJ9EOeo8bTuUEeXYHfgz5bdU7Opppfm/kh/uKsttwbXnRjVU1NZWYkjR44gLi7u5gGkUsTFxWH//v31PqaiogJqtWGZppOTE/bt2yf+v1+/fkhMTERKSgoA4Pjx49i3bx+GDh3aYFsKCwshkUjg6elZ7/2LFi2Ch4eHeAsJCWnsZRKRBeyp6aXpGuwOP7eGS7mbq3OgOz4c2xM/TxuE4d0CIZEAO05nYdgHe/HCl3/iVHrL/WKyN+Lwk5V7alr6GlBVGi2+P6ZL/3jUhoaeACODmry8PGg0Gvj7+xts9/f3R1ZWVr2PGTJkCJYuXYrz589Dq9UiISEBmzdvRmZmprjPrFmz8OSTTyIiIgIKhQLdu3fHtGnTMHbs2HqPWV5ejtdeew1PPfUU3N3r/6U1e/ZsFBYWircrV64Yc6lEZGa7xVJu46qemqpTgBtW/a0Hfp42CCOigyCRAL8kZ+OhFfvw3No/cb200iLtoKazhZwaAIgIcIdEAuQUVyC3uOLOD3Awe8/n4lppJXxclRjYwbrLItzK7NVPy5cvR4cOHRAREQGlUokpU6YgPj4eUunNU2/cuBHr16/H119/jaSkJKxduxbvvfce1q5dW+d4VVVVeOKJJyAIAlavXt3geVUqFdzd3Q1uRGQbqjXaJpdyN1dHfzeseKo7fpk2CA/XBDc7z2RjaUKKRdtBxtFqBatPvKfnopIjzEe3/lhLHILaVLMswsPRwTa3/pVRrfHx8YFMJkN2drbB9uzsbAQEBNT7GF9fX2zduhWlpaVITU3F2bNn4erqinbt2on7zJw5U+ytiYqKwrhx4zB9+nQsWrTI4Fj6gCY1NRUJCQkMVIjs1LErBSgqr4answIxVpqFtIO/Gz54qjtW/a0HAODXszktft4RW5ZXUoFKjRZSCW4787SltNSZhQtvVCEhWRcD2FLVk55RQY1SqUTPnj2RmJgobtNqtUhMTETfvn1v+1i1Wo3g4GBUV1dj06ZNGDlypHhfWVmZQc8NAMhkMmi1WvH/+oDm/Pnz2LlzJ7y9vY1pOhHZEP0swoM6+EJmpflG9O7p5AelXIr0ghs4z9mIbZZ+zacAd7VN9A50aaEzC/94MhOV1Vp09HcVnwNbYnT104wZMzBhwgT06tULffr0wbJly1BaWipWQ40fPx7BwcFiL8vBgweRnp6OmJgYpKenY8GCBdBqtXj11VfFY44YMQJvv/022rRpgy5duuDo0aNYunQpJk6cCEAX0Dz22GNISkrCtm3boNFoxBweLy8vKJXKZj8RRGQ5u86avpS7qZyUMvRt5409KbnYfS5HnIOEbIs1V+euT0tNFt5SM/Q0ukdrm1gW4VZGBzVjxoxBbm4u5s2bh6ysLMTExGDHjh1i8nBaWppBr0t5eTnmzJmDixcvwtXVFcOGDcO6desMqpZWrFiBuXPn4uWXX0ZOTg6CgoLw4osvYt68eQCA9PR0fP/99wCAmJgYg/bs2rULd999t7GXQURWkl1UjuTMIkgkwKCO1g9qAN26U3tScrHrbC5eGBRu7eZQPWwlSVhPP/yUeq0MReVVNlXWbC5p18pw6HI+JBJgZEyQtZtTL6ODGgCYMmUKpkyZUu99u3fvNvj/4MGDkZycfNvjubm5YdmyZVi2bFm994eGhnKsm8hB7Dmn66Xp1toTPlZav+dWd3fyA35Ixp+p+Sgur4JbC/iCsjdXr5cBsN5ClrfyclEi0EONzMJynMkoQmw7x0+J2HJU10vTP9wHgR62EVzeyvoDk0TUoujzae62kV4aAAj1cUGYjwuqNAJ+/+uatZtD9bC14SegZQ1BCYKALUdtb1mEWzGoISKLqdJose98HgDgngjLlnLfiT6/Rz9/DtkWWxt+AoDIFlQBlZRWgMvXyuCkkGFIl/qrnW0BgxoispgjqddRXFENLxclugV7WLs5BvTz5ew+l8vhbhsjCIKN99Q4fgWUfvHKoV0D4KJqUuaKRTCoISKL2V2TTzO4oy+kVi7lvlVsmBfUCimyispxlit625SCsiqUVmoA2FZPTdeawPyvnBJUVGus3BrzqajWYNsJ3SoAo3u0tnJrbo9BDRFZjH5oxxZKuW+lVsjQL9wHwM28H7IN+qEnH1cV1AqZlVtzU5CHGp7OClRrBaRkOe4cR7vO5qDwRhUC3NXoG27bCdEMaojIIjIKbuBsVjGkEt2ke7boHjGvJtfKLaHartrg0BMASCSSFjEEpV8WYWT3IKtPlnknDGqIyCL0q3LHhHiilYttTpipz6s5knodhTeqrNwa0tP31LS2oaEnPUdfLiG/tFLsYR3d3baHngAGNURkIbvOWnZV7qYI8XJGuK8LNFoBv/+VZ+3mUI2bc9TYYlCj66k55aA9NdtOZKBKI6BrsDs6Bdj+bNsMaojI7CqrtWKQYOlVuY2lD7r0QRhZny1WPunpg5qzmcXQaB2vak4/9DTKDnppAAY1RGQBf17OR2mlBj6uKptcBK82/fw5u1NyoXXALyl7ZItz1OiF+bjCSSHDjSoNLuU5VrLwhdwSHL9SAJlUgoejbXNZhFsxqCEis9NXE9liKfeteoW2grNShtziCiRnOmaehL0Rgxob7KmRSSWICNQNyzhaXo1+8crBHX3h62YbS5rcCYMaIjI7fTXRPRG2WfVUm0ouQ//2utJuzi5sfSUV1Sgo0yVt22JPDeCYyyVotYK41tOo7ra7LMKtGNQQkVldyS/D+ZwSyKQSDGxv+0ENcHMenV0s7bY6fT6Nh5PCZhcavVkB5TjJwgcv5SO94AbcVHLcH+lv7eY0GoMaIjKr3TWl3D3aeMLD2Ta/lG6lT2Y+mnYdBWWVVm5Ny5ZeoKt8stVeGsCwp8ZRltjQL145vFugTU14eCcMaojIrPaIswjbdtVTbcGeTujk7watAPx2nqXd1mTLlU96Hf3dIJNKUFBWhYzCcms3p9luVGrw48ksALa/LMKtGNQQkdmUV2nw+1/XANj2/DT14ardtuGqDVc+6akVMnTwcwUAnE63/yGoX5KzUFJRjdatnNCrbStrN8coDGqIyGwOX87HjSoN/N1V6Bxo+xN31abvWdpzjqXd1qRfIsEWJ96rzZFmFtYnCI/uHmzz1Yq3YlBDRGaz66wun+bujn6QSOzrw7FXaCu4quS4VlqJkw7w69tepdtNUOMYFVA5xeX4rSYPbpSdDT0BDGqIyIxseVXuO1HIpBgglnazCspabk6852zlltyePqhJtvMKqO+PZUArAN3beCLMx8XazTEagxoiMovUa6W4mFcKuVSC/h18rN2cJtHPq7OLeTVWUV6lQW5xBQDbThQGgMiaoCajsBz5pfZbMbe5ZsI9e0sQ1mNQQ0Rmoe/d6BXaCu42Or/InQzuqMurOX61wK6/qOxVRk0vjbNShlY2Ph2Am1qBtt663iR7na/mTGYRkjOLoJBJMKJboLWb0yQMaojILHbZYSn3rQI81Ogc6A5BgJhnQJZTe80ne8jJsve8Gn2C8L0RfvB0Vlq5NU3DoIaITK68SoP9F+yzlPtW93TiEJS12MMcNbXZcwWURitg61H7HnoCGNQQkRnsv3gNFdVaBHqo0dHf1drNaRZ9T9NvKbnQsLTbomx5de76RIo9NfY3/PT7X3nIKa6Ap7PCrn+IMKghIpPbU5NPc3cn+yvlvlWPNp5wU8txvawKx68WWLs5LcpVu+up0QU1l/JKUVpRbeXWGGdzkm5ZhBHdgqCU229oYL8tJyKbJAgCfj2rG6q5xw5LuW8ll0kxqEPN7MJnOQRlSTfnqLHtcm49Pzc1fN1UEATgbJb9DEGVVFRjx2n9sgj2syJ3fRjUEJFJXcorRVp+GRQyCfq1t89S7luJSyYwWdii7G34CbDPZOEdp7JQXqVFOx8XxIR4Wrs5zcKghohMSl/K3SfMC64quZVbYxqDa4KaE1cLxXlTyLyqNVpkFekWh7T12YRrE4OadPsJavRDT6N7BNv9cDGDGiIyKX2VkD0nG97Kz02NrsG6LyuWdltGVlE5NFoBSpkUvq4qazen0brqK6Ay7SNZOKPgBvZf1FUqjoyx76EngEENEZlQWWU1Dl7KB2CfSyPcjj5IY2m3ZeiThIM81Xa1qKK+rDslqwRVGq2VW3NnW4+lQxCA2DAvhHjZR+7S7TCoISKT2X/hGiqrtWjdygnhvvZdyn0rfZD2W0ouqu3gy8re2dscNXohXk5wU8tRqdHifHaJtZtzW4IgiMsiPGrHc9PUxqCGiExmV60FLO19bP5WMSGt4OmsQFF5NY5dKbB2cxyePSYJA4BEIkFkoH3MV3MyvRB/5ZRAJZdiaFSAtZtjEgxqiMgkBEEQk4QdKZ9GTyaViKXdHIIyP7GnxsZX566PvcwsrO+leaBLANzsdH22WzGoISKTuJBbgqvXb0Apl6JvuLe1m2MW+iGoXWeZLGxuVwvKANhX5ZNeFzuYWbhKo8X3xzMA2P/cNLUxqCEik9B/0ceGecFZ6Ril3Lca1NEXEgmQnFmE7JpyYzIPe82pAYAuNZVyyRlF0Nro0hp7zuUiv7QSPq4qDHSQ+aQABjVEZCK7UxyvlPtWPq4qdGvtCeDmUhBkelqtgIwCXdBobzk1ABDu6wqlXIrSSg1S88us3Zx66VfkHhkTBLnMcUIBx7kSIrKakopqHHLQUu5b3d1RP7sw82rMJa+kApUaLaQSIMBDbe3mGE0hkyIiwA2AbQ5BFZZVIeFMNgDHGnoCGNQQkQn88VceqjQC2no7I8zHxdrNMat7InQ9UXtT8uxiHhJ7dKVm6CnAXQ2FnfYi2PJyCdtPZqKyWouIADexUstR2Oe7hYhsyq5aVU+OVsp9q27BHvByUaK4ohpHUq9buzlGyyi4gSlfJ+FAzSyytkhfzm0vC1nWJ7KmAurwpXxobCyvRr8swqju9r8swq0Y1BBRs+hKuXVDMYMdfOgJAKRSCQbrh6DsMK/m7R/PYNuJTPz7xzPWbkqD7DlJWO+uMC9IJMCfqdfxt08O2Exieeq1UvyZeh1SCfBId8caegIY1BBRM6VklyCzsBwquRR92zlmKfetxFW77Wy+mnNZxfjxZCYA3eKcaddsM4k1vaac2x6ThPU6+Lth2ZgYuChlOHgpH0OX78UeG1g3TJ8g3L+9D/zd7S9f6U6aFNSsWrUKoaGhUKvViI2NxaFDhxrct6qqCgsXLkR4eDjUajWio6OxY8cOg300Gg3mzp2LsLAwODk5ITw8HG+99RYE4WaXnSAImDdvHgIDA+Hk5IS4uDicP3++Kc0nIhPST0TXL9wbaoXMyq2xjEEdfCGVAGezipFZeMPazWm05YkpqPWxiu01AY6tcYSeGkC3QOQPUwegc6A78ksrMeGzQ1i846zVltkQBEEMahwtQVjP6KBmw4YNmDFjBubPn4+kpCRER0djyJAhyMmp/xfLnDlz8NFHH2HFihVITk7GSy+9hFGjRuHo0aPiPosXL8bq1auxcuVKnDlzBosXL8a7776LFStWiPu8++67+OCDD7BmzRocPHgQLi4uGDJkCMrLbaNLj6il2nVWvzSC45Zy36qVixIxIZ4A7GcI6mxWEX48mQUAeKZfKABg+8kMK7aoYfrFLO1x4r1btfN1xZaX++Hpu9oAAFbvvoAnPz6AjALLB8NJadeReq0MzkoZhnRxjGURbmV0ULN06VI8//zziI+PR2RkJNasWQNnZ2d89tln9e6/bt06vP766xg2bBjatWuHSZMmYdiwYViyZIm4zx9//IGRI0di+PDhCA0NxWOPPYYHHnhA7AESBAHLli3DnDlzMHLkSHTr1g1ffvklMjIysHXr1qZdORE1W1F5lZgs68jz09RHH8Tpgzpbt3ynrmd7eFQgpt7bHjKpBKfSi3A5r9TKLTMkCILdrvvUELVChn89EoWVf+sON5Ucf6Zex7AP9uLXs9kWbcemmmURhnYNdNgJMo0KaiorK3HkyBHExcXdPIBUiri4OOzfv7/ex1RUVECtNhy3c3Jywr59+8T/9+vXD4mJiUhJSQEAHD9+HPv27cPQoUMBAJcuXUJWVpbBeT08PBAbG3vb8xYVFRnciMi0fj+fh2qtgHY+Lmjjbb+VKk2hD+J+/ysPldW2XdqdnFGEn05lQSIB/h7XAd6uKvSrWcrC1oagCsqqUFapAQAEOUhQo/dQtyBse2UAooI9UFBWhYlf/Im3tydbZGqA8ioNtjngsgi3MiqoycvLg0ajgb+/v8F2f39/ZGVl1fuYIUOGYOnSpTh//jy0Wi0SEhKwefNmZGbe/EOaNWsWnnzySUREREChUKB79+6YNm0axo4dCwDisY0576JFi+Dh4SHeQkJCjLlUImoE/dBLSxp60usS5A4fVxVKKzX483K+tZtzW8sTdT8Yh0cFoqO/m/hvANh+wraCGn0vjY+ryiFztNp6u+DbSX3FIcBP9l7C42v244qZZx7edTYHReXVCPRQ4y4HTug3e/XT8uXL0aFDB0RERECpVGLKlCmIj4+HVHrz1Bs3bsT69evx9ddfIykpCWvXrsV7772HtWvXNvm8s2fPRmFhoXi7cuWKKS6HiGoIgiAmCd8T4fil3LeqXdpty6t2n84oxM+ns3W9NPd1ELcP6RIAmVSC5MwiXLKhIair1+13IcvGUsllWPBwF6x5uifc1XIcu1KA4R/sxc+n6/+Rbgr6oadHugdDJnWsuWlqMyqo8fHxgUwmQ3a24ThgdnY2AgLqTzry9fXF1q1bUVpaitTUVJw9exaurq5o166duM/MmTPF3pqoqCiMGzcO06dPx6JFiwBAPLYx51WpVHB3dze4EZHpJGcWIae4Ak4KGfqEeVm7OVahD+ZsOVl4WU0uzYhuQehQ00sD6JKd+9csZPijDQ1BXXWQyqfGeLBrALa/MhDRIZ4oKq/Gi+uO4M0fTqOiWmPS81wrqRCnHxjtgHPT1GZUUKNUKtGzZ08kJiaK27RaLRITE9G3b9/bPlatViM4OBjV1dXYtGkTRo4cKd5XVlZm0HMDADKZDFqtbpwxLCwMAQEBBuctKirCwYMH73heIjIP/Rd5//beUMkdb5igMQa294VMKsH5nBKxh8GWnEovREKyrpfmlfva17n/oZohqG02NAQlzibsYPk0DQnxcsY3L/bF8wPDAACf/34Zj63eb9I5hLadyES1VkBUsIdBYOuIjB5+mjFjBj755BOsXbsWZ86cwaRJk1BaWor4+HgAwPjx4zF79mxx/4MHD2Lz5s24ePEi9u7diwcffBBarRavvvqquM+IESPw9ttvY/v27bh8+TK2bNmCpUuXYtSoUQAAiUSCadOm4V//+he+//57nDx5EuPHj0dQUBAeeeSRZj4FRNQUN2cRbnn5NHoezgr0aOMJwDZ7a/S9NA9HB6G9X90vswe6+EMuleBMZhEu5JZYunn1cpQ5aoyhlEvxxvBIfDqhFzydFTiZXojhH+w1WQ+aflkER04Q1jM6qBkzZgzee+89zJs3DzExMTh27Bh27NghJvGmpaUZJAGXl5djzpw5iIyMxKhRoxAcHIx9+/bB09NT3GfFihV47LHH8PLLL6Nz58745z//iRdffBFvvfWWuM+rr76KqVOn4oUXXkDv3r1RUlKCHTt21KmsIiLzKyyrQlJaAYCbq1a3VPokaVubXfjk1ULsPJMNqQR4pVYuTW2ezrWGoGykt0YcfmohPTW13dfZHz++MhC92rZCcUU1Xl6fhLlbT6G8qunDUX/lFOP41ULIpRKMiA4yYWttk0SoPW2vAysqKoKHhwcKCwuZX0PUTNtOZGDK10fRwc8VCTMGW7s5VnU6oxDDP9gHJ4UMR+fdbzMVO89+cRiJZ3Mwqnsw3h8T0+B+G/+8gle/PYGIADfsmDbIcg1sQPSbv6DwRhV+njYInQIce6ikIVUaLZYmpGD17gsAgMhAd6wa2wNhPi5GH+vdHWfx4e4LuC/CD58+09vUTbUIY76/ufYTERlt11l9KXfL7qUBdF84fm4q3KjS4LCNlHYfv1KAxLM5kEqAqffWzaWpbUhkABQyCc5mFeOvnGILtbB+JRXVKLxRBaBlDT/dSiGT4rUHI/BFfG94uSiRnFmEhz7Yi++OpRt1HK1WwFZxWYTW5miqzWFQQ0RG0WoFcWG+ljaLcH0kEon4POiDPWtbtlM3L80j3YPRztf1tvt6OCswoGYIavsJ85UUN4Y+n8bDSQFXlWPOeGuMuzv54cdXBqJPmBdKKzX4+/+OYfbmE40ejjpw6RoyCsvhppbjvs4t42+VQQ0RGeV0RhHySirgopShV2jLLOW+lbhqd4r182qOXSnArnO5kEklmHpv/bk0txreTZdrYe21oBxhdW5TC/BQ4+vnYvHKve0hkQD/PXQFI1f+jr9y7pzYvblmbpqHugXazLCouTGoISKj6Cea69/eB0o5P0IAoH8HH8ilElzMLUXqNetOZCf20sQENzoH4/5IfyhkEqRkl+B8tvWGoBxpIUtTksukmPFAJ6ybGAsfVxXOZRdjxIp92HTkaoOPuVGpwU811VMtZegJYFBDREbaLc4i3DK6sxvDXa1Az7atAFi3tDsp7Tp21/TS1DcvTUM8nBQY1EHX22TNtaBaYjm3MQZ08MGPfx+AfuHeuFGlwT++OY5/fnMcZZXVdfb9JTkLpZUahHg5oVfNe7MlYFBDRI12vbQSR68UAGCS8K30QZ41S7v189KM7h6Mtt7GVcoM72b9taCuOtjq3Obg56bGumdjMeP+jpBKgG+PXMXIlb8j5ZYeNv2yCKO6t4ZE4rjLItyKQQ0RNdpv53MhCEBEgBsCPfjFU5s+WfiPC9eaNa9IUx1JvY7fUnIhNyKXpra4SH8oZVKczymp8wVpKekcfmoUXU9cB6x/7i74ualwPqcED6/chw2H0yAIAnKKyrHvvK7H0NGXRbgVgxoiarSWvCr3nXT0d0WghxoV1Vrsv3jN4ufX59I82qM12ng7G/14d7UCgzrqqqCstWzCzZwa49vfEvUN98aPfx+IQR19UV6lxWubTmL6hmNYfzANWgHo2bYVQpswt409Y1BDRI1Su5SbQ091SSQSMdjbY+G8mj8v52Pv+TzIpRJMucO8NLdzcwgqA5ael7W8SoO8kgoAHH4yho+rCl880xuvPtgJMqkEW49lYHlizTBkC1gW4VYMaoioUU6kFyK/tBJuKrmYFEuG7qkJ9nZZOK9Gn0vzWM/WCPFqei9HXGd/KOVSXMgtxTkLD0Fl1OTTOCtl8HRWWPTc9k4qleDlu9vjfy/chUAP3dJBSpkUD0U5/rIIt2JQQ0SNsuus7ot6YEcfKGT86KhPv/Y+UMgkSL1Whkt5lintPnw5H/v+0vXSTL6n6b00AOCmVmBwzVpelk4YTq+VJNySEltNqXeoF358ZSBeGNQO/3m8GzxaYHDITyYiahR9Vc/dHZlP0xBXlRx9wnQTEuqDQHN7P0GXS/N4r5Bm9dLoPVSrCsqSQ1BXWc5tEq1clHh9WGeMjGl5Q08AgxoiaoS8kgqcSC8EAAxmPs1t6YM+SwxBHbx4DX9cuAaFrHm5NLXdVzMEdTGvFGezLDcExconMgUGNUR0R7+l6Eq5IwPd4e+utnZzbNo9Ebqg7+Cl/HonRTOl92sqnp7oFWKy5FpXlVzMDbLkENTN4SdWPlHTMaghojvSl3Lrv7CpYeG+rmjdygmV1Vrsv2C+0u79F67hwMV8KGQSvNzMXJpb3VwLynJDUJxNmEyBQQ0R3ZaGq3IbRVfabf4qKP28NGN6m66XRu++CD+o5FJcyitFcmaRSY/dkKvXuZglNR+DGrIbSxNSMOaj/SipMG+XPhk6duU6Cm9UwV0tR0yIp7WbYxf0wd/uc7lm6en440IeDl7Kh1ImbXbFU31cVHLxGiwxBFWl0SKrqBwAEMKeGmoGBjVkF3YmZ+ODxPM4eCnf4hObtXT6oadBHX0hZyl3o/QN94ZSJsXV6zdwIbfEpMcWBAHLEnTz0jzZJ8Rsy1WIE/FZYAgqq7AcWkE3t4qPq8qs5yLHxk8osnkFZZV4fctJ8f8na6pwyDL0QyhcGqHxnJVyxLbTlXabetXuPy5cw6HLul6al+82fS+N3r0RflArpEi9VobTGeYdgtInCQd5qiGVco4aajoGNWTz3vwhGTnFFZDVfNidTC+wboNakJzicpxK132h6Sdlo8bRD9+YMq9GEAQxl+apPiEI8DBfJZqLSo57a1YeN/daUEwSJlNhUEM27efTWdhyNB1SCbBwZBcAwMmrhRZfl6al0g/1dWvtAV83DgsYQ58sfOhSvsnywH7/6xoOX74OpVxq8oqn+gyP0ldBmXctKHHiPSYJUzMxqCGblV9aiTdqhp1eGBSOx3uGQCmXoqi8Gmn5ZVZuXcsgrsrNXhqjhfm4oK23M6o0Av74K6/ZxxMEQZyX5m992lhkvqB7InzhpJDhSv4NscfOHNILdH/PXJ2bmotBDdms+d+fRl5JJTr4uWJaXAco5VJ0DnADwLwaS6jWaPHb+ZqgJoL5NMaSSCS1hqCan1ez93wejqReh0ouxct3hzf7eI3hrJTj3s41Q1AnM8x2ntrrPhE1B4Maskk/nczED8czIJNK8N7j0VArZACAqNYeAHRDUGReSWkFKC6vRitnBaJbe1q7OXZJv6TEnnM5zRq+qd1LMza2LfwsOKvzQ1HmXwuKOTVkKgxqyOZcK6nAnK2nAACTBocjutbcKFHBNUENe2rMTp/gOqijr5ikTcbp284bKrkUGYXlSMluemn3npRcHE0rgEouxUt3tzNhC+/s7k5+cFLIcPX6DZwww48JrVZARoFujhr21FBzMaghmzPvu9O4VlqJTv5umHqfYTJkVLAnAF1Qo9UyWdicxKURWMrdZGqFDH3DvQE0vQpKV/Gkm5fm6bvaws/NsmtvOSlluK9mCGr7SdNXQeWWVKBSo4VMKkGgGau5qGVgUEM2ZduJDGw/mQmZVIIlT0RDJZcZ3N/B3xVKuRTF5dVIZbKw2WQVluNMZhEkEl1PDTXdzdmFmxbU7E7JxbErBVArpHhpsGVyaW71UDfzDUHpK58C3NWc3JGaje8gshm5xRWYWzPsNPme9uhaM9RUm0ImRWSgOwAOQZnTnhTdF3B0a094uSit3Br7pg9q/rx8HUXlVUY9Vjd7sC6XZtxdba1WVn93Jz84K2VIL7iBY1cKTHpsJgmTKTGoIZsgCALmbD2J62VV6Bzojim3mYOjm5gsXGCh1rU8u85y6MlU2ng7o52PC6q1An4/b1xp965zOTh+tRBOChletFIvDaAbRovr7A/A9GtBiQtZMkmYTIBBDdmE749n4OfT2ZBLJVjyeDSU8obfml2ZLGxWldVa7KuZV0U/gRw1z921FrhsrNq5NOP7trX6mkj6taB+PJlp0nw2feVTawY1ZAIMasjqcorKMe+70wCAqfd2QGSQ+2331/fUnEovYrKwGRxJvY6Simp4uyjFajNqHn1wuDul8aXdiWdycKKml+aFQZateKrP4I6+cFHKkFFYjmMm7CXl8BOZktzaDaCWTRAEvL7lFApvVKFLkDtevufOXeztfV2hVkhRUlGNy9dK0c7X1QIttbzPf7+E934+h2oLB26amvMN7ujLxQVNpE+YF5wUMmQXVeBMZvEdA3dBELAsUZdLM75fW3jbwMrVaoUM90f6Y+uxDGw/kYkebVqZ5Lico4ZMiT01ZFVbj6Vj55lsKGS6aidFI6of5C0kWXjdgVSUVmpQUa216K1aK0AqAUb1CLb2U+Aw1AoZ+rdvfGn3zjM5OJVeBGelDC8Osl4uza2Gd9OtBWWqIShBENhTQybFnhqymuyicsyvGXaaFtcREQG3//VaW1SwB5LSCnDyaiFGxjjel+/10kpczC0FAOyYNhCuKsv+qbqq5PB0ZtWTKQ3u5IedZ3Kw+1wOJt8mEb72StwT+oXaVPXZwA4+cFXJkVlYjqNXrqNnW69mHe96WRXKKjUAgCAGNWQCDGrIKgRBwOzNJ1FUXo1urT3wopE5A1GtPQGk4oSD9tQcvXIdANDOx8WoYI9sl35R0KS0AhSWVcHDWVHvfr8kZ+N0RhFclDK8MND6uTS16YegthxNx7YTmc0OavRDT75uKnEpFKLm4PATWcW3R67i17M5UMqkeO/xaKMn3dInsJ520JmFk1ILAADdTZS3QNYX4uWMDn6u0GgF7P2r/ioorfZmxdMz/UPRyoZ6afSGR5muCkq/OjeHnshUGNSQxWUW3sDCH5IBANPv74iO/m5GHyPc1wVOChlKKzW4mFdq6iZaXVKarqemZ1sGNY5ErIJqoLT7l+QsnMksgqtKjucG2FYvjd7Ajj5wU8mRXVSBIzXv06a6yiRhMjEGNWRRgiBg1qaTKK6oRkyIJ54fGNak48hlUrGC5JSDDUFVa7Q4XjNra4+2nlZtC5nWPbXmq7m1l8Ogl6afbfbSAIBKLsP9XUwzEZ8+qGnNnhoyEQY1ZFEb/7yCPSm5UMqbNuxUm34IyhwrB1vTuexilFZq4KqSo4Of8b1YZLt6hXrBRSlDXkkFTmcUGdz38+ksnM0qhptKjueaGOxbykMmmohPX/nEiffIVBjUkMWkF9zAW9vOAAD++UBHtPdr3vwy+qDG0XpqktIKAAAxIZ6QcZ4Yh6KUS9G/vQ8AwwUua/fSxPcPtfnKswHtfeGmliOnuAJ/pjZ9CIpz1JCpMaghi9ANO51ASUU1erTxxLMmyBcQZxbOKBQnjHMER2u+JHown8Yh3ROhG4KqPV/NT6eycC67GG5quUn+NsxNKZdiSJcAAMD2ExlNPs7NOWqcTdIuIgY1ZBH/PXQFe8/nQVUz7GSKHoh2vq5wVspQVqnBxdwSE7TSNuiThHu08bRuQ8gs9MnCR68U4HppJbRaActrZg+e2D+swVJvWyNWQZ3KatKPiuLyKhTe0K1azp4aMpUmBTWrVq1CaGgo1Go1YmNjcejQoQb3raqqwsKFCxEeHg61Wo3o6Gjs2LHDYJ/Q0FBIJJI6t8mTJ4v7ZGVlYdy4cQgICICLiwt69OiBTZs2NaX5ZGFX8svw9nZdtdOrD0aYbFkDmVSCLkGONbNwXkkFLl/Tlbl2D2FPjSMK9HBCRIAbBAH47Xwutp/MREp2CdzUckwcYNu5NLX1b+8Dd7UcucUVOHw53+jH63tpPJ0VFp9ckhyX0UHNhg0bMGPGDMyfPx9JSUmIjo7GkCFDkJNT/9Tfc+bMwUcffYQVK1YgOTkZL730EkaNGoWjR4+K+xw+fBiZmZniLSEhAQDw+OOPi/uMHz8e586dw/fff4+TJ09i9OjReOKJJwyOQ7ZHqxXw2qYTKK3UoHdoK8T3CzXp8aOCPQE4TrLw0Zp8mvZ+rnbzi52Mp1+1+9ezOfggUZdL8+yAMHg42c9rbjgEZXwVlJhPw8onMiGjg5qlS5fi+eefR3x8PCIjI7FmzRo4Ozvjs88+q3f/devW4fXXX8ewYcPQrl07TJo0CcOGDcOSJUvEfXx9fREQECDetm3bhvDwcAwePFjc548//sDUqVPRp08ftGvXDnPmzIGnpyeOHDnShMsmS1l/MBV/XLgGtUKK/zwWbfIFEqNaO1ZZtzg/DSfdc2j6Iajvj2fgfE4J3O2sl0ZveE0V1E+nMo0eguKaT2QORgU1lZWVOHLkCOLi4m4eQCpFXFwc9u/fX+9jKioqoFarDbY5OTlh3759DZ7jq6++wsSJEyGR3PwC7NevHzZs2ID8/HxotVr873//Q3l5Oe6+++4Gz1tUVGRwI8tKu1aGf/94FgAw68EIhPq4mPwc+p6a0xlFDpEsnCQmCXtatyFkVj3btoKbSg6h5i373MB2cFfbTy+NXv/2PvBwUiCvpBIHL10z6rGsfCJzMCqoycvLg0ajgb+/v8F2f39/ZGVl1fuYIUOGYOnSpTh//jy0Wi0SEhKwefNmZGbW3125detWFBQU4JlnnjHYvnHjRlRVVcHb2xsqlQovvvgitmzZgvbt618YbtGiRfDw8BBvISEhxlwqNZNWK2Dmt8dxo0qD2DAvjO8bapbztPNxgYtShhtVGlyw82ThKo0Wx68WAAB6sKfGoSlkUgzooCvt9nBSIL5/qHUb1EQKmRQPNnEI6iqHn8gMzF79tHz5cnTo0AERERFQKpWYMmUK4uPjIZXWf+pPP/0UQ4cORVBQkMH2uXPnoqCgADt37sSff/6JGTNm4IknnsDJkyfrPc7s2bNRWFgo3q5cuWLya6OGfbn/Mg5eyoezUmaWYSc9qVSCLg4yCd/ZzGKUV2nhrpYj3ETJ1GS7xsa2hVohxWsPRsDNDntp9PRDUDtOZaFao230466KE++xnJtMx6iUcx8fH8hkMmRnZxtsz87ORkBAQL2P8fX1xdatW1FeXo5r164hKCgIs2bNQrt2dediSE1Nxc6dO7F582aD7RcuXMDKlStx6tQpdOnSBQAQHR2NvXv3YtWqVVizZk2dY6lUKqhUKmMuj0zkcl4p3tmhG3aaPTQCbbzN+6EVFeyBQ5fycSq9EI/1bG3Wc5mTPp+me5tWZgsCyXYM6OCDMwsfNBhmt0d9w73RylmBa6WVOHQpH/1qJhe8E/3wE2cTJlMyqqdGqVSiZ8+eSExMFLdptVokJiaib9++t32sWq1GcHAwqqursWnTJowcObLOPp9//jn8/PwwfPhwg+1lZboS11t7d2QyGbTaxv8yIPPTDzuVV2nRL9wbY2Pbmv2c+kn4TtQM3dirm/PTcOippbD3gAaoGYLqqvtRu+1k44agyqs0yCupAMDhJzIto4efZsyYgU8++QRr167FmTNnMGnSJJSWliI+Ph6ArvR69uzZ4v4HDx7E5s2bcfHiRezduxcPPvggtFotXn31VYPjarVafP7555gwYQLkcsMOpIiICLRv3x4vvvgiDh06hAsXLmDJkiVISEjAI4880oTLJnP5/I/LOHz5OlyUMix+tJtFehy61gw/JWcWGdX9bWuOMEmY7NSwKOOGoPSVT85KGTw5dQGZkNEzHo0ZMwa5ubmYN28esrKyEBMTgx07dojJw2lpaQY9KuXl5ZgzZw4uXrwIV1dXDBs2DOvWrYOnp6fBcXfu3Im0tDRMnDixzjkVCgV+/PFHzJo1CyNGjEBJSQnat2+PtWvXYtiwYcZeApnJxdwSvFsz7PTG8EiEeFlmrDzM2wWuKjlKKqrxV24JIgLcLXJeU8opLsfV6zcgkejWfCKyJ33b6Yag8ksrceBivpgE3ZDaQ0+O0FtFtqNJ0zhOmTIFU6ZMqfe+3bt3G/x/8ODBSE5OvuMxH3jgAQhCwyW5HTp04AzCNkyjFfDPb46jolqLgR188FQfy1WbSWtmFj54KR8nrxbaZVCTlFoAAOjk72bXSaPUMsllUjzYNRD/PZSG7Scz7hzUcI4aMhOu/WTHfjqZiVW7/sLBi9dQUa2xals+3XcRSWkFcFXJ8c6j3Sz+60ufV2OvyyXUThImskcP1aqCqrrDEBTnqCFz4YIbduqzfZewcNvNHjCVXIrubTxxVztvxIZ5o3sbT6gVMou05a+cYrz3i25BvrkPdbbKry99Xo3dBjWpXMSS7FtsmBe8XZS4VlqJ/ReuYVBH3wb3vXpdV/zB1bnJ1BjU2KFP913CWzUBTZ8wL1zKK0VucQUOXMzHgYv5AM5DKZciJkQX5NwV5oUebVuZJcip1mjxj29OoLJai8EdffFEL+tMctittScAIDmjCFUaLRQy++mErKzW4kRNMNazLXtqyD7Ja6qg1h9Mw/YTmbcNatILWM5N5sGgxs78396L+Nf2MwCAKfe0xz8e6AgAuJhXioMX83Hg4jUcuHgNOcUVOHQpH4cu5eMDAEqZLsiJbeeFu9p5o0ebVnBSNj/I+WTvJRy/UgA3tRzvPBpltaS/tl7OcFPJUVxRjfPZJYgMsp+8muTMIlRWa9HKWYEwMywlQWQpw7sFYv3BNPycnIV/abo2+OOCw09kLgxq7Mgnv13E2z/qAppX7m2P6fd3FIOIcF9XhPu64m+xbSAIAi5fK8OBi9dw8OI1HLiYj6yichy6nI9Dl/Ox4te/oJBJEN36ZpDTs20rOCuNezukZBfj/QTdsNO8hyIR6GG9DyipVIKuwR7Yf/EaTqUX2lVQoy/l7t6mFStByK7FhnnDx1WJvJJK/HHhGgbX01tTpdEiq6gcANCaicJkYgxq7MRHey5g0U+6culX7uuA6XEdGvwClEgkCPNxQZiPC57qowtyUq+V4eClazVDVNeQWViOP1Ov48/U61i16wLkUgm6tfbQ5eS080avtq3gomr47VGl0eIfG4+jUqPFvRF+NjGTb1RrXVBzIr0AT/S2n7W+bk6652ndhhA1k0wqwYNdA/DVgTRsP5FRb1CTVVgOraDrPfZx5azvZFoMauzAmj0X8E5NQDMtrgOmxXU06vESiQShPi4I9XHBmN66IOdK/g3dUNWlazh4MR/pBTeQlFaApLQCfLhbF+REtfZAbJg37mrnhV6hXnCtFeR8tOcCTqYXwl0tx6LR1ht2qi1KTBa2rxXZj4qT7jGfhuzf8KggfHUgDT+fzsa/HtFCKTccgtIvZBnkqeZyIGRyDGps3Ie7/8K7O84BAKbHdcTf4zo0+5gSiQRtvJ3RxttZ7NG4kl9Wk4+Tj4OXruHq9Rs4mlaAo2kFWLPnAmQ1wzt3hXkh3M8VyxPPAwDeHNkF/u7qZrfJFPRl3Wcy7SdZOLPwBjIKyyGVANE1yc5E9qxPmBd8XFXIK6nA7xfycE8nP4P707mQJZkRgxobtmrXX/jPz7qAZsb9HfHKfc0PaBoS4uWMEC9nPN7rZpBz8FK+Lifn0jVcyb+B41cKcPxKgfiY+yP98UhMsNnaZKw2Xs5wV8tRVF6NlOxidAnysHaT7kg/6V5EgPtth/uI7IVMKsGwqAB8uT8V209k1g1qrnPiPTIfforaqJW/nhfnfvnnAx0x5V7zBTT10Qc5+lyZ9IIbNUnH13DwUj6UMineHtXVJoad9CQS3ZDZ739dw8mrhfYR1KRxvSdyPMOjAvHl/lT8fDoL/x4VZTAElV5QM0cNK5/IDBjU2KAPEs9jaU1V0cwhnTD5nvZWbpHuV9XoHq0xuof1E4Jvp2twTVCTXognrd2YRtAHNZyfhhxJr1Av+LmpkFNcgX1/5eLeCH/xvqvsqSEzsv2kgxZm2c4UMaB59UHbCGjsSbdgTwD2MbNweZUGp2uSmntweQRyILohKN2yCdtOZBrcx4n3yJwY1NiQ9xNSsGynLgF31tAIvHw3Axpj6SugzmYWo7L69uvPWNvpjEJUarTwdlGijYVWNCeylOE1a0ElnM4W16bTagVkFujmqOHwE5kDgxobIAgCliakiBVFrw+LwEuDw63cKvsU4uUEDycFKjVapGQXW7s5t6VPEuake+SIerZpBX93FYorqrHvfB4AILekApUaLWRSCQJspGqSHAuDGivTBzQf1AQ0bwzrjBcGMaBpKolEUmu+GtsegmI+DTkyqVSCoV11vTXba4ag9AtZBrirIbeDKRfI/vBdZUWCIGDJLylY8etfAIA5wzvj+UHtrNwq+xdVM1/Niau2G9QIgsCZhMnhPaQfgkrORnmV5maSMIeeyEwY1FiJIAj4z8/nsHKXLqCZ+1AknhvIgMYU9D01p2y4pya94AayiypqlqfwtHZziMyiR5tWCHBXo7iiGnvP591MEmblE5kJgxorEAQBi3ecw4e7LwAA5o+IxLMDwqzcKschJgtnFYkJirYmKa0AANA50N0kq6UT2SJprSqo7ScyuDo3mR2DGgsTBAHv7DiLNXt0Ac2bD3dBfH8GNKbUupUTPJ0VqNIIOJdlm8nCSanMp6GWYXitIagLuSUAOEcNmQ+DGgsSBAGLfjqLj/ZcBAAsHNkFE/qFWrdRDsgekoX1+TTdmU9DDq57iCeCPNQordTgwMV8AOypIfNhUGMhgiDg7e1n8PFvuoDmrZFdML5vqHUb5cDEoMYGk4XLqzRIzuCke9Qy1B6C0uNilmQuDGosQBAE/Gv7GfzfvksAgH890hXjGNCYlX7FblvsqTlxtRDVWgG+birOqkotgn4ISi/Qg3PUkHkwqDEzQRCwcFsyPq0JaP49KgpP39XWyq1yfF1remrOZRWjvMq2koXF+Wk46R61EDEhnmIeja+bCmoFk+PJPBjUmJEgCHjzh2R8/vtlAMCi0VH4W2wb6zaqhQj2dIKXixLVWttLFj6SypW5qWWRSCQYFhUAgEnCZF4MasxEEAQs+P40vvjjMiQSYPGjUXiqDwMaS6mdLHzChoagBEHAUXHSPebTUMsxoV8ourfxxDj2VJMZya3dAEckCALmfXca6w6k6gKa0d3wRO8QazerxYkK9sCelFycsqFk4Sv5N5BXUgmFTCIOkRG1BK1bOWPLy/2t3QxycAxqTEyrFTDv+1P46kBaTQ9NNzzRiwGNNYjLJdhQT40+n6ZLkAfzCoiITIzDTyak1QqY+93NgOY/j0UzoLEi/fDT+WzbSRYW82k49EREZHIMakxEqxXwxtZTWH9QF9C891g0HuvZ2trNatECPdTwcdUlC5/JLLJ2cwDc7KlhkjARkekxqDEBrVbA61tO4r+H0iCVAEufiMajDGisTiK5mbdiC4tbllVW42xNJRaXRyAiMj0GNc2k1QqYvfkk/nf4Sk1AE4NR3RnQ2Ipu+gooG0gWPn6lEBqtgEAPNQI9WNZKRGRqTBRuplMZhdiUdBVSCfD+mBiMjAm2dpOolq42tAZUEku5iYjMikFNM3Vr7YkVT3VHpUbLgMYGdWvtCQA4n1OCG5UaOCmtV3GkX5mbi1gSEZkHgxoTGHrLYm1kO/zdVfBxVSGvpALJmUVWy2URBAFHrxQAYD4NEZG5MKeGHJpEIhEXt7RmsvDla2XIL62EUi5FlyBOukdEZA4MasjhdbWBZGH9/DRRwR5QyvlnR0RkDvx0JYfXzQbKum8mCXtarQ1ERI6OQQ05PP1yCedzilFWWW2VNuiThJlPQ0RkPgxqyOH5u6vh56aCVoBVZhYuLq9CSrZu0j2WcxMRmQ+DGmoR9MnC1sirOX6lEFoBCPZ0gp+72uLnJyJqKRjUUItgzUn4bq73xF4aIiJzYlBDLYK+p+akFXpq9EFNTyYJExGZVZOCmlWrViE0NBRqtRqxsbE4dOhQg/tWVVVh4cKFCA8Ph1qtRnR0NHbs2GGwT2hoKCQSSZ3b5MmTDfbbv38/7r33Xri4uMDd3R2DBg3CjRs3mnIJ1MLoe2ou5JagtMJyycJarSAmCbOnhojIvIwOajZs2IAZM2Zg/vz5SEpKQnR0NIYMGYKcnJx6958zZw4++ugjrFixAsnJyXjppZcwatQoHD16VNzn8OHDyMzMFG8JCQkAgMcff1zcZ//+/XjwwQfxwAMP4NChQzh8+DCmTJkCqZSdTXRnfm5qBLiroRWAZAsmC1/MK0FReTXUCik6B7pb7LxERC2RRBAEwZgHxMbGonfv3li5ciUAQKvVIiQkBFOnTsWsWbPq7B8UFIQ33njDoNfl0UcfhZOTE7766qt6zzFt2jRs27YN58+fh0QiAQDcdddduP/++/HWW28Z01xRUVERPDw8UFhYCHd3frm0RM+t/RM7z2Rj3kORmDggzCLn3Hj4Cl7ddAJ9Qr2w8aW+FjknEZEjMeb726hujsrKShw5cgRxcXE3DyCVIi4uDvv376/3MRUVFVCrDSs+nJycsG/fvgbP8dVXX2HixIliQJOTk4ODBw/Cz88P/fr1g7+/PwYPHtzgMfTnLSoqMrhRyybm1VgwWZhJwkRElmNUUJOXlweNRgN/f3+D7f7+/sjKyqr3MUOGDMHSpUtx/vx5aLVaJCQkYPPmzcjMzKx3/61bt6KgoADPPPOMuO3ixYsAgAULFuD555/Hjh070KNHD9x33304f/58vcdZtGgRPDw8xFtISIgxl0oOKMoKFVD65RE4kzARkfmZPSFl+fLl6NChAyIiIqBUKjFlyhTEx8c3mAvz6aefYujQoQgKChK3abVaAMCLL76I+Ph4dO/eHe+//z46deqEzz77rN7jzJ49G4WFheLtypUrpr84siu1k4VLLJAsXHijCudzSgCwp4aIyBKMCmp8fHwgk8mQnZ1tsD07OxsBAQH1PsbX1xdbt25FaWkpUlNTcfbsWbi6uqJdu3Z19k1NTcXOnTvx3HPPGWwPDAwEAERGRhps79y5M9LS0uo9r0qlgru7u8GNWjZfNxUCPdQQBOC0BXprjl0pAAC08XKGj6vK7OcjImrpjApqlEolevbsicTERHGbVqtFYmIi+va9fRKkWq1GcHAwqqursWnTJowcObLOPp9//jn8/PwwfPhwg+2hoaEICgrCuXPnDLanpKSgbdu2xlwCtXCWHILiek9ERJYlN/YBM2bMwIQJE9CrVy/06dMHy5YtQ2lpKeLj4wEA48ePR3BwMBYtWgQAOHjwINLT0xETE4P09HQsWLAAWq0Wr776qsFxtVotPv/8c0yYMAFyuWGzJBIJZs6cifnz5yM6OhoxMTFYu3Ytzp49i2+//bap104tUFSwB35JzrZMUMOVuYmILMrooGbMmDHIzc3FvHnzkJWVhZiYGOzYsUNMHk5LSzPIlykvL8ecOXNw8eJFuLq6YtiwYVi3bh08PT0Njrtz506kpaVh4sSJ9Z532rRpKC8vx/Tp05Gfn4/o6GgkJCQgPDzc2EugFizKQhVQWq2AY2kFAIDuXMSSiMgijJ6nxl5xnhoCgGslFej5r50AgJMLHoCbWmGW85zLKsaQZb/BWSnDifkPQC7jJJFERE1htnlqiOydt6sKwZ5OAIDTGeabu0g/9BTd2pMBDRGRhfDTllqcrsG6SN+ci1uK89O09TTbOYiIyBCDGmpxurX2BGDevJqbScLMpyEishQGNdTimLusu6CsEhdzSwEwSZiIyJIY1FCLow9qLuWVoqi8yuTHP1pT9dTOxwVeLkqTH5+IiOrHoIZanFYuSrRupUsWPmWG3hp9Pg17aYiILItBDbVI+t4acwQ1N1fm9jT5sYmIqGEMaqhF0k/Cd8LEFVDVGi2O16z5xOURiIgsi0ENtUjm6qk5l12M0koNXFVydPBzM+mxiYjo9hjUUIukD2ouXytDYZnpkoWTapKEY0I8IZNKTHZcIiK6MwY11CJ5OisR4lWTLJxhut6ao6lcxJKIyFoY1FCL1S3YE4Bp56u5mSTMfBoiIktjUEMtVlf9JHwmShbOK6nA5WtlAIDuIQxqiIgsjUENtVjdWpt2ZmH9pHvt/Vzh4Wye1b+JiKhhDGqoxeoapAtq0vLLUFBW2ezj3VzvybPZxyIiIuMxqKEWy8NZgbbezgCAU+lFzT5eUk2SMOenISKyDgY11KLp82pOpBc06zhVGi2OX9UdgytzExFZB4MaatG6mWgSvrOZxSiv0sJdLUe4r6spmkZEREZiUEMtmqmWS9Dn08S0aQUpJ90jIrIKBjXUoumHn65ev4HrpU1PFtYHNT059EREZDUMaqhFc1crEObjAqB5pd1HUrkyNxGRtTGooRZPnISviUFNTnE5rl6/AYlEt+YTERFZB4MaavG6NXNm4aTUAgBARz83uKk56R4RkbUwqKEWr7k9NUe53hMRkU1gUEMtXtdgdwBAesENXCupMPrxR7gyNxGRTWBQQy2em1qBdk1MFq6s1uJEzWPYU0NEZF0Maohwc74aYyfhS84sQmW1Fp7ONwMjIiKyDgY1RACigps2Cd/NoadWkEg46R4RkTUxqCHCzaDG2J4arsxNRGQ7GNQQAegS7AGJBMgoLEeeEcnCR2v11BARkXUxqCEC4KqSG50snFl4AxmF5ZBKgGhOukdEZHUMaohqRBk5CZ9+0r2IAHe4qOTmahYRETUSgxqiGlGtPQE0vqdGzKfhek9ERDaBQQ1RDaN7atKYT0NEZEsY1BDV6BLkDokEyCoqR05x+W33La/S4HR6EQCgJyfdIyKyCQxqiGq4qORo7+sK4M6l3aczClGp0cLbRYk2Xs6WaB4REd0BgxqiWm4OQRXddj99knB3TrpHRGQzGNQQ1aJfLuFkesFt92OSMBGR7WFQQ1SL2FNzm+EnQRDEoKYnk4SJiGwGgxqiWiKD3CGVANlFFcguqj9ZOL3gBrKLKiCXStCtpgyciIisj0ENUS3OSjna++mShRsq7U5KKwAAdA50h5NSZqmmERHRHTCoIbpFVLAngIaHoJJSuYglEZEtalJQs2rVKoSGhkKtViM2NhaHDh1qcN+qqiosXLgQ4eHhUKvViI6Oxo4dOwz2CQ0NhUQiqXObPHlyneMJgoChQ4dCIpFg69atTWk+0W1FBbsDaDioOSomCTOfhojIlhgd1GzYsAEzZszA/PnzkZSUhOjoaAwZMgQ5OTn17j9nzhx89NFHWLFiBZKTk/HSSy9h1KhROHr0qLjP4cOHkZmZKd4SEhIAAI8//nid4y1btowltGRWtZdLEATB4L7yKg1OZ+jKvTmTMBGRbTE6qFm6dCmef/55xMfHIzIyEmvWrIGzszM+++yzevdft24dXn/9dQwbNgzt2rXDpEmTMGzYMCxZskTcx9fXFwEBAeJt27ZtCA8Px+DBgw2OdezYMSxZsqTBcxGZQmSgLlk4t7gC2UUVBveduFqIaq0AXzcVWrdyslILiYioPkYFNZWVlThy5Aji4uJuHkAqRVxcHPbv31/vYyoqKqBWqw22OTk5Yd++fQ2e46uvvsLEiRMNemTKysrwt7/9DatWrUJAQMAd21pRUYGioiKDG1FjOCll6OjvBqDuENTN9Z482WNIRGRjjApq8vLyoNFo4O/vb7Dd398fWVlZ9T5myJAhWLp0Kc6fPw+tVouEhARs3rwZmZmZ9e6/detWFBQU4JlnnjHYPn36dPTr1w8jR45sVFsXLVoEDw8P8RYSEtKoxxEBQFdxZuECg+1HapKEud4TEZHtMXv10/Lly9GhQwdERERAqVRiypQpiI+Ph1Ra/6k//fRTDB06FEFBQeK277//Hr/++iuWLVvW6PPOnj0bhYWF4u3KlSvNvRRqQbq1rjsJnyAIN5OEmU9DRGRzjApqfHx8IJPJkJ2dbbA9Ozu7wSEhX19fbN26FaWlpUhNTcXZs2fh6uqKdu3a1dk3NTUVO3fuxHPPPWew/ddff8WFCxfg6ekJuVwOuVwOAHj00Udx991313telUoFd3d3gxtRY3WtNbOwPln4Sv4N5JVUQiGTiPcTEZHtMCqoUSqV6NmzJxITE8VtWq0WiYmJ6Nu3720fq1arERwcjOrqamzatKneYaTPP/8cfn5+GD58uMH2WbNm4cSJEzh27Jh4A4D3338fn3/+uTGXQNQokYHukEklyCupRFbNzML6fJrIIA+oFZx0j4jI1siNfcCMGTMwYcIE9OrVC3369MGyZctQWlqK+Ph4AMD48eMRHByMRYsWAQAOHjyI9PR0xMTEID09HQsWLIBWq8Wrr75qcFytVovPP/8cEyZMEHti9PRVUbdq06YNwsLCjL0EojtSK2To4OeKs1nFOHG1EIEeTjfzaTj0RERkk4wOasaMGYPc3FzMmzcPWVlZiImJwY4dO8Tk4bS0NIN8mfLycsyZMwcXL16Eq6srhg0bhnXr1sHT09PguDt37kRaWhomTpzYvCsiMpFurT1wNqsYp9ILMaRLAFfmJiKycRLh1tnFHFRRURE8PDxQWFjI/BpqlHUHUjF36ykM7uiL1U/3QNSCX6DRCvhj1r0I8uQcNURElmDM9zfXfiJqQFRNMvCp9EIcu1IAjVZAgLuaAQ0RkY1iUEPUgIgAN8ilElwrrcS2E7p5lTg/DRGR7WJQQ9QAteLmzMJbktIBAN25MjcRkc1iUEN0G/pJ+G5UaQBwZW4iIlvGoIboNmpPsqeUSdEliEnmRES2ikEN0W3oe2oAIKq1B1RyTrpHRGSrGNQQ3UanADcoZLrVuHswn4aIyKYxqCG6DZVcJpZ2x4Z5W7k1RER0O0bPKEzU0vzn8Wgcv1KA+zr7WbspRER0GwxqiO4g3NcV4b6u1m4GERHdAYefiIiIyCEwqCEiIiKHwKCGiIiIHAKDGiIiInIIDGqIiIjIITCoISIiIofAoIaIiIgcAoMaIiIicggMaoiIiMghMKghIiIih8CghoiIiBwCgxoiIiJyCAxqiIiIyCG0mFW6BUEAABQVFVm5JURERNRY+u9t/ff47bSYoKa4uBgAEBISYuWWEBERkbGKi4vh4eFx230kQmNCHweg1WqRkZEBNzc3SCQSazfHJIqKihASEoIrV67A3d3d2s0xO16vY2tp1wu0vGvm9To2c12vIAgoLi5GUFAQpNLbZ820mJ4aqVSK1q1bW7sZZuHu7t4i/mD0eL2OraVdL9DyrpnX69jMcb136qHRY6IwEREROQQGNUREROQQGNTYMZVKhfnz50OlUlm7KRbB63VsLe16gZZ3zbxex2YL19tiEoWJiIjIsbGnhoiIiBwCgxoiIiJyCAxqiIiIyCEwqCEiIiKHwKCGiIiIHAKDGjuVnp6Op59+Gt7e3nByckJUVBT+/PNPazfLLDQaDebOnYuwsDA4OTkhPDwcb731VqMWN7MHv/32G0aMGIGgoCBIJBJs3brV4H5BEDBv3jwEBgbCyckJcXFxOH/+vHUaawK3u96qqiq89tpriIqKgouLC4KCgjB+/HhkZGRYr8HNdKfXt7aXXnoJEokEy5Yts1j7TK0x13vmzBk8/PDD8PDwgIuLC3r37o20tDTLN9YE7nS9JSUlmDJlClq3bg0nJydERkZizZo11mmsCSxatAi9e/eGm5sb/Pz88Mgjj+DcuXMG+5SXl2Py5Mnw9vaGq6srHn30UWRnZ1ukfQxq7ND169fRv39/KBQK/PTTT0hOTsaSJUvQqlUrazfNLBYvXozVq1dj5cqVOHPmDBYvXox3330XK1assHbTTKK0tBTR0dFYtWpVvfe/++67+OCDD7BmzRocPHgQLi4uGDJkCMrLyy3cUtO43fWWlZUhKSkJc+fORVJSEjZv3oxz587h4YcftkJLTeNOr6/eli1bcODAAQQFBVmoZeZxp+u9cOECBgwYgIiICOzevRsnTpzA3LlzoVarLdxS07jT9c6YMQM7duzAV199hTNnzmDatGmYMmUKvv/+ewu31DT27NmDyZMn48CBA0hISEBVVRUeeOABlJaWivtMnz4dP/zwA7755hvs2bMHGRkZGD16tGUaKJDdee2114QBAwZYuxkWM3z4cGHixIkG20aPHi2MHTvWSi0yHwDCli1bxP9rtVohICBA+M9//iNuKygoEFQqlfDf//7XCi00rVuvtz6HDh0SAAipqamWaZQZNXS9V69eFYKDg4VTp04Jbdu2Fd5//32Lt80c6rveMWPGCE8//bR1GmRm9V1vly5dhIULFxps69Gjh/DGG29YsGXmk5OTIwAQ9uzZIwiC7vNJoVAI33zzjbjPmTNnBADC/v37zd4e9tTYoe+//x69evXC448/Dj8/P3Tv3h2ffPKJtZtlNv369UNiYiJSUlIAAMePH8e+ffswdOhQK7fM/C5duoSsrCzExcWJ2zw8PBAbG4v9+/dbsWWWU1hYCIlEAk9PT2s3xSy0Wi3GjRuHmTNnokuXLtZujllptVps374dHTt2xJAhQ+Dn54fY2NjbDsnZu379+uH7779Heno6BEHArl27kJKSggceeMDaTTOJwsJCAICXlxcA4MiRI6iqqjL4zIqIiECbNm0s8pnFoMYOXbx4EatXr0aHDh3w888/Y9KkSXjllVewdu1aazfNLGbNmoUnn3wSERERUCgU6N69O6ZNm4axY8dau2lml5WVBQDw9/c32O7v7y/e58jKy8vx2muv4amnnnLYVY4XL14MuVyOV155xdpNMbucnByUlJTgnXfewYMPPohffvkFo0aNwujRo7Fnzx5rN88sVqxYgcjISLRu3RpKpRIPPvggVq1ahUGDBlm7ac2m1Woxbdo09O/fH127dgWg+8xSKpV1foRY6jNLbvYzkMlptVr06tUL//73vwEA3bt3x6lTp7BmzRpMmDDByq0zvY0bN2L9+vX4+uuv0aVLFxw7dgzTpk1DUFCQQ14v6VRVVeGJJ56AIAhYvXq1tZtjFkeOHMHy5cuRlJQEiURi7eaYnVarBQCMHDkS06dPBwDExMTgjz/+wJo1azB48GBrNs8sVqxYgQMHDuD7779H27Zt8dtvv2Hy5MkICgoy6M2wR5MnT8apU6ewb98+azdFxJ4aOxQYGIjIyEiDbZ07d7bb6oE7mTlzpthbExUVhXHjxmH69OlYtGiRtZtmdgEBAQBQp3IgOztbvM8R6QOa1NRUJCQkOGwvzd69e5GTk4M2bdpALpdDLpcjNTUV//jHPxAaGmrt5pmcj48P5HJ5i/n8unHjBl5//XUsXboUI0aMQLdu3TBlyhSMGTMG7733nrWb1yxTpkzBtm3bsGvXLrRu3VrcHhAQgMrKShQUFBjsb6nPLAY1dqh///51SuhSUlLQtm1bK7XIvMrKyiCVGr5VZTKZ+KvPkYWFhSEgIACJiYnitqKiIhw8eBB9+/a1YsvMRx/QnD9/Hjt37oS3t7e1m2Q248aNw4kTJ3Ds2DHxFhQUhJkzZ+Lnn3+2dvNMTqlUonfv3i3m86uqqgpVVVUO9fklCAKmTJmCLVu24Ndff0VYWJjB/T179oRCoTD4zDp37hzS0tIs8pnF4Sc7NH36dPTr1w///ve/8cQTT+DQoUP4+OOP8fHHH1u7aWYxYsQIvP3222jTpg26dOmCo0ePYunSpZg4caK1m2YSJSUl+Ouvv8T/X7p0CceOHYOXlxfatGmDadOm4V//+hc6dOiAsLAwzJ07F0FBQXjkkUes1+hmuN31BgYG4rHHHkNSUhK2bdsGjUYjjsN7eXlBqVRaq9lNdqfX99agTaFQICAgAJ06dbJ0U03iTtc7c+ZMjBkzBoMGDcI999yDHTt24IcffsDu3but1+hmuNP1Dh48GDNnzoSTkxPatm2LPXv24Msvv8TSpUut2Oqmmzx5Mr7++mt89913cHNzE/8+PTw84OTkBA8PDzz77LOYMWMGvLy84O7ujqlTp6Jv37646667zN9As9dXkVn88MMPQteuXQWVSiVEREQIH3/8sbWbZDZFRUXC3//+d6FNmzaCWq0W2rVrJ7zxxhtCRUWFtZtmErt27RIA1LlNmDBBEARdWffcuXMFf39/QaVSCffdd59w7tw56za6GW53vZcuXar3PgDCrl27rN30JrnT63srey/pbsz1fvrpp0L79u0FtVotREdHC1u3brVeg5vpTtebmZkpPPPMM0JQUJCgVquFTp06CUuWLBG0Wq11G95EDf19fv755+I+N27cEF5++WWhVatWgrOzszBq1CghMzPTIu2T1DSSiIiIyK4xp4aIiIgcAoMaIiIicggMaoiIiMghMKghIiIih8CghoiIiBwCgxoiIiJyCAxqiIiIyCEwqCEiIiKHwKCGiIiIHAKDGiIiInIIDGqIiIjIIfw/fHslSOs6Nj0AAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "to_plot = []\n", "params_history = []\n", "params = best_params.copy()\n", "for smooth_window_length in range(params['smooth_polyorder']+1, 21):\n", " params['smooth_window_length'] = smooth_window_length\n", " params_history.append(params['smooth_window_length'])\n", " print(params['smooth_window_length'])\n", " process_params = {key: params[key] for key in ['baseline_lam', 'baseline_p', 'smooth_window_length', 'smooth_polyorder']}\n", " classifier_params = {key: params[key] for key in best_params.keys() if key not in ['baseline_lam', 'baseline_p', 'smooth_window_length', 'smooth_polyorder']}\n", " X_train, X_test = process_train_test(process_params, experiments_train, metadata_train, experiments_test, metadata_test, scale=True)\n", " to_plot.append(evaluate_classifier_params(RandomForestClassifier, classifier_params, X_train, truth_train, X_test, truth_test, iters=20)[1])\n", "best_params['smooth_window_length'] = params_history[to_plot.index(max(to_plot))]\n", "_ = plt.plot(range(params['smooth_polyorder']+1, 21), to_plot)\n", "_ = plt.title(\"Impact of varying smoothing window size\")\n", "plt.savefig('../images/random_forest/vary_smooth_window.svg', format='svg', dpi=1200)" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-05-01T09:39:42.702156800Z", "start_time": "2024-05-01T09:30:54.553195100Z" } }, "id": "710747d57aa84b92", "execution_count": 23 }, { "cell_type": "code", "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1\n", "2\n", "3\n", "4\n", "5\n", "6\n", "7\n", "8\n", "9\n", "10\n", "11\n", "12\n", "13\n", "14\n", "15\n", "16\n", "17\n", "18\n", "19\n", "20\n" ] }, { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGzCAYAAAAMr0ziAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABi5klEQVR4nO3deVxU5eI/8M/MwMywDsgOsiiaqFdRUfnh0iaGS6ZW7jeFW1qmbXzNpauidYsW42qu5XXLrNQyWzRNSa3cQy1NJVAUlUVB2WWbeX5/DIyMbDNsM8Dn/XrNi5kz5zznOXMYzofnPOc5EiGEABEREZEZk5q6AkRERES1YWAhIiIis8fAQkRERGaPgYWIiIjMHgMLERERmT0GFiIiIjJ7DCxERERk9hhYiIiIyOwxsBAREZHZY2AhaoU2b96MgIAAWFpawsHBwdTVMcrDDz+Mhx9+2NTVaBYOHjwIiUSCgwcPmmT9ixYtgkQiQUZGhknWTy0LAwu1KBs3boREIsHvv/9u6qrU2+7du7Fo0aIGL/fixYsIDw+Hv78/1q5di08++aTB19FSvfPOO9i5c6epq2F2+LlQU2BgITJTu3fvxuLFixu83IMHD0Kj0WDZsmUIDw/H2LFjG3wdjemnn37CTz/9ZJJ188BcNX4u1BQYWIhamZs3bwKA2ZwKys/PN2p+uVwOuVzeSLVpOMZuFxHVjIGFWrzw8HDY2toiOTkZjz/+OGxtbeHl5YWVK1cCAM6ePYtHH30UNjY28PX1xeeff663fPlppl9++QXPP/88nJycYG9vj8mTJ+POnTt683777bcYPnw4PD09oVAo4O/vj7feegtqtbpSvY4fP45hw4bB0dERNjY26N69O5YtW6arc3n9JBKJ7lGbVatWoWvXrlAoFPD09MSMGTOQlZWle9/Pzw9RUVEAABcXF0gkkmpPOy1ZsgQSiQRXr16t9N68efMgl8t12//rr79izJgx8PHxgUKhgLe3N1577TXcvXtXb7nyfXHp0iUMGzYMdnZ2mDRpEqKiomBpaYlbt25VWte0adPg4OCAwsJCAJX7sJT309i2bRvefvtttG3bFkqlEoMGDUJiYmKl8lauXIn27dvDysoKffv2xa+//mpQvxiJRIL8/Hxs2rRJtz/Cw8MB3Ourcf78eUycOBGOjo4YMGCAbtnPPvsMQUFBsLKyQps2bTB+/Hhcu3at0jqOHz+OIUOGQKVSwdraGg899BAOHz5cY73KXb9+HaNGjYKNjQ1cXV3x2muvoaioqMp5DVlP+TZdvHgRY8eOhb29PZycnPDKK6/o9kVtn0u5rKwshIeHw8HBASqVChERESgoKDBou4jKMbBQq6BWqzF06FB4e3vj/fffh5+fH2bOnImNGzdiyJAh6N27N9577z3Y2dlh8uTJSEpKqlTGzJkzceHCBSxatAiTJ0/Gli1bMGrUKAghdPNs3LgRtra2iIyMxLJlyxAUFISFCxdi7ty5emXt27cPDz74IM6fP49XXnkFH374IR555BH88MMPAIDnn38egwcPBqDtIFv+qMmiRYswY8YMeHp64sMPP8RTTz2Fjz/+GI899hhKSkoAAEuXLsXo0aMBAKtXr8bmzZvx5JNPVlne2LFjdUHgftu2bcNjjz0GR0dHAMD27dtRUFCA6dOnY/ny5QgLC8Py5csxefLkSsuWlpYiLCwMrq6uWLJkCZ566ik888wzKC0txdatW/XmLS4uxldffYWnnnoKSqWyxu1/99138c0332DWrFmYN28ejh07hkmTJunNs3r1asycORNt27bF+++/j4EDB2LUqFG4fv16jWUD2v2gUCgwcOBA3f54/vnn9eYZM2YMCgoK8M4772Dq1KkAgLfffhuTJ09Gx44dERMTg1dffRWxsbF48MEH9cLkzz//jAcffBA5OTmIiorCO++8g6ysLDz66KM4ceJEjXW7e/cuBg0ahL1792LmzJn497//jV9//RWzZ8+uNK+x6xk7diwKCwsRHR2NYcOG4aOPPsK0adOM+lzGjh2L3NxcREdHY+zYsdi4cWOjnO6kFk4QtSAbNmwQAMTJkyd106ZMmSIAiHfeeUc37c6dO8LKykpIJBLx5Zdf6qZfvHhRABBRUVGVygwKChLFxcW66e+//74AIL799lvdtIKCgkp1ev7554W1tbUoLCwUQghRWloq2rVrJ3x9fcWdO3f05tVoNLrnM2bMEIZ+RW/evCnkcrl47LHHhFqt1k1fsWKFACDWr1+vmxYVFSUAiFu3btVabkhIiAgKCtKbduLECQFAfPrpp7ppVW13dHS0kEgk4urVq7pp5fti7ty5Va4rODhYb9qOHTsEAHHgwAHdtIceekg89NBDutcHDhwQAETnzp1FUVGRbvqyZcsEAHH27FkhhBBFRUXCyclJ9OnTR5SUlOjm27hxowCgV2Z1bGxsxJQpUypNL/9MJ0yYoDf9ypUrQiaTibfffltv+tmzZ4WFhYVuukajER07dhRhYWF6vwMFBQWiXbt2YvDgwTXWa+nSpQKA2LZtm25afn6+6NChg97nZ8x6yrfpiSee0FvXiy++KACIP/74w+DP5V//+pfe9NGjRwsnJ6cat4nofmxhoVbjueee0z13cHBAp06dYGNjo9fptFOnTnBwcMDly5crLT9t2jRYWlrqXk+fPh0WFhbYvXu3bpqVlZXueW5uLjIyMjBw4EAUFBTg4sWLAIDTp08jKSkJr776aqV+JIac9qnK/v37UVxcjFdffRVS6b2v9dSpU2Fvb49du3bVqdxx48YhLi4Oly5d0k3bunUrFAoFRo4cqZtWcbvz8/ORkZGBfv36QQiB06dPVyp3+vTplaZNnjwZx48f11vXli1b4O3tjYceeqjWukZEROj1bRk4cCAA6Pbl77//jszMTEydOhUWFha6+SZNmqRrKaqvF154Qe/1jh07oNFoMHbsWGRkZOge7u7u6NixIw4cOAAAOHPmDBISEjBx4kRkZmbq5svPz8egQYPwyy+/QKPRVLve3bt3w8PDA08//bRumrW1tV5LSF3XM2PGDL3XL730km6ddf1cBg4ciMzMTOTk5BhcBhEDC7UKSqUSLi4uetNUKhXatm1bKSSoVKpKfVMAoGPHjnqvbW1t4eHhgStXruim/fXXXxg9ejRUKhXs7e3h4uKCf/7znwCA7OxsANAdkP/xj3/Ue7vKlfcz6dSpk950uVyO9u3bV9kPxRBjxoyBVCrVnaoRQmD79u0YOnQo7O3tdfMlJycjPDwcbdq0ga2tLVxcXHQho3y7y1lYWKBt27aV1jVu3DgoFAps2bJFt9wPP/yASZMmGRTkfHx89F6Xh5DyfVn+GXTo0KFSffz8/Got3xDt2rXTe52QkAAhBDp27AgXFxe9x4ULF3QdoBMSEgAAU6ZMqTTf//73PxQVFVX6HCu6evUqOnToUOlzuv/3oS7ruf/33t/fH1KpVO/3vja17RsiQ1jUPgtR8yeTyYyaLir0SzFUVlYWHnroIdjb2+PNN9+Ev78/lEolTp06hTlz5tT4H7K58vT0xMCBA7Ft2za88cYbOHbsGJKTk/Hee+/p5lGr1Rg8eDBu376NOXPmICAgADY2Nrhx4wbCw8MrbbdCodBrBSrn6OiIxx9/HFu2bMHChQvx1VdfoaioSBf4atOQ+7KuKrY0AYBGo4FEIsGPP/5YZf1sbW118wHABx98gB49elRZdvm89dEQ66lLK6A57Btq/hhYiAyUkJCARx55RPc6Ly8PqampGDZsGADt1SqZmZnYsWMHHnzwQd1893fg9ff3BwCcO3cOoaGh1a7PmAODr68vACA+Ph7t27fXTS8uLkZSUlKN66nNuHHj8OKLLyI+Ph5bt26FtbU1RowYoXv/7Nmz+Pvvv7Fp0ya9Trb79u0zel2TJ0/GyJEjcfLkSWzZsgU9e/ZE165d61z3iso/o8TERL39WFpaiitXrqB79+61lmHswdrf3x9CCLRr1w4PPPBAjfMBgL29fZ32la+vL86dOwchhF4d4+Pj672ehIQEvZajxMREaDQavVapup7KJDIGTwkRGeiTTz7RXW0DaK84KS0txdChQwHc+y+y4n+NxcXFWLVqlV45vXr1Qrt27bB06VK9q0TuX9bGxgYAKs1TldDQUMjlcnz00Ud6Zaxbtw7Z2dkYPny4YRtZhaeeegoymQxffPEFtm/fjscff1xXN6Dq7RZC6C7RNsbQoUPh7OyM9957D4cOHTK4dcUQvXv3hpOTE9auXYvS0lLd9C1bthh8asLGxsag/VHuySefhEwmw+LFiyu1JgghkJmZCQAICgqCv78/lixZgry8vErlVHW5d0XDhg1DSkoKvvrqK920goKCSqMY12U95ZfXl1u+fDkA6H7vAeM/F6K6YAsLkYGKi4sxaNAgjB07FvHx8Vi1ahUGDBiAJ554AgDQr18/ODo6YsqUKXj55ZchkUiwefPmSgcqqVSK1atXY8SIEejRowciIiLg4eGBixcv4q+//sLevXsBaA8uAPDyyy8jLCwMMpkM48ePr7JuLi4umDdvHhYvXowhQ4bgiSee0NWxT58+9Trwu7q64pFHHkFMTAxyc3Mxbtw4vfcDAgLg7++PWbNm4caNG7C3t8fXX39dp/4JlpaWGD9+PFasWAGZTIYJEybUud73k8vlWLRoEV566SU8+uijGDt2LK5cuYKNGzfC39/foFaCoKAg7N+/HzExMfD09ES7du0QHBxc7fz+/v74z3/+g3nz5uHKlSsYNWoU7OzskJSUhG+++QbTpk3DrFmzIJVK8b///Q9Dhw5F165dERERAS8vL9y4cQMHDhyAvb09vv/++2rXM3XqVKxYsQKTJ09GXFwcPDw8sHnzZlhbW+vNV5f1JCUl4YknnsCQIUNw9OhRfPbZZ5g4cSICAwPr/LkQ1UnTX5hE1Hiqu6zZxsam0rwPPfSQ6Nq1a6Xpvr6+Yvjw4ZXKPHTokJg2bZpwdHQUtra2YtKkSSIzM1Nv2cOHD4v/9//+n7CyshKenp5i9uzZYu/evZUuzRVCiN9++00MHjxY2NnZCRsbG9G9e3exfPly3fulpaXipZdeEi4uLkIikRh0ifOKFStEQECAsLS0FG5ubmL69OmVLp025rLmcmvXrhUAhJ2dnbh7926l98+fPy9CQ0OFra2tcHZ2FlOnThV//PGHACA2bNigm6+6fVFR+WXTjz32WJXvV3dZ8/bt2/XmS0pKqrR+IYT46KOPhK+vr1AoFKJv377i8OHDIigoSAwZMqTmD0FoL3t/8MEHhZWVlQCgu5S3ts/066+/FgMGDBA2NjbCxsZGBAQEiBkzZoj4+Hi9+U6fPi2efPJJ4eTkJBQKhfD19RVjx44VsbGxtdbt6tWr4oknnhDW1tbC2dlZvPLKK2LPnj1V/u4Zsp7ybTp//rx4+umnhZ2dnXB0dBQzZ86s9Dtg7OdS/p1KSkqqdbuIykmEYK8nopps3LgREREROHnyJHr37m3q6rR4f/zxB3r06IFPP/0UzzzzTKOvT6PRwMXFBU8++STWrl3b6OtrLhYtWoTFixfj1q1bcHZ2NnV1iNiHhYjMy9q1a2Fra1vtCLz1UVhYWOkU3aefforbt2/XOjQ/EZkW+7AQkVn4/vvvcf78eXzyySeYOXOmXsfehnLs2DG89tprGDNmDJycnHDq1CmsW7cO//jHPzBmzJgGXx8RNRwGFiIyCy+99BLS09MxbNiwRrvPjJ+fH7y9vfHRRx/h9u3baNOmDSZPnox33323WdwBmqg1Yx8WIiIiMnvsw0JERERmj4GFiIiIzF6L6MOi0WiQkpICOzs7DhFNRETUTAghkJubC09PzyrvMVZRiwgsKSkp8Pb2NnU1iIiIqA6uXbtW5V3cK2oRgcXOzg6AdoMr3vKeiIiIzFdOTg68vb11x/GatIjAUn4ayN7enoGFiIiomTGkOwc73RIREZHZY2AhIiIis8fAQkRERGaPgYWIiIjMHgMLERERmT0GFiIiIjJ7DCxERERk9hhYiIiIyOwxsBAREZHZY2AhIiIis2d0YPnll18wYsQIeHp6QiKRYOfOnbUuc/DgQfTq1QsKhQIdOnTAxo0bK82zcuVK+Pn5QalUIjg4GCdOnDC2akRERNRCGR1Y8vPzERgYiJUrVxo0f1JSEoYPH45HHnkEZ86cwauvvornnnsOe/fu1c2zdetWREZGIioqCqdOnUJgYCDCwsJw8+ZNY6tHRERELZBECCHqvLBEgm+++QajRo2qdp45c+Zg165dOHfunG7a+PHjkZWVhT179gAAgoOD0adPH6xYsQIAoNFo4O3tjZdeeglz586tVGZRURGKiop0r8vv9pidnc2bHzZTQgjcKShBStZdpGUXIjX7LlKzC3G3RG3qqhEREQALqQT/Ht6lQcvMycmBSqUy6Pjd6HdrPnr0KEJDQ/WmhYWF4dVXXwUAFBcXIy4uDvPmzdO9L5VKERoaiqNHj1ZZZnR0NBYvXtxodaaGJYRAVkEJUrLvIjWrEKk5hUgtCyYp2eUBpRBFpRpTV5WIiKoht5A2eGAxRqMHlrS0NLi5uelNc3NzQ05ODu7evYs7d+5ArVZXOc/FixerLHPevHmIjIzUvS5vYaGmVx5GUiu0iuh+ZhUiLUf7urDEsDDibCuHh8oK7iolPFVK2Cob/VeUiIgMIJOa9jqdZnk0UCgUUCgUpq5GqyaEwDu7L+CzY8kGn7ZxtpXDXaWEh8oKHno/tc/dVAooLGSNXHMiImqOGj2wuLu7Iz09XW9aeno67O3tYWVlBZlMBplMVuU87u7ujV09qqPlPydi7a9Jutf3hxFtC4mV7qervQJKS4YRIiKqm0YPLCEhIdi9e7fetH379iEkJAQAIJfLERQUhNjYWF3nXY1Gg9jYWMycObOxq0d1sPP0DcTs+xsAsPiJrhjXx5thhIiIGpXRJ6Ty8vJw5swZnDlzBoD2suUzZ84gOTkZgLZ/yeTJk3Xzv/DCC7h8+TJmz56NixcvYtWqVdi2bRtee+013TyRkZFYu3YtNm3ahAsXLmD69OnIz89HREREPTePGtqJpNuY/dWfAIBpD7bHlH5+DCtERNTojG5h+f333/HII4/oXpd3fp0yZQo2btyI1NRUXXgBgHbt2mHXrl147bXXsGzZMrRt2xb/+9//EBYWpptn3LhxuHXrFhYuXIi0tDT06NEDe/bsqdQRl0wrKSMf0zb/jmK1BkO6umPukABTV4mIiFqJeo3DYi6MuY6b6uZOfjFGrzqMK5kFCGyrwpfTQmAlZ8sKERHVnTHHb95LiGpVVKrGtM2/40pmAbwcrLB2Sm+GFSIialIMLFQjIQRmf/UnTl65AzuFBTZE9IGrndLU1SIiolaGgYVq9N/9Cfj2TAospBKs/mcQHnCzM3WViIioFWJgoWp9HXcdH8UmAAD+M+ofGNDR2cQ1IiKi1oqBhap09FIm5u7QXr48/WF/jO/rY+IaERFRa8bAQpVcupWHFz6LQ4laYHg3D7z+WCdTV4mIiFo5BhbSk5lXhIgNJ5F9twQ9fRzw4dhASKUSU1eLiIhauWZ580NqHIUlakzbHIfk2wXwbmOFtZN7cxRbIqLWqOQukH0DyL4GZF/XPkrvAoPfNFmVGFgIAKDRCMza/gfirt6BvdICG8L7wNmWd8QmImpxhADyMyqEkft/Xgfyb1VeTqYABi0CpKY5OcPAQgCAmH1/44c/U2EhlWDNM0Ho4MrLl4kAACWFQG6q9pGTon1ILQDPHoB7d0Bha+oaUl1pNEBeGnDnKpB1VXvAlsgAhR2gsNfuW4Wd9iG3u/fc0gqQmPGp8pJCIOe+1pHsa0BW2eucG0BpYe3lWNoAqraAg7f2p6otoCkBpKb5Z5aBhbDt92tYcSARABD9ZDf0829mly8LoW2+LMote+QAxXkVXt/3KH+vOA+walP2RazwhXTwBpQO5v0HiepPCKAwWz+I5KZq/5jnlE3LTQEKMmsoRAK4dAI8ewGePbUP939oD2jmouA2cPMCcPO89uedJMDSGrBuA1g7ab8D1m3Kfjrde27lAEib+SlhIbTbn3UFyEq+F0zKf2ZdA9RFxpcrkZWFGfuyMFMh2Nz/0L1nD8itAY0aUJdoD/zqYu1zvdel2p+aknvvqYsBTWnt8xfmlLWO3DRkIwA793t/91RtAZWP/msrR7P6O8jA0sodSczAGzvOAgBmPtIBY3p7m7ZCGg2Qcx3ITAQyL2mbJWsKHUU52p9C07D1kNve90X21g819p6AzLJh12lqGrX2AF7+EBrtgddCAVgoKzwU5n8g06i1vzu6EJJSIZSUP08FSvINK89CCdh5APZegL0HUJwPpJzRlnXrovbxx+faeSUywLWLtgWmPMS4ddV+bo2pKA+4FX8vmJT/zEurY4ESbWipMtA4VhN42jT+dt6vKE8/hOj9TAaKc2teXiIF7NsCjr6AQ9nwDVX+rSl7QACiwnfFXFla6//Nuv+fMjtPwEJu6loahTc/bMUSb+Zi9KojyC0sxYhATywb16PprggquK0NJJkJZeEkEchIBG5fMqypskqSys24uv9wyv4TqviepbX2v+esa/pNpwUZBqxKqj2A1RRqlKqm/e+kvKWpMEv7h/Ru2c/qXt8/rSjH8HVJLbUHccsKIeb+UKMXdhSARcXXcm2oMOS/RmP/y1SXaD8HoTZsW5QO94JIxVBi71X22rP6/zRz07TBJeV02eNUNef+5drQUh5gPHsCLgF1C72lRUDG3/qh5OZ57cG5OiofwLWz9uHUQfsdK7gN3L1d4Wdm2fM7xv0u3M9Cqe3rILPQbrfUUrudMkv95zK59tSaTH7f+/L7lr2vnMJs/WBSYwtYGVs3wMG3LJTc99Pey/D9oNEAJQUVwkzFf6Tyqmnhzbv3j1VJgXabDdruaj6nmt6T29z7W2RmrSPVMeb4zcDSSt3KLcLoVYdx/c5dBPk6YstzwQ1/RVBJobb5OSPhXotJeUCp6Y+M1BJo0177h9Xeo0L4sL+v6fW+Jlm5TcN8QYsLtP+BZ1+rfA64/Lm6uPZyLKzK/qBItQFHItO2TEhk2tfSitPKn0srvC+7732p/vKa0sphRFNS/+23tC4LW1Ltga20SPtTU1r/spuSRArYutccROw8tM30DUUI7e9OxQCTclobAu5noQTcu5UFmLJTSs4d77VeqUu135/7W0wyL1UfxmzdyoJJF20gcu2iPWWlNPLvorpEW2ddiLk/2Ny5N60gU/v87p2Gb+k0lNKhchjRPfcxr1N0pIeBhWpUWKLG+E+O4cy1LPg6WWPH9H5wqusVQRqN9px/ZkJZIEm8F1CykgHU8Otl7wU4+QNOHbXhxKkD4NxB+9+gzIzPVmo02v+i7w8xFQOOIf/1NRaJTNuUr1Rp/5ArVRVeVzXN8d5rhX31zcTqUv0Ao/com1Zy3+vSIu2lkBVfl9zVBj6J1Mj/Mo3479zCCrBxMY/fIyG0LQG6EHNa2ypTVSuGpY02xJTkA7f+rr5/hVKlDSPl4cS1M+DSGbBxatRNqZFGAxSVtdypS6tp/aqm9czglrQS7T8m97eSKFWm226qFwYWqpZGIzDzi1PYfTYNKitL7HixH/xd6nCVgxDAT/OBk+u0B6TqKOzLgkh5KCkPKP7aPzwtVXEBkJeuPe0h1Nr/PMufa9Taz0/3XFPhedl7evOWv6/RL0sq04aP+8NIQ7U0UePRaLStJ/eHmPv71Fha32spKT+l49pF21mS+5haAGOO32bw7wc1pQ9+isfus2mwlEnw8TNBdQsrALB/EXB0hfa51BJo0+5eEHGu0GJi49I6/7DKrbWfCVFVpNKy8O4PdHtaO02j1rZOpv2pPcXp2lnbgmCiMS+IzA0DSyvy5YlkrD54CQDw3lPd8f/a17H5+OhK4PBS7fPHlwI9nzGPpnei5kwqA1wDtA8iqoRHmVbi14Rb+PfOcwCAVwZ1xJO92tatoD+3A3vf0D4fFAX0jmigGhIREVWPbY2twN/puXjxs1NQawRG9/TCq6Ed61ZQYiywc7r2efB0YMBrDVdJIiKiGjCwtHA3cwsRseEkcotK0devDd59qhskdelTciMO2PqMtrf+P54Gwt5pnX1TiIjIJBhYWrC7xWpM3fQ7bmTdRTtnG3z8TBAUFnUYayUjEdgyRnsFQ/uHgVGr2RGQiIiaFI86LdjHv1zCH9ez4WhtiQ3hfeBoU4dhmHPTgM9Ga8cV8egBjPus2Q3nTEREzR8DSwt2OFE7xPzrYQHwc67DmCeF2cBnT2kHgGvTHpj0lXZUWSIioibGwNJCFZdq8Md17Y25gtu3Mb6AkkLgi4lA+jnAxhX45w7A1qWBa0lERGQYBpYW6q+UbBSXauBobYn2xrauaNTAjueAq78Bcjvgn19zEDQiIjIpBpYWKu6q9mZrQb6Oxl0VJASw6/+AC99r78sy4XPAo3sj1ZKIiMgwDCwt1KlkbWDp5eto3IKH3gPiNgCQAE+uBdo92PCVIyIiMhIDSwskhLjXwuJjRGA5uQ44GK19PnwJ0HVUw1eOiIioDhhYWqAbWXeRnlMEC6kE3ds6GLbQ+W+1p4IA4KE5QJ/nGq1+RERExmJgaYHKW1e6etrDSm7AQHFXfgO+fg6AAILCgYfnNWr9iIiIjMXA0gKdumpE/5W0s8AXEwB1MRDwODDsQw65T0REZoeBpQWKS753hVCN7lzRDgxXlAP49AOe+h8g4w28iYjI/DCwtDD5RaW4kJoLoJbAkp8BbH4SyEsHXLsCE74ALK2aqJZERETGqVNgWblyJfz8/KBUKhEcHIwTJ05UO29JSQnefPNN+Pv7Q6lUIjAwEHv27NGbZ9GiRZBIJHqPgICAulSt1fvjWhbUGgFPlRIeqmoCSFEesOVp4PYlQOWjHRjOyqFJ60lERGQMowPL1q1bERkZiaioKJw6dQqBgYEICwvDzZs3q5x//vz5+Pjjj7F8+XKcP38eL7zwAkaPHo3Tp0/rzde1a1ekpqbqHr/99lvdtqiVi6ut/0ppMbDtGSDlNGDVBnhmB2Dv0YQ1JCIiMp7RgSUmJgZTp05FREQEunTpgjVr1sDa2hrr16+vcv7NmzfjjTfewLBhw9C+fXtMnz4dw4YNw4cffqg3n4WFBdzd3XUPZ2fnautQVFSEnJwcvQdp1dh/RaMBvn0RuPQzYGmtvZmhc8cmriEREZHxjAosxcXFiIuLQ2ho6L0CpFKEhobi6NGjVS5TVFQEpVKpN83KyqpSC0pCQgI8PT3Rvn17TJo0CcnJydXWIzo6GiqVSvfw9vY2ZjNaLI1G6K4QqhRYhAB++jdwdjsgtQDGbgbaBpmglkRERMYzKrBkZGRArVbDzc1Nb7qbmxvS0tKqXCYsLAwxMTFISEiARqPBvn37sGPHDqSmpurmCQ4OxsaNG7Fnzx6sXr0aSUlJGDhwIHJzc6ssc968ecjOztY9rl27ZsxmtFiXbuUhp7AUVpYydPaw13/z8DLg2Crt85GrgI6hlQsgIiIyU41+DeuyZcswdepUBAQEQCKRwN/fHxEREXqnkIYOHap73r17dwQHB8PX1xfbtm3Ds88+W6lMhUIBhULR2FVvdsr7rwR6q2Apq5BFT28B9kdpnz/2HyBwnAlqR0REVHdGtbA4OztDJpMhPT1db3p6ejrc3d2rXMbFxQU7d+5Efn4+rl69iosXL8LW1hbt27evdj0ODg544IEHkJiYaEz1Wr24qk4H/b0X+O4l7fN+L2kfREREzYxRgUUulyMoKAixsbG6aRqNBrGxsQgJCalxWaVSCS8vL5SWluLrr7/GyJEjq503Ly8Ply5dgocHr14xRqUOtymngW1TAKEGuo8HQt80Ye2IiIjqzuirhCIjI7F27Vps2rQJFy5cwPTp05Gfn4+IiAgAwOTJkzFv3r170Rw/fhw7duzA5cuX8euvv2LIkCHQaDSYPXu2bp5Zs2bh0KFDuHLlCo4cOYLRo0dDJpNhwoQJDbCJrcPt/GJcvpUPAOjpXRZYflsKlN4F/AcBI1cAUo4TSEREzZPRfVjGjRuHW7duYeHChUhLS0OPHj2wZ88eXUfc5ORkSCscGAsLCzF//nxcvnwZtra2GDZsGDZv3gwHBwfdPNevX8eECROQmZkJFxcXDBgwAMeOHYOLi0v9t7CVOF3WuuLvYgNHGzlQWgQk7te++ci/AZmlCWtHRERUPxIhhDB1JeorJycHKpUK2dnZsLe3r32BFuj9PRex6uAljO3dFu8/HQgk7Ae2PAXYugORF9i6QkREZseY4zePYi1EpQ638bu0PzsNZVghIqJmj0eyFqBErcEf17MAlAUWjQaI/1H7ZsBw01WMiIiogTCwtAAXUnNQWKKBysoS7Z1ttVcH5aYCclug3YOmrh4REVG9MbC0AL9fKbvhoY8DpFLJvdNBHUIBCw6wR0REzR8DSwtQafyVi7u1P3k6iIiIWggGlhag/IaHvXwdgduXgVsXAIkM6DjYxDUjIiJqGAwszVxK1l2kZhdCJpWgh7fDvdYVv/6AlWONyxIRETUXDCzNXPnlzF087GEttwDiywJLJ54OIiKiloOBpZnTG38lPxNIPqp9I2CYCWtFRETUsBhYmrlTyRX6ryTsBYQGcOsGOPiYuGZEREQNh4GlGSsoLsVfKTkAylpYLpZdzszWFSIiamEYWJqxP69nQ60RcLdXwtNaAJd+1r7RiYGFiIhaFgaWZqxi/xVJ0iGgpACwbwt4BJq4ZkRERA2LgaUZ0xt/peLpIInEhLUiIiJqeAwszZQQ4t4It972wN97tG/wdBAREbVADCzN1OWMfGQVlEBhIUVXzd9A/i1AoQL8Bpi6akRERA2OgaWZKu+/EtjWAZaJP2ondhwMyCxNWCsiIqLGwcDSTMVdqdh/pfxmhzwdRERELRMDSzNV3n/lQcc7QGYCILUEOvBmh0RE1DIxsDRDWQXFSLyZBwDoUXBEO7HdQEBpb8JaERERNR4GlmbodHIWAKC9sw2sk/ZqJ/LqICIiasEYWJqh8g63D3oJ4NoJ7UQGFiIiasEYWJqh8sAyVH4GgAA8ewIqL5PWiYiIqDExsDQzpWoNzlzLAgB0zflNO7HTcNNViIiIqAkwsDQzF9NycbdEDVdlKWxulAUWXs5MREQtHANLM1N+OuifzpcgKS0EHHwB1y4mrhUREVHjYmBpZsoDS6g0TjshYDhvdkhERC0eA0szE3f1DmRQo2P2Ye0EXh1EREStAANLM5KWXYgbWXfRW/o3LIvuAFaOgE+IqatFRETU6BhYmpFTZcPxj7M7q53QMQyQWZiwRkRERE2DgaUZ+f3KHQACD4uyweICeDkzERG1DgwszUhc8h08ILmONsUpgEwB+D9q6ioRERE1CQaWZqKwRI2/bmRjcPnVQe0fBhS2Jq0TERFRU2FgaSb+vJ6NUo3AMPkp7QQOFkdERK1InQLLypUr4efnB6VSieDgYJw4caLaeUtKSvDmm2/C398fSqUSgYGB2LNnT73KbI3irt6BK+6gq0gEIAEeGGrqKhERETUZowPL1q1bERkZiaioKJw6dQqBgYEICwvDzZs3q5x//vz5+Pjjj7F8+XKcP38eL7zwAkaPHo3Tp0/XuczWKO7qHQyWlZ0OatsbsHMzbYWIiIiakEQIIYxZIDg4GH369MGKFSsAABqNBt7e3njppZcwd+7cSvN7enri3//+N2bMmKGb9tRTT8HKygqfffZZncq8X05ODlQqFbKzs2Fvb2/M5jQLQggE/Wc/YorfwsOyP4BBUcDASFNXi4iIqF6MOX4b1cJSXFyMuLg4hIaG3itAKkVoaCiOHj1a5TJFRUVQKpV606ysrPDbb7/Vq8ycnBy9R0t2JbMARfnZ6Cf9SzuBlzMTEVErY1RgycjIgFqthpub/ukINzc3pKWlVblMWFgYYmJikJCQAI1Gg3379mHHjh1ITU2tc5nR0dFQqVS6h7e3tzGb0ezEXb2Dh6R/QC4pBdr4A84PmLpKRERETarRrxJatmwZOnbsiICAAMjlcsycORMRERGQSuu+6nnz5iE7O1v3uHbtWgPW2PzEXb2Dx2S/a1/wZodERNQKGZUanJ2dIZPJkJ6erjc9PT0d7u7uVS7j4uKCnTt3Ij8/H1evXsXFixdha2uL9u3b17lMhUIBe3t7vUdL9seVW3hEekb7gqeDiIioFTIqsMjlcgQFBSE2NlY3TaPRIDY2FiEhNd+ET6lUwsvLC6Wlpfj6668xcuTIepfZGmTfLYFjxkmoJAXQWDkDbfuYukpERERNzug750VGRmLKlCno3bs3+vbti6VLlyI/Px8REREAgMmTJ8PLywvR0dEAgOPHj+PGjRvo0aMHbty4gUWLFkGj0WD27NkGl9manbmWhdCy0W2lAUMAqczENSIiImp6RgeWcePG4datW1i4cCHS0tLQo0cP7NmzR9dpNjk5Wa9/SmFhIebPn4/Lly/D1tYWw4YNw+bNm+Hg4GBwma1Z3JXbGFs+/konng4iIqLWyehxWMxRSx6H5Y1VW/DOzRdRKlXCYm4SILc2dZWIiIgaRKONw0JNq1StgWfazwCAuz4PMqwQEVGrxcBixuLTc/EwtJcz23R/wsS1ISIiMh0GFjN28eJ5/EN6BRpIIe3Emx0SEVHrxcBizi7uBgCk2AcCNs4mrgwREZHpMLCYMd+MgwCA4g5hpq0IERGRiTGwmKlbN9MRqNbe7NC1z5Mmrg0REZFpMbCYqZTfv4WlRI2rUm/YenQydXWIiIhMioHFTFkm7AEAJDk/bNqKEBERmQEGFnNUWgS/rCMAANFpmIkrQ0REZHoMLGaoOPEQrMVdpAsHtA8caOrqEBERmRwDixnKOvMtAOCwtA98nGxNXBsiIiLTY2AxNxoNrJN+AgDccHsEEonExBUiIiIyPQYWc5N6GrZFN5EnlLDu9Iipa0NERGQWGFjMjCgb3faQpjt6tHc3cW2IiIjMAwOLmSk5/wMA4IDog66eKhPXhoiIyDwwsJiT20mQZ15EqZDipvuDUFrKTF0jIiIis8DAYk7itaeDTmgC0Kmdj4krQ0REZD4YWMxJWf+VfZogBPk6mrgyRERE5oOBxVwU3IZI1o5uu0/TG718GFiIiIjKMbCYi7/3QiI0uKDxgcTRB672SlPXiIiIyGwwsJiL+F0AgJ80QQhi6woREZEeBhZzUHIXSIwFAPyk7s3+K0RERPdhYDEHlw8BJQVIFU74S/ihFwMLERGRHgYWc1B+OkjdCzZyCwS425u4QkREROaFgcXUNBogfg8A7dVBPX0cIZPyhodEREQVMbCY2o3fgfybuCu1wXFNZ54OIiIiqgIDi6ld1J4OOiLphRJYsMMtERFRFRhYTK1sOP6ddwMhkQA9vB1MWx8iIiIzxMBiShmJQMbf0EgscVDTAw+42kFlZWnqWhEREZkdBhZTSjkNALhh0wW5sGb/FSIiomowsJjSnSsAgIRSVwBg/xUiIqJqMLCYUllg+SNfG1QYWIiIiKrGwGJKWVcBAElqF7SxkcPPydrEFSIiIjJPDCymVNbCck24opePIyQSDhhHRERUlToFlpUrV8LPzw9KpRLBwcE4ceJEjfMvXboUnTp1gpWVFby9vfHaa6+hsLBQ9/6iRYsgkUj0HgEBAXWpWvNRWgxkXwcAJAtXng4iIiKqgYWxC2zduhWRkZFYs2YNgoODsXTpUoSFhSE+Ph6urq6V5v/8888xd+5crF+/Hv369cPff/+N8PBwSCQSxMTE6Obr2rUr9u/ff69iFkZXrXnJvgZAoABKZMKegYWIiKgGRrewxMTEYOrUqYiIiECXLl2wZs0aWFtbY/369VXOf+TIEfTv3x8TJ06En58fHnvsMUyYMKFSq4yFhQXc3d11D2dn57ptUXNxJwkAcFXjAkuZFN3bqkxcISIiIvNlVGApLi5GXFwcQkND7xUglSI0NBRHjx6tcpl+/fohLi5OF1AuX76M3bt3Y9iwYXrzJSQkwNPTE+3bt8ekSZOQnJxcbT2KioqQk5Oj92h2KvRfCXC3h9JSZtr6EBERmTGjzrtkZGRArVbDzc1Nb7qbmxsuXrxY5TITJ05ERkYGBgwYACEESktL8cILL+CNN97QzRMcHIyNGzeiU6dOSE1NxeLFizFw4ECcO3cOdnZ2lcqMjo7G4sWLjam6+SkLLMnCFT68OoiIiKhGjX6V0MGDB/HOO+9g1apVOHXqFHbs2IFdu3bhrbfe0s0zdOhQjBkzBt27d0dYWBh2796NrKwsbNu2rcoy582bh+zsbN3j2rVrjb0ZDa9CYPFysDJtXYiIiMycUS0szs7OkMlkSE9P15uenp4Od3f3KpdZsGABnnnmGTz33HMAgG7duiE/Px/Tpk3Dv//9b0illTOTg4MDHnjgASQmJlZZpkKhgEKhMKbq5qdCYHlYpTRtXYiIiMycUS0scrkcQUFBiI2N1U3TaDSIjY1FSEhIlcsUFBRUCiUymba/hhCiymXy8vJw6dIleHh4GFO95kMI4I520LhrwhWebGEhIiKqkdHXDkdGRmLKlCno3bs3+vbti6VLlyI/Px8REREAgMmTJ8PLywvR0dEAgBEjRiAmJgY9e/ZEcHAwEhMTsWDBAowYMUIXXGbNmoURI0bA19cXKSkpiIqKgkwmw4QJExpwU83I3TtAkbaj8HXhwsBCRERUC6MDy7hx43Dr1i0sXLgQaWlp6NGjB/bs2aPriJucnKzXojJ//nxIJBLMnz8fN27cgIuLC0aMGIG3335bN8/169cxYcIEZGZmwsXFBQMGDMCxY8fg4uLSAJtohsouaU4TjiiCHG0dGViIiIhqIhHVnZdpRnJycqBSqZCdnQ17e3tTV6d2574GvvoXTmg6IRxv4q/FYRyWn4iIWh1jjt+8l5ApVBiDxdPBimGFiIioFgwsplB+hZCGHW6JiIgMwcBiCmVXCHEMFiIiIsMwsJiC3qBxHIOFiIioNgwsTU1dAmRfB6ANLDwlREREVDsGlqaWfR0QahRBjltwYGAhIiIyAANLU6twOgiQsA8LERGRARhYmlpZYLmqcYFEArjzPkJERES1YmBpahXGYHGzU8JSxl1ARERUGx4tm1qFU0KevEKIiIjIIAwsTU0vsLD/ChERkSEYWJpahVNC7HBLRERkGAaWpnT3DlCYBQC4Jlzgxbs0ExERGYSBpSmVDcl/R+KAu1DCU8XAQkREZAgGlqakNwYL2IeFiIjIQAwsTakssFxWuwAA+7AQEREZiIGlKVVoYbGRy2BvZWHa+hARETUTDCxNKUvbh+WacIWXoxUkEomJK0RERNQ8MLA0pfIWFg3HYCEiIjIGA0tT0aiBrGQAHDSOiIjIWAwsTSXnBqApRanEEulwZIdbIiIiIzCwNJWy00HpMjcISHkfISIiIiMwsDSVCkPyA4CXg7UJK0NERNS8MLA0lbLAkljsDABsYSEiIjICA0tTKQssSRoXSCWAmz0DCxERkaEYWJpKWWC5LlzhZq+EpYwfPRERkaF41GwqFUa55RVCRERExmFgaQqFOUBBJgDgmnDhGCxERERGYmBpCmVD8udbOCAP1gwsRERERmJgaQplp4NuytwBAF68QoiIiMgoDCxNoUL/FQBsYSEiIjISA0tTKAssCcVOAAAvRwYWIiIiYzCwNIWywPJ3SfmgcQwsRERExmBgaQp3tJ1urwlX2CksYK+0NHGFiIiImpc6BZaVK1fCz88PSqUSwcHBOHHiRI3zL126FJ06dYKVlRW8vb3x2muvobCwsF5lNhsaje4qoWSNK1tXiIiI6sDowLJ161ZERkYiKioKp06dQmBgIMLCwnDz5s0q5//8888xd+5cREVF4cKFC1i3bh22bt2KN954o85lNiu5qYC6GBqJBVLhxHsIERER1YHRgSUmJgZTp05FREQEunTpgjVr1sDa2hrr16+vcv4jR46gf//+mDhxIvz8/PDYY49hwoQJei0oxpbZrJT1X8lWeEADKTvcEhER1YFRgaW4uBhxcXEIDQ29V4BUitDQUBw9erTKZfr164e4uDhdQLl8+TJ2796NYcOG1bnMoqIi5OTk6D3MVllgSS8bg4WnhIiIiIxnYczMGRkZUKvVcHNz05vu5uaGixcvVrnMxIkTkZGRgQEDBkAIgdLSUrzwwgu6U0J1KTM6OhqLFy82puqmUxZYrpWNwcL7CBERERmv0a8SOnjwIN555x2sWrUKp06dwo4dO7Br1y689dZbdS5z3rx5yM7O1j2uXbvWgDVuYGWBJbFEOwYLW1iIiIiMZ1QLi7OzM2QyGdLT0/Wmp6enw93dvcplFixYgGeeeQbPPfccAKBbt27Iz8/HtGnT8O9//7tOZSoUCigUCmOqbjplgeX83TYAGFiIiIjqwqgWFrlcjqCgIMTGxuqmaTQaxMbGIiQkpMplCgoKIJXqr0YmkwEAhBB1KrNZKQssl9UukEklcLNrJkGLiIjIjBjVwgIAkZGRmDJlCnr37o2+ffti6dKlyM/PR0REBABg8uTJ8PLyQnR0NABgxIgRiImJQc+ePREcHIzExEQsWLAAI0aM0AWX2spstorzgXztpdnXhCvcVUpYyDhWHxERkbGMDizjxo3DrVu3sHDhQqSlpaFHjx7Ys2ePrtNscnKyXovK/PnzIZFIMH/+fNy4cQMuLi4YMWIE3n77bYPLbLbKRrgttlQhp9AGnTgGCxERUZ1IhBDC1JWor5ycHKhUKmRnZ8Pe3t7U1bnn4m7gywm4ZdcZfW4twMgenlg2vqepa0VERGQWjDl+8/xEY9KNweIBgB1uiYiI6oqBpTFxDBYiIqIGwcDSmMoCS0KJMwAGFiIiorpiYGlMZXdp/uuuIwCeEiIiIqorBpbGIsS9QeMKyweN41VCREREdcHA0ljy0oHSQgiJDKnCCXZKC9gpLU1dKyIiomaJgaWxlLWuFFp7oBQW7L9CRERUDwwsjaUssGQrvQCwwy0REVF9MLA0lrLAclOmvYEjO9wSERHVHQNLYykLLMllY7AwsBAREdUdA0tjuX8MFkcGFiIiorpiYGksZYGlfAwWL17STEREVGcMLI2h5C6QmwoAOJPrAICnhIiIiOqDgaUxZCUDADRyO2RobCCTSuBqxxYWIiKiumJgaQzlY7DYegOQwN1eCZlUYtIqERERNWcMLI2hLLBklY/Bwg63RERE9cLA0hjuG4OFg8YRERHVDwNLYygLLNeEGwDe9JCIiKi+GFgaQ1lgSSxxAsArhIiIiOqLgaWhCQHcuQoAOFvQBgADCxERUX0xsDS0/AygJB+ABGdy7QAAbRlYiIiI6oWBpaGVnQ7S2HvhdqF2kgcDCxERUb0wsDQ03RgsbQEAKitL2CosTFghIiKi5o+BpaGVBZZshXYMFvZfISIiqj8GloZWFljSLTwA8KaHREREDYGBpaHpxmBxBcBB44iIiBoCA0tD4xgsREREDY6BpSGVFgE5NwAAfxUwsBARETUUBpaGlHUNgAAsbXAhRw6AgYWIiKghMLA0pLLTQcLRF2m5RQDYh4WIiKghMLA0pDtJAIBCWx+oNQKWMglc7RQmrhQREVHzx8DSkMrHYFFqx2BxVykhlUpMWCEiIqKWgYGlIZUFlpsW7gAATxVPBxERETUEBpaGVHaX5mSOwUJERNSg6hRYVq5cCT8/PyiVSgQHB+PEiRPVzvvwww9DIpFUegwfPlw3T3h4eKX3hwwZUpeqmY4QQJY2sCSWOAMAvBwZWIiIiBqC0Xfl27p1KyIjI7FmzRoEBwdj6dKlCAsLQ3x8PFxdXSvNv2PHDhQXF+teZ2ZmIjAwEGPGjNGbb8iQIdiwYYPutULRzDqr3r0DFOUAAM4XOALI4iXNREREDcToFpaYmBhMnToVERER6NKlC9asWQNra2usX7++yvnbtGkDd3d33WPfvn2wtrauFFgUCoXefI6OjnXbIlMpu0IIdp5IzlED4BgsREREDcWowFJcXIy4uDiEhobeK0AqRWhoKI4ePWpQGevWrcP48eNhY2OjN/3gwYNwdXVFp06dMH36dGRmZlZbRlFREXJycvQeJlfW4RaOvriRdRcAb3xIRETUUIwKLBkZGVCr1XBzc9Ob7ubmhrS0tFqXP3HiBM6dO4fnnntOb/qQIUPw6aefIjY2Fu+99x4OHTqEoUOHQq1WV1lOdHQ0VCqV7uHt7W3MZjSOssBSbO+D3MJSAGxhISIiaihG92Gpj3Xr1qFbt27o27ev3vTx48frnnfr1g3du3eHv78/Dh48iEGDBlUqZ968eYiMjNS9zsnJMX1ouW8MFkdrS1jLm/TjJSIiarGMamFxdnaGTCZDenq63vT09HS4u7vXuGx+fj6+/PJLPPvss7Wup3379nB2dkZiYmKV7ysUCtjb2+s9TK4ssNySlY3BwtYVIiKiBmNUYJHL5QgKCkJsbKxumkajQWxsLEJCQmpcdvv27SgqKsI///nPWtdz/fp1ZGZmwsPDw5jqmVZZYEmG9nQZAwsREVHDMfoqocjISKxduxabNm3ChQsXMH36dOTn5yMiIgIAMHnyZMybN6/ScuvWrcOoUaPg5OSkNz0vLw+vv/46jh07hitXriA2NhYjR45Ehw4dEBYWVsfNamLqEiD7OgAgobhsDBYGFiIiogZjdCeLcePG4datW1i4cCHS0tLQo0cP7NmzR9cRNzk5GVKpfg6Kj4/Hb7/9hp9++qlSeTKZDH/++Sc2bdqErKwseHp64rHHHsNbb73VfMZiyb4GCA1goURCvjWAbHjyCiEiIqIGIxFCCFNXor5ycnKgUqmQnZ1tmv4sl34GNo8GXALwtPS/+P3qHayc2AvDuzejU1pERERNzJjjN+8l1BB0Y7D4IaVsDBa2sBARETUcBpaGUBZYNA6+SMspBMA+LERERA2JgaUhlAWWHKUXNAKwlEngbNtM+t8QERE1AwwsDaEssNy00PZZ8VBZQSqVmLBCRERELQsDS0MoCyzXhPZu1TwdRERE1LAYWOrr7h2gMBsAkFiiHWOGg8YRERE1LAaW+rpzVfvTxhXJudqnvEszERFRw2Jgqa8KlzTf0F3SzBYWIiKihsTAUl9VjsHCwEJERNSQGFjqqyywCEdf3LijDSxejgwsREREDYmBpb7KAstdWx/kF6sBAJ4qBhYiIqKGxMBSX+VjsMjcAQBtbOSwkstMWCEiIqKWh4GlPtSl2js1A7gmtHer5j2EiIiIGh4DS33k3AA0pYBMjqRiOwA8HURERNQYGFjqo/wKIQdf3MguAsAOt0RERI2BgaU+9C5p5l2aiYiIGgsDS31wDBYiIqImwcBSHxVHub3DwEJERNRYGFjqoyywlKp8kZ7LU0JERESNhYGlPsoCS4alB4QA5BZSONnITVsnIiKiFoiBpa4Kc4C7twEA14QLAMBTpYRUKjFlrYiIiFokBpa6yrqq/WnthGv52pFt2X+FiIiocTCw1BWvECIiImoyDCx1VfEKIY7BQkRE1KgYWOqqihYWBhYiIqLGwcBSVzwlRERE1GQYWOqqLLAIB1/c0AUW3qmZiIioMTCw1IVGDWQlAwByrNqioFgNgC0sREREjYWBpS5yUwF1MSC1wHW1IwDA2VYOpaXMxBUjIiJqmRhY6qK8/4qDD1JySgCwdYWIiKgxMbDURVUdblUMLERERI2FgaUu9MZg4RVCREREjY2BpS6qDCy8QoiIiKixMLDURRWnhNo6soWFiIiosdQpsKxcuRJ+fn5QKpUIDg7GiRMnqp334YcfhkQiqfQYPny4bh4hBBYuXAgPDw9YWVkhNDQUCQkJdala09B1uvXloHFERERNwOjAsnXrVkRGRiIqKgqnTp1CYGAgwsLCcPPmzSrn37FjB1JTU3WPc+fOQSaTYcyYMbp53n//fXz00UdYs2YNjh8/DhsbG4SFhaGwsLDuW9ZYivKA/FsAgGJ7X9zMLQLAwEJERNSYjA4sMTExmDp1KiIiItClSxesWbMG1tbWWL9+fZXzt2nTBu7u7rrHvn37YG1trQssQggsXboU8+fPx8iRI9G9e3d8+umnSElJwc6dO+u1cY2ibMA4KB2QVqSAEIDcQgonG7lp60VERNSCGRVYiouLERcXh9DQ0HsFSKUIDQ3F0aNHDSpj3bp1GD9+PGxsbAAASUlJSEtL0ytTpVIhODi42jKLioqQk5Oj92gyVXS49XKwgkQiabo6EBERtTJGBZaMjAyo1Wq4ubnpTXdzc0NaWlqty584cQLnzp3Dc889p5tWvpwxZUZHR0OlUuke3t7exmxG/fAuzURERE2uSa8SWrduHbp164a+ffvWq5x58+YhOztb97h27VoD1dAAVd6lmZc0ExERNSajAouzszNkMhnS09P1pqenp8Pd3b3GZfPz8/Hll1/i2Wef1ZtevpwxZSoUCtjb2+s9mgwHjSMiImpyRgUWuVyOoKAgxMbG6qZpNBrExsYiJCSkxmW3b9+OoqIi/POf/9Sb3q5dO7i7u+uVmZOTg+PHj9dapkkwsBARETU5C2MXiIyMxJQpU9C7d2/07dsXS5cuRX5+PiIiIgAAkydPhpeXF6Kjo/WWW7duHUaNGgUnJye96RKJBK+++ir+85//oGPHjmjXrh0WLFgAT09PjBo1qu5b1hg0GiDrqva5ox9Syp63ZWAhIiJqVEYHlnHjxuHWrVtYuHAh0tLS0KNHD+zZs0fXaTY5ORlSqX7DTXx8PH777Tf89NNPVZY5e/Zs5OfnY9q0acjKysKAAQOwZ88eKJVm1jckLx0oLQQkMgh7L6RkxQNgCwsREVFjkwghhKkrUV85OTlQqVTIzs5u3P4sV48CG4YADr64M/V39HxrHwDg4ltDoLSUNd56iYiIWiBjjt+8l5Axqui/4myrYFghIiJqZAwsxqhy0DgzO21FRETUAjGwGKOqQeN4l2YiIqJGx8BiDF1gqXCXZhUDCxERUWNjYDGGXguL9k7SvEKIiIio8TGwGKrkLpBXdm8jx3a4zkHjiIiImgwDi6GykrU/FfaAlSNvfEhERNSEGFgMVaH/SpFag1u5RQDY6ZaIiKgpMLAYqkL/lbRsbf8VpaUUjtaWpqsTERFRK8HAYqhqbnookUhMVyciIqJWgoHFUBUDyx32XyEiImpKDCyGquqSZo7BQkRE1CQYWAwhRIXA0o6j3BIRETUxBhZD5N8CSgoASACVN1KyOQYLERFRU2JgMUR564qqLWAhr9Dpljc+JCIiagoMLIao0H9FCMFB44iIiJoYA4shKgwadzu/GIUlGgCAu4otLERERE2BgcUQ5YHF4d4VQq52CigsZKarExERUSvCwGKIagaNIyIioqbBwGKIKgIL+68QERE1HQaW2pQWATkp2ueOfroOt7xCiIiIqOlYmLoCZi/rGgABWNoANs5IyUoGwFNCRNTyqdVqlJSUmLoa1MxZWlpCJqt/n08GltpUOB0EiYSXNBNRiyeEQFpaGrKyskxdFWohHBwc4O7uXq8bBjOw1OZOkvanox8A4Eb5fYQYWIiohSoPK66urrC2tuZd6anOhBAoKCjAzZs3AQAeHh51LouBpTYVWlgKS9TIyCsCwBYWImqZ1Gq1Lqw4OTmZujrUAlhZaY+XN2/ehKura51PD7HTbW0qBJbUbG3ripWlDA7WlqarExFRIynvs2JtbW3imlBLUv77VJ8+UQwstblzVfuzwhVCXo5WbCIlohaNf+OoITXE7xMDS02E4KBxREREZoCBpSYFt4HiXO1zB58KVwhxDBYiopbMz88PS5cuNXj+gwcPQiKRNPqVVRs3boSDg0OjrsNcsdNtTZQqYMYJIPs6YKnEjTtlLSwqtrAQEZmThx9+GD169DAqZNTk5MmTsLGxMXj+fv36ITU1FSqVqkHWT5UxsNREZgG4dNI+AKRk85QQEVFzJYSAWq2GhUXthz4XFxejypbL5XB3d69r1cgAPCVkhPI7NXs5MrAQEZmL8PBwHDp0CMuWLYNEIoFEIsGVK1d0p2l+/PFHBAUFQaFQ4LfffsOlS5cwcuRIuLm5wdbWFn369MH+/fv1yrz/lJBEIsH//vc/jB49GtbW1ujYsSO+++473fv3nxIqP3Wzd+9edO7cGba2thgyZAhSU1N1y5SWluLll1+Gg4MDnJycMGfOHEyZMgWjRo0yavtXr14Nf39/yOVydOrUCZs3b9a9J4TAokWL4OPjA4VCAU9PT7z88su691etWoWOHTtCqVTCzc0NTz/9tFHrbkoMLAYSQvDGh0TU6gghUFBcapKHEMKgOi5btgwhISGYOnUqUlNTkZqaCm9vb937c+fOxbvvvosLFy6ge/fuyMvLw7BhwxAbG4vTp09jyJAhGDFiBJKTk2tcz+LFizF27Fj8+eefGDZsGCZNmoTbt29XO39BQQGWLFmCzZs345dffkFycjJmzZqle/+9997Dli1bsGHDBhw+fBg5OTnYuXOnQdtc7ptvvsErr7yC//u//8O5c+fw/PPPIyIiAgcOHAAAfP311/jvf/+Ljz/+GAkJCdi5cye6desGAPj999/x8ssv480330R8fDz27NmDBx980Kj1NyWeEjJQZn4xiks1kEgAN3t2uiWi1uFuiRpdFu41ybrPvxkGa3nthymVSgW5XA5ra+sqT8u8+eabGDx4sO51mzZtEBgYqHv91ltv4ZtvvsF3332HmTNnVrue8PBwTJgwAQDwzjvv4KOPPsKJEycwZMiQKucvKSnBmjVr4O/vDwCYOXMm3nzzTd37y5cvx7x58zB69GgAwIoVK7B79+5at7eiJUuWIDw8HC+++CIAIDIyEseOHcOSJUvwyCOPIDk5Ge7u7ggNDYWlpSV8fHzQt29fAEBycjJsbGzw+OOPw87ODr6+vujZs6dR629KdWphWblyJfz8/KBUKhEcHIwTJ07UOH9WVhZmzJgBDw8PKBQKPPDAA3o7ZdGiRbpmvPJHQEBAXarWaMo73LraKSC3YMMUEVFz0bt3b73XeXl5mDVrFjp37gwHBwfY2triwoULtbawdO/eXffcxsYG9vb2uiHnq2Jtba0LK4B2WPry+bOzs5Genq4LDwAgk8kQFBRk1LZduHAB/fv315vWv39/XLhwAQAwZswY3L17F+3bt8fUqVPxzTffoLS0FAAwePBg+Pr6on379njmmWewZcsWFBQUGLX+pmR0C8vWrVsRGRmJNWvWIDg4GEuXLkVYWBji4+Ph6upaaf7i4mIMHjwYrq6u+Oqrr+Dl5YWrV69Wuiyra9eueucQDekU1ZRSOAYLEbVCVpYynH8zzGTrbgj3X+0za9Ys7Nu3D0uWLEGHDh1gZWWFp59+GsXFxTWWY2mpP8K5RCKBRqMxan5DT3M1FG9vb8THx2P//v3Yt28fXnzxRXzwwQc4dOgQ7OzscOrUKRw8eBA//fQTFi5ciEWLFuHkyZNmeem00akgJiYGU6dORUREBABgzZo12LVrF9avX4+5c+dWmn/9+vW4ffs2jhw5ott5fn5+lStiYWHWPazZf4WIWiOJRGLQaRlTk8vlUKvVBs17+PBhhIeH607F5OXl4cqVK41Yu8pUKhXc3Nxw8uRJXb8RtVqNU6dOoUePHgaX07lzZxw+fBhTpkzRTTt8+DC6dOmie21lZYURI0ZgxIgRmDFjBgICAnD27Fn06tULFhYWCA0NRWhoKKKiouDg4ICff/4ZTz75ZINta0Mx6rewuLgYcXFxmDdvnm6aVCpFaGgojh49WuUy3333HUJCQjBjxgx8++23cHFxwcSJEzFnzhy9GyAlJCTA09MTSqUSISEhiI6Oho+PT5VlFhUVoaioSPc6JyfHmM2oE90VQgwsRERmx8/PD8ePH8eVK1dga2uLNm3aVDtvx44dsWPHDowYMQISiQQLFiyosaWksbz00kuIjo5Ghw4dEBAQgOXLl+POnTtGDWP/+uuvY+zYsejZsydCQ0Px/fffY8eOHbozFhs3boRarUZwcDCsra3x2WefwcrKCr6+vvjhhx9w+fJlPPjgg3B0dMTu3buh0WjQqVOnxtrkejGqM0ZGRgbUajXc3Nz0pru5uSEtLa3KZS5fvoyvvvoKarUau3fvxoIFC/Dhhx/iP//5j26e4OBgbNy4EXv27MHq1auRlJSEgQMHIjc3t8oyo6OjoVKpdI+KvcEby40s7Xk9nhIiIjI/s2bNgkwmQ5cuXeDi4lJjf5SYmBg4OjqiX79+GDFiBMLCwtCrV68mrK3WnDlzMGHCBEyePBkhISGwtbVFWFgYlErDL+wYNWoUli1bhiVLlqBr1674+OOPsWHDBjz88MMAAAcHB6xduxb9+/dH9+7dsX//fnz//fdwcnKCg4MDduzYgUcffRSdO3fGmjVr8MUXX6Br166NtMX1IxFGnFBLSUmBl5cXjhw5gpCQEN302bNn49ChQzh+/HilZR544AEUFhYiKSlJ16ISExODDz74QO969IqysrLg6+uLmJgYPPvss5Xer6qFxdvbG9nZ2bC3tzd0c4wyYvlvOHsjG2sn98bgLm61L0BE1AyV/71u166dUQdOqj+NRoPOnTtj7NixeOutt0xdnQZV3e9VTk4OVCqVQcdvo04JOTs7QyaTIT09XW96enp6tf1PPDw8YGlpqXf6p3PnzkhLS0NxcTHkcnmlZRwcHPDAAw8gMTGxyjIVCgUUCoUxVa+3e51u+QUmIqL6u3r1Kn766Sc89NBDKCoqwooVK5CUlISJEyeaumpmyahTQnK5HEFBQYiNjdVN02g0iI2N1Wtxqah///5ITEzUOz/4999/w8PDo8qwAmg7QF26dAkeHh7GVK/RFJaokZmv7T3e1sHaxLUhIqKWQCqVYuPGjejTpw/69++Ps2fPYv/+/ejcubOpq2aWjB5QJDIyEmvXrsWmTZtw4cIFTJ8+Hfn5+bqrhiZPnqzXKXf69Om4ffs2XnnlFfz999/YtWsX3nnnHcyYMUM3z6xZs3Do0CFcuXIFR44cwejRoyGTyXQD9JhaeeuKjVwGeyvz7y1PRETmz9vbG4cPH0Z2djZycnJw5MgRsx5p1tSMPvqOGzcOt27dwsKFC5GWloYePXpgz549uo64ycnJkErv5SBvb2/s3bsXr732Grp37w4vLy+88sormDNnjm6e69evY8KECcjMzISLiwsGDBiAY8eOGX3zqcZyo8IYLMb03iYiIqKGUafmgpkzZ1Y7fPHBgwcrTQsJCcGxY8eqLe/LL7+sSzWaDAeNIyIiMi2OMW+AG2VjsDCwEBERmQYDiwHKW1jaOjKwEBERmQIDiwF4STMREZFpMbAYQNfpVsUWFiIiIlNgYKmFRiOQyj4sREQtnp+fH5YuXap7LZFIsHPnzmrnv3LlCiQSCc6cOVOv9TZUObUJDw/HqFGjGnUdjYmDitQiI78IxWoNpBLAXcVTQkRErUVqaiocHR0btMzw8HBkZWXpBSFvb2+kpqbC2dm5QdfV0jCw1KL8Ls1u9kpYytggRUTUWlR3y5mGJpPJmmxdzRmPwLXgGCxERObtk08+gaenp94tYABg5MiR+Ne//gUAuHTpEkaOHAk3NzfY2tqiT58+2L9/f43l3n9K6MSJE+jZsyeUSiV69+6N06dP682vVqvx7LPPol27drCyskKnTp2wbNky3fuLFi3Cpk2b8O2330IikUAikeDgwYNVnhI6dOgQ+vbtC4VCAQ8PD8ydOxelpaW69x9++GG8/PLLmD17Ntq0aQN3d3csWrTIqM+tqKgIL7/8MlxdXaFUKjFgwACcPHlS9/6dO3cwadIkuLi4wMrKCh07dsSGDRsAAMXFxZg5cyY8PDygVCrh6+uL6Ohoo9ZvLLaw1OLGHQYWImrFhABKCkyzbktrwIDRxceMGYOXXnoJBw4cwKBBgwAAt2/fxp49e7B7924A2nvUDRs2DG+//TYUCgU+/fRTjBgxAvHx8fDx8al1HXl5eXj88ccxePBgfPbZZ0hKSsIrr7yiN49Go0Hbtm2xfft2ODk54ciRI5g2bRo8PDwwduxYzJo1CxcuXEBOTo7uwN+mTRukpKTolXPjxg0MGzYM4eHh+PTTT3Hx4kVMnToVSqVSL5Rs2rQJkZGROH78OI4ePYrw8HD0798fgwcPrnV7AGD27Nn4+uuvsWnTJvj6+uL9999HWFgYEhMT0aZNGyxYsADnz5/Hjz/+CGdnZyQmJuLuXe0x8aOPPsJ3332Hbdu2wcfHB9euXcO1a9cMWm9dMbDU4gYvaSai1qykAHjH0zTrfiMFkNvUOpujoyOGDh2Kzz//XBdYvvrqKzg7O+ORRx4BAAQGBiIwMFC3zFtvvYVvvvkG3333XbUjt1f0+eefQ6PRYN26dVAqlejatSuuX7+O6dOn6+axtLTE4sWLda/btWuHo0ePYtu2bRg7dixsbW1hZWWFoqKiGk8BrVq1Ct7e3lixYgUkEgkCAgKQkpKCOXPmYOHChbrb33Tv3h1RUVEAgI4dO2LFihWIjY01KLDk5+dj9erV2LhxI4YOHQoAWLt2Lfbt24d169bh9ddfR3JyMnr27InevXsD0HZKLpecnIyOHTtiwIABkEgk8PX1rXWd9cVTQrXQDRrHFhYiIrM1adIkfP311ygqKgIAbNmyBePHj9cd3PPy8jBr1ix07twZDg4OsLW1xYULF5CcnGxQ+RcuXED37t2hVN775zUkJKTSfCtXrkRQUBBcXFxga2uLTz75xOB1VFxXSEiI3r3r+vfvj7y8PFy/fl03rXv37nrLeXh44ObNmwat49KlSygpKUH//v110ywtLdG3b19cuHABgPbmxV9++SV69OiB2bNn48iRI7p5w8PDcebMGXTq1Akvv/wyfvrpJ6O2sS7YwlKLlGyeEiKiVszSWtvSYap1G2jEiBEQQmDXrl3o06cPfv31V/z3v//VvT9r1izs27cPS5YsQYcOHWBlZYWnn34axcXFDVbdL7/8ErNmzcKHH36IkJAQ2NnZ4YMPPsDx48cbbB0VWVpa6r2WSCSV+vHUx9ChQ3H16lXs3r0b+/btw6BBgzBjxgwsWbIEvXr1QlJSEn788Ufs378fY8eORWhoKL766qsGW//9GFhqkcIxWIioNZNIDDotY2pKpRJPPvkktmzZgsTERHTq1Am9evXSvX/48GGEh4dj9OjRALQtLleuXDG4/M6dO2Pz5s0oLCzUtbLcf1Pfw4cPo1+/fnjxxRd10y5duqQ3j1wuh1qtrnVdX3/9NYQQulaWw4cPw87ODm3btjW4zjXx9/eHXC7H4cOHdadzSkpKcPLkSbz66qu6+VxcXDBlyhRMmTIFAwcOxOuvv44lS5YAAOzt7TFu3DiMGzcOTz/9NIYMGYLbt2+jTZs2DVLH+/GUUA0KiktxO1+bvhlYiIjM26RJk7Br1y6sX78ekyZN0nuvY8eO2LFjB86cOYM//vgDEydONKo1YuLEiZBIJJg6dSrOnz+P3bt36w7cFdfx+++/Y+/evfj777+xYMECvatuAG0/kD///BPx8fHIyMhASUlJpXW9+OKLuHbtGl566SVcvHgR3377LaKiohAZGak7xVVfNjY2mD59Ol5//XXs2bMH58+fx9SpU1FQUIBnn30WALBw4UJ8++23SExMxF9//YUffvgBnTt3BgDExMTgiy++wMWLF/H3339j+/btcHd3h4ODQ4PUrypsYamBRgBzhgTgZm4h7JX8qIiIzNmjjz6KNm3aID4+HhMnTtR7LyYmBv/617/Qr18/ODs7Y86cOcjJyTG4bFtbW3z//fd44YUX0LNnT3Tp0gXvvfcennrqKd08zz//PE6fPo1x48ZBIpFgwoQJePHFF/Hjjz/q5pk6dSoOHjyI3r17Iy8vDwcOHNDrzAoAXl5e2L17N15//XUEBgaiTZs2ePbZZzF//vy6fTDVePfdd6HRaPDMM88gNzcXvXv3xt69e3WD5cnlcsybNw9XrlyBlZUVBg4ciC+//BIAYGdnh/fffx8JCQmQyWTo06cPdu/e3WCBqioSIYRotNKbSE5ODlQqFbKzs2Fvb2/q6hARNVuFhYVISkpCu3bt9DqYEtVHdb9Xxhy/eUqIiIiIzB4DCxEREZk9BhYiIiIyewwsREREZPYYWIiIiMjsMbAQEVElDTliKlFD/D5xcBEiItKRy+WQSqVISUmBi4sL5HK53j1tiIwhhEBxcTFu3boFqVQKuVxe57IYWIiISEcqlaJdu3ZITU1FSoqJ7iFELY61tTV8fHzqNbAcAwsREemRy+Xw8fFBaWlprfe9IaqNTCaDhYVFvVvqGFiIiKgSiUQCS0vLSncEJjIVdrolIiIis8fAQkRERGaPgYWIiIjMXovow1J+w2ljbhVOREREplV+3C4/jtekRQSW3NxcAIC3t7eJa0JERETGys3NhUqlqnEeiTAk1pg5jUaDlJQU2NnZtfgBjnJycuDt7Y1r167B3t7e1NVpVNzWlqs1bS+3teVqTdvbWNsqhEBubi48PT1rHaOlRbSwSKVStG3b1tTVaFL29vYt/gtSjtvacrWm7eW2tlytaXsbY1tra1kpx063REREZPYYWIiIiMjsMbA0MwqFAlFRUVAoFKauSqPjtrZcrWl7ua0tV2vaXnPY1hbR6ZaIiIhaNrawEBERkdljYCEiIiKzx8BCREREZo+BhYiIiMweAwsRERGZPQYWMxIdHY0+ffrAzs4Orq6uGDVqFOLj42tcZuPGjZBIJHoPpVLZRDWuu0WLFlWqd0BAQI3LbN++HQEBAVAqlejWrRt2797dRLWtHz8/v0rbKpFIMGPGjCrnb2779JdffsGIESPg6ekJiUSCnTt36r0vhMDChQvh4eEBKysrhIaGIiEhodZyV65cCT8/PyiVSgQHB+PEiRONtAWGq2lbS0pKMGfOHHTr1g02Njbw9PTE5MmTkZKSUmOZdfkuNIXa9mt4eHileg8ZMqTWcs1xvwK1b29V32GJRIIPPvig2jLNdd8acqwpLCzEjBkz4OTkBFtbWzz11FNIT0+vsdy6ftcNxcBiRg4dOoQZM2bg2LFj2LdvH0pKSvDYY48hPz+/xuXs7e2Rmpqqe1y9erWJalw/Xbt21av3b7/9Vu28R44cwYQJE/Dss8/i9OnTGDVqFEaNGoVz5841YY3r5uTJk3rbuW/fPgDAmDFjql2mOe3T/Px8BAYGYuXKlVW+//777+Ojjz7CmjVrcPz4cdjY2CAsLAyFhYXVlrl161ZERkYiKioKp06dQmBgIMLCwnDz5s3G2gyD1LStBQUFOHXqFBYsWIBTp05hx44diI+PxxNPPFFrucZ8F5pKbfsVAIYMGaJX7y+++KLGMs11vwK1b2/F7UxNTcX69eshkUjw1FNP1ViuOe5bQ441r732Gr7//nts374dhw4dQkpKCp588skay63Ld90ogszWzZs3BQBx6NChaufZsGGDUKlUTVepBhIVFSUCAwMNnn/s2LFi+PDhetOCg4PF888/38A1a3yvvPKK8Pf3FxqNpsr3m+s+FUIIAOKbb77RvdZoNMLd3V188MEHumlZWVlCoVCIL774otpy+vbtK2bMmKF7rVarhaenp4iOjm6UetfF/dtalRMnTggA4urVq9XOY+x3wRSq2tYpU6aIkSNHGlVOc9ivQhi2b0eOHCkeffTRGudpDvtWiMrHmqysLGFpaSm2b9+um+fChQsCgDh69GiVZdT1u24MtrCYsezsbABAmzZtapwvLy8Pvr6+8Pb2xsiRI/HXX381RfXqLSEhAZ6enmjfvj0mTZqE5OTkauc9evQoQkND9aaFhYXh6NGjjV3NBlVcXIzPPvsM//rXv2q8s3hz3af3S0pKQlpamt6+U6lUCA4OrnbfFRcXIy4uTm8ZqVSK0NDQZre/s7OzIZFI4ODgUON8xnwXzMnBgwfh6uqKTp06Yfr06cjMzKx23pa0X9PT07Fr1y48++yztc7bHPbt/ceauLg4lJSU6O2rgIAA+Pj4VLuv6vJdNxYDi5nSaDR49dVX0b9/f/zjH/+odr5OnTph/fr1+Pbbb/HZZ59Bo9GgX79+uH79ehPW1njBwcHYuHEj9uzZg9WrVyMpKQkDBw5Ebm5ulfOnpaXBzc1Nb5qbmxvS0tKaoroNZufOncjKykJ4eHi18zTXfVqV8v1jzL7LyMiAWq1u9vu7sLAQc+bMwYQJE2q8u62x3wVzMWTIEHz66aeIjY3Fe++9h0OHDmHo0KFQq9VVzt9S9isAbNq0CXZ2drWeImkO+7aqY01aWhrkcnmloF3TvqrLd91YFg1SCjW4GTNm4Ny5c7We7wwJCUFISIjudb9+/dC5c2d8/PHHeOuttxq7mnU2dOhQ3fPu3bsjODgYvr6+2LZtm0H/tTRX69atw9ChQ+Hp6VntPM11n9I9JSUlGDt2LIQQWL16dY3zNtfvwvjx43XPu3Xrhu7du8Pf3x8HDx7EoEGDTFizxrd+/XpMmjSp1s7wzWHfGnqsMQdsYTFDM2fOxA8//IADBw6gbdu2Ri1raWmJnj17IjExsZFq1zgcHBzwwAMPVFtvd3f3Sj3U09PT4e7u3hTVaxBXr17F/v378dxzzxm1XHPdpwB0+8eYfefs7AyZTNZs93d5WLl69Sr27dtXY+tKVWr7Lpir9u3bw9nZudp6N/f9Wu7XX39FfHy80d9jwPz2bXXHGnd3dxQXFyMrK0tv/pr2VV2+68ZiYDEjQgjMnDkT33zzDX7++We0a9fO6DLUajXOnj0LDw+PRqhh48nLy8OlS5eqrXdISAhiY2P1pu3bt0+vJcLcbdiwAa6urhg+fLhRyzXXfQoA7dq1g7u7u96+y8nJwfHjx6vdd3K5HEFBQXrLaDQaxMbGmv3+Lg8rCQkJ2L9/P5ycnIwuo7bvgrm6fv06MjMzq613c96vFa1btw5BQUEIDAw0ellz2be1HWuCgoJgaWmpt6/i4+ORnJxc7b6qy3e9LhUnMzF9+nShUqnEwYMHRWpqqu5RUFCgm+eZZ54Rc+fO1b1evHix2Lt3r7h06ZKIi4sT48ePF0qlUvz111+m2ASD/d///Z84ePCgSEpKEocPHxahoaHC2dlZ3Lx5UwhReTsPHz4sLCwsxJIlS8SFCxdEVFSUsLS0FGfPnjXVJhhFrVYLHx8fMWfOnErvNfd9mpubK06fPi1Onz4tAIiYmBhx+vRp3ZUx7777rnBwcBDffvut+PPPP8XIkSNFu3btxN27d3VlPProo2L58uW6119++aVQKBRi48aN4vz582LatGnCwcFBpKWlNfn2VVTTthYXF4snnnhCtG3bVpw5c0bvO1xUVKQr4/5tre27YCo1bWtubq6YNWuWOHr0qEhKShL79+8XvXr1Eh07dhSFhYW6MprLfhWi9t9jIYTIzs4W1tbWYvXq1VWW0Vz2rSHHmhdeeEH4+PiIn3/+Wfz+++8iJCREhISE6JXTqVMnsWPHDt1rQ77r9cHAYkYAVPnYsGGDbp6HHnpITJkyRff61VdfFT4+PkIulws3NzcxbNgwcerUqaavvJHGjRsnPDw8hFwuF15eXmLcuHEiMTFR9/792ymEENu2bRMPPPCAkMvlomvXrmLXrl1NXOu627t3rwAg4uPjK73X3PfpgQMHqvy9Ld8mjUYjFixYINzc3IRCoRCDBg2q9Dn4+vqKqKgovWnLly/XfQ59+/YVx44da6Itql5N25qUlFTtd/jAgQO6Mu7f1tq+C6ZS07YWFBSIxx57TLi4uAhLS0vh6+srpk6dWil4NJf9KkTtv8dCCPHxxx8LKysrkZWVVWUZzWXfGnKsuXv3rnjxxReFo6OjsLa2FqNHjxapqamVyqm4jCHf9fqQlK2UiIiIyGyxDwsRERGZPQYWIiIiMnsMLERERGT2GFiIiIjI7DGwEBERkdljYCEiIiKzx8BCREREZo+BhYiIiMweAwsRERGZPQYWIiIiMnsMLERERGT2/j8MMZTNH8m1rAAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "to_plot = []\n", "params_history = []\n", "params = best_params.copy()\n", "for max_depth in range(1, 21):\n", " params['max_depth'] = max_depth\n", " params_history.append(params['max_depth'])\n", " print(params['max_depth'])\n", " process_params = {key: params[key] for key in ['baseline_lam', 'baseline_p', 'smooth_window_length', 'smooth_polyorder']}\n", " classifier_params = {key: params[key] for key in best_params.keys() if key not in ['baseline_lam', 'baseline_p', 'smooth_window_length', 'smooth_polyorder']}\n", " X_train, X_test = process_train_test(process_params, experiments_train, metadata_train, experiments_test, metadata_test, scale=True)\n", " to_plot.append(evaluate_classifier_params(RandomForestClassifier, classifier_params, X_train, truth_train, X_test, truth_test, iters=20))\n", "best_params['smooth_window_length'] = params_history[list(map(lambda x: x[1], to_plot)).index(max(map(lambda x: x[1], to_plot)))]\n", "_ = plt.plot(range(1, 21), to_plot)\n", "_ = plt.title(\"Impact of varying tree depth\")\n", "_ = plt.legend([\"training loss\", \"validation loss\"])\n", "plt.savefig('../images/random_forest/vary_tree_depth.svg', format='svg', dpi=1200)" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-05-01T10:05:56.106918600Z", "start_time": "2024-05-01T09:52:05.681704Z" } }, "id": "8b4cbe0b798df349", "execution_count": 25 }, { "cell_type": "code", "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1\n", "11\n", "21\n", "31\n", "41\n", "51\n", "61\n", "71\n", "81\n", "91\n", "101\n", "111\n", "121\n", "131\n", "141\n", "151\n", "161\n", "171\n", "181\n", "191\n" ] }, { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGzCAYAAAAi6m1wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgXElEQVR4nO3deVxUVeM/8M/MwMywI7sogqC5JWqofNHckkQtHrNSM59cKivTrHhMs8e9X5llpqWp9WiaWamltmiamlq555KZSi4gLiyCsu8z5/fHdS6MoDAwG/B5v17z4s6dM/eeyx3mfjj3nHsVQggBIiIionpEaesKEBEREZkbAw4RERHVOww4REREVO8w4BAREVG9w4BDRERE9Q4DDhEREdU7DDhERERU7zDgEBERUb3DgENERET1DgMOkZ1as2YNWrduDUdHR3h6etq6Oibp3bs3evfubetq2I3evXvj3nvvtXU1qq0uf/aIDBhwyOpWrVoFhUKBP/74w9ZVqbWtW7di1qxZZl/u2bNnMXr0aISFheHTTz/FJ598YvZ1EFXGlM+epT7/RObgYOsKENVlW7duxZIlS8z+Jb9nzx7o9XosWrQILVq0MOuyreHnn3+2dRWohkz57Fnq809kDmzBIbJDaWlpAGA3pwfy8vJMKq9Wq6FWqy1UG6qMXq9HYWFhrZdjqc9eaWkpiouLzbpMorthwCG7MHr0aLi6uiIpKQkPP/wwXF1d0aRJEyxZsgQA8Ndff+GBBx6Ai4sLgoOD8eWXXxq933Da69dff8Xzzz8Pb29vuLu7Y+TIkbh586ZR2e+++w4PPfQQAgMDodFoEBYWhjfffBM6na5CvQ4dOoSBAweiUaNGcHFxQXh4OBYtWiTX2VA/hUIhP6ry8ccfo127dtBoNAgMDMT48eORmZkpvx4SEoKZM2cCAHx9faFQKO74H/L8+fOhUChw6dKlCq9NnToVarVa3v7ffvsNQ4YMQbNmzaDRaBAUFIRXX30VBQUFRu8z7IsLFy5g4MCBcHNzw4gRIzBz5kw4Ojri+vXrFdb13HPPwdPTUz7A3t4HZ8+ePVAoFFi/fj3eeustNG3aFFqtFn379sX58+crLG/JkiUIDQ2Fk5MTunbtit9++63a/XoUCgUmTJiAzZs3495774VGo0G7du2wbdu2CtsZEhJS4f2zZs2qsB8Ny9ywYQPatm0LJycnREVF4a+//gIALF++HC1atIBWq0Xv3r2RmJhYad2OHj2Kbt26wcnJCc2bN8eyZcsqlCkqKsLMmTPRokULeT9NnjwZRUVFldZp7dq18ufp9m28nTk/e3f7/CcmJkKhUGD+/PlYuHAhwsLCoNFocPr0aQDSabDHH38cXl5e0Gq16Ny5M77//vsK68jMzMQrr7yCoKAgaDQatGjRAvPmzYNerzcq9/XXXyMiIgJubm5wd3dH+/bt5b9TasAEkZV99tlnAoA4cuSIPG/UqFFCq9WKtm3bihdeeEEsWbJEdOvWTQAQn332mQgMDBSvvfaa+Oijj0S7du2ESqUSFy9erLDM9u3bix49eogPP/xQjB8/XiiVStGzZ0+h1+vlso888ogYOnSoeO+998TSpUvFkCFDBAAxadIko3r+/PPPQq1Wi+DgYDFz5kyxdOlSMXHiRBEdHS2EEGL//v3iwQcfFADEmjVr5MfdzJw5UwAQ0dHR4qOPPhITJkwQKpVKdOnSRRQXFwshhNi0aZMYPHiwACCWLl0q1qxZI/78889Kl3fp0iWhUCjEu+++W+G10NBQ8dBDD8nPX3rpJTFw4EDx9ttvi+XLl4tnnnlGqFQq8fjjjxu9b9SoUUKj0YiwsDAxatQosWzZMvH555+Lc+fOCQDio48+MipfVFQkGjVqJJ5++ml5Xq9evUSvXr3k57t37xYARKdOnURERIT44IMPxKxZs4Szs7Po2rWr0fI+/vhjAUDej3FxccLLy0uEhYUZLfNOAIgOHTqIxo0bizfffFMsXLhQhIaGCmdnZ5Genm60ncHBwRXeb9hHty8zPDxcBAUFiXfeeUe88847wsPDQzRr1kwsXrxYtG3bVrz//vti2rRpQq1Wiz59+hi9v1evXiIwMFD4+fmJCRMmiA8//FDcf//9AoBYsWKFXE6n04l+/foJZ2dn8corr4jly5eLCRMmCAcHBzFo0KAKdWrTpo3w9fUVs2fPFkuWLBHHjx+/4+/F3J+9u33+ExISBADRtm1bERoaKt555x3xwQcfiEuXLolTp04JDw8P0bZtWzFv3jyxePFi0bNnT6FQKMTGjRvl5efl5Ynw8HDh7e0t3njjDbFs2TIxcuRIoVAoxMsvvyyX+/nnnwUA0bdvX7FkyRKxZMkSMWHCBDFkyJA7/i6oYWDAIau7U8ABIN5++2153s2bN4WTk5NQKBTi66+/luefPXtWABAzZ86ssMyIiAj5y1oIId59910BQHz33XfyvPz8/Ap1ev7554Wzs7MoLCwUQghRWloqmjdvLoKDg8XNmzeNypYPS+PHj69wMLyTtLQ0oVarRb9+/YROp5PnL168WAAQK1eulOcZDkbXr1+vcrlRUVEiIiLCaN7hw4cFAPH555/L8yrb7rlz5wqFQiEuXbokzzPsi9dff73SdUVGRhrN27hxowAgdu/eLc+7U8Bp06aNKCoqkucvWrRIABB//fWXEEIKS97e3qJLly6ipKRELrdq1SoBoNoBR61Wi/Pnz8vz/vzzzwrhzNSAo9FoREJCgjxv+fLlAoAICAgQ2dnZ8vypU6cKAEZle/XqJQCI999/X55XVFQkOnbsKPz8/OTP7Jo1a4RSqRS//fab0fqXLVsmAIh9+/YZ1UmpVIq///67yt+JpT57d/r8GwKOu7u7SEtLM3qtb9++on379vLfmhDS31S3bt1Ey5Yt5XlvvvmmcHFxEf/884/R+19//XWhUqlEUlKSEEKIl19+Wbi7u4vS0tIq60sNC09RkV159tln5WlPT0+0atUKLi4uGDp0qDy/VatW8PT0xMWLFyu8/7nnnoOjo6P8fNy4cXBwcMDWrVvleU5OTvJ0Tk4O0tPT0aNHD+Tn5+Ps2bMAgOPHjyMhIQGvvPJKhb4I1TkNVZmdO3eiuLgYr7zyCpTKsj+9sWPHwt3dHVu2bKnRcocNG4ajR4/iwoUL8rx169ZBo9Fg0KBB8rzy252Xl4f09HR069YNQggcP368wnLHjRtXYd7IkSNx6NAho3WtXbsWQUFB6NWrV5V1HTNmjFHfnB49egCAvC//+OMPZGRkYOzYsXBwKBsDMWLECDRq1KjK5RtER0cjLCxMfh4eHg53d/dKPzPV1bdvX6NTWpGRkQCAxx57DG5ubhXm374uBwcHPP/88/JztVqN559/HmlpaTh69CgAYMOGDWjTpg1at26N9PR0+fHAAw8AAHbv3m20zF69eqFt27ZV1t1Sn72qPPbYY/D19ZWf37hxA7/88guGDh0q/+2lp6cjIyMDMTExOHfuHK5evQpA+l306NEDjRo1MvpdREdHQ6fT4ddffwUgfU/k5eVhx44dFtkGqrsYcMhuaLVaoy9DAPDw8EDTpk0rhAoPD48KfWsAoGXLlkbPXV1d0bhxY6M+EX///TcGDx4MDw8PuLu7w9fXF//+978BAFlZWQAgH8DNee0SQz+ZVq1aGc1Xq9UIDQ2ttB9NdQwZMgRKpRLr1q0DAAghsGHDBgwYMADu7u5yuaSkJIwePRpeXl5wdXWFr6+vHEoM223g4OCApk2bVljXsGHDoNFosHbtWvl9P/74I0aMGFGt4NesWTOj54bQYtiXht/B7aN3HBwcKu0vU931GNZV2Wempsv08PAAAAQFBVU6//Z1BQYGwsXFxWjePffcAwDy5/PcuXP4+++/4evra/QwlDN0ADZo3rx5tepuqc9eVW6v3/nz5yGEwPTp0ytso6Hvj2Ebz507h23btlUoFx0dbVTuxRdfxD333IMBAwagadOmePrpp6vsi0QNA4eJk91QqVQmzRdCmLyOzMxM9OrVC+7u7pgzZw7CwsKg1Wpx7NgxTJkypULnxbogMDAQPXr0wPr16/HGG2/g4MGDSEpKwrx58+QyOp0ODz74IG7cuIEpU6agdevWcHFxwdWrVzF69OgK263RaIz+0zdo1KgRHn74YaxduxYzZszAN998g6KiIjkgVsWc+7K267lTIKuss/ndlmnObdLr9Wjfvj0WLFhQ6eu3h6nyrXL26Pb6GT5nkyZNQkxMTKXvMYRbvV6PBx98EJMnT660nCH0+fn54cSJE9i+fTt++ukn/PTTT/jss88wcuRIrF692lybQnUQAw7VK+fOnUOfPn3k57m5uUhOTsbAgQMBSKN5MjIysHHjRvTs2VMul5CQYLQcw+mNU6dOyf8xVsaU01XBwcEAgPj4eISGhsrzi4uLkZCQcNf1VGXYsGF48cUXER8fj3Xr1sHZ2RmxsbHy63/99Rf++ecfrF69GiNHjpTn16RZf+TIkRg0aBCOHDmCtWvXolOnTmjXrl2N616e4Xd0/vx5o/1YWlqKxMREhIeHm2U9gBTWyo8gMrBUa8a1a9eQl5dn1Irzzz//AIDcOhUWFoY///wTffv2rfGp0MpY6rNnah0N63Z0dKxynWFhYcjNza1W3dRqNWJjYxEbGwu9Xo8XX3wRy5cvx/Tp0+vkdaTIPHiKiuqVTz75BCUlJfLzpUuXorS0FAMGDABQ9t92+f+ui4uL8fHHHxst57777kPz5s2xcOHCCgfB8u81HKwqO1DeLjo6Gmq1Gh9++KHRMlasWIGsrCw89NBD1dvISjz22GNQqVT46quvsGHDBjz88MNGB9LKtlsIUaOhtAMGDICPjw/mzZuHvXv3Vrv1pjo6d+4Mb29vfPrppygtLZXnr127tlanlyoTFhaGrKwsnDx5Up6XnJyMTZs2mXU9BqWlpVi+fLn8vLi4GMuXL4evry8iIiIAAEOHDsXVq1fx6aefVnh/QUGBydcjMrDUZ8+Uzz8gtbb07t0by5cvR3JycoXXy1+CYOjQoThw4AC2b99eoVxmZqb8+cjIyDB6TalUykH49qH11LCwBYfqleLiYvTt2xdDhw5FfHw8Pv74Y9x///3417/+BQDo1q0bGjVqhFGjRmHixIlQKBRYs2ZNhdMJSqUSS5cuRWxsLDp27IgxY8agcePGOHv2LP7++2/5S9dwYJo4cSJiYmKgUqnwxBNPVFo3X19fTJ06FbNnz0b//v3xr3/9S65jly5dahUU/Pz80KdPHyxYsAA5OTkYNmyY0eutW7dGWFgYJk2ahKtXr8Ld3R3ffvttjUKDo6MjnnjiCSxevBgqlQrDhw+vcb1vp1arMWvWLLz00kt44IEHMHToUCQmJmLVqlUICwsza6vGE088gSlTpmDw4MGYOHEi8vPzsXTpUtxzzz04duyY2dZjEBgYiHnz5iExMRH33HMP1q1bhxMnTuCTTz6RO8Y/9dRTWL9+PV544QXs3r0b3bt3h06nw9mzZ7F+/Xps374dnTt3NnndlvrsmfL5N1iyZAnuv/9+tG/fHmPHjkVoaChSU1Nx4MABXLlyBX/++ScA4LXXXsP333+Phx9+GKNHj0ZERATy8vLw119/4ZtvvkFiYiJ8fHzw7LPP4saNG3jggQfQtGlTXLp0CR999BE6duyINm3a1Gi7qJ6wxdAtatjuNEzcxcWlQtlevXqJdu3aVZgfHBxsdI0XwzL37t0rnnvuOdGoUSPh6uoqRowYITIyMozeu2/fPvF///d/wsnJSQQGBorJkyeL7du3VxjqLIQQv//+u3jwwQeFm5ubcHFxEeHh4UZDjUtLS8VLL70kfH19hUKhqNaQ8cWLF4vWrVsLR0dH4e/vL8aNG1dhKLopQ3UNPv30UwFAuLm5iYKCggqvnz59WkRHRwtXV1fh4+Mjxo4dKw+f/uyzz+Ryd9oX5RmGoffr16/S1+80THzDhg1G5QzDicuvXwghPvzwQxEcHCw0Go3o2rWr2Ldvn4iIiBD9+/e/+y9BSMOnx48fX2F+cHCwGDVqlNG8n3/+Wdx7771CrVaLVq1aiS+++OKOw8RvX6ah7u+9957R/Mq21fA5/uOPP0RUVJTQarUiODhYLF68uEI9i4uLxbx580S7du2ERqMRjRo1EhEREWL27NkiKyuryu28G3N/9u70+b/T78bgwoULYuTIkSIgIEA4OjqKJk2aiIcfflh88803RuVycnLE1KlTRYsWLYRarRY+Pj6iW7duYv78+fLQ+m+++Ub069dP+Pn5CbVaLZo1ayaef/55kZycbNLvhuofhRBm7t1HZAOrVq3CmDFjcOTIkRr9h0um+fPPP9GxY0d8/vnneOqppyy+Pr1eD19fXzz66KOVnr4hIrod++AQkck+/fRTuLq64tFHHzX7sgsLCyucMvz8889x48aNat2qgYgIYB8cIjLBDz/8gNOnT+OTTz7BhAkTKlzXxRwOHjyIV199FUOGDIG3tzeOHTuGFStW4N5778WQIUPMvj4iqp8YcIio2l566SWkpqZi4MCBmD17tkXWERISgqCgIHz44Ye4ceMGvLy8MHLkSLzzzju8QzkRVRv74BAREVG9wz44REREVO8w4BAREVG9Uy/64Oj1ely7dg1ubm5mvRAYERERWY4QAjk5OQgMDKz0/ne1US8CzrVr1yrchI6IiIjqhsuXL6Np06ZmXWa9CDhubm4ApF+Qu7u7jWtDRERE1ZGdnY2goCD5OG5O9SLgGE5Lubu7M+AQERHVMZboXsJOxkRERFTvMOAQERFRvcOAQ0RERPUOAw4RERHVOww4REREVO8w4BAREVG9w4BDRERE9Q4DDhEREdU7DDhERERU7zDgEBERUb1jcsD59ddfERsbi8DAQCgUCmzevLnK9+zZswf33XcfNBoNWrRogVWrVlUos2TJEoSEhECr1SIyMhKHDx82tWpEREREAGoQcPLy8tChQwcsWbKkWuUTEhLw0EMPoU+fPjhx4gReeeUVPPvss9i+fbtcZt26dYiLi8PMmTNx7NgxdOjQATExMUhLSzO1ekRERERQCCFEjd+sUGDTpk145JFH7lhmypQp2LJlC06dOiXPe+KJJ5CZmYlt27YBACIjI9GlSxcsXrwYAKDX6xEUFISXXnoJr7/+eoVlFhUVoaioSH5uuBtpVlYWb7ZZQ3q9QLFOj1K9QEmpHiV6PUp00nSpXo/iUoFSvR4lOuPpEp2AXi+gF4BOSNM6vYBeSA+dvmy+9Lxsvt5QvvxPAXkZupp/NImIyMwclAr896G2Zl1mdnY2PDw8LHL8tvjdxA8cOIDo6GijeTExMXjllVcAAMXFxTh69CimTp0qv65UKhEdHY0DBw5Uusy5c+di9uzZFqtzXaXTCyTdyMe51BycS8vF+bRcJGbkobBEj1JdWSApuTVdqisLNTo9wwQREd2Z2kFp9oBjSRYPOCkpKfD39zea5+/vj+zsbBQUFODmzZvQ6XSVljl79myly5w6dSri4uLk54YWnIaiRKfHpYyyIHMuLRfnUnNwMT0PxaV6s6xDoQAcVUo4KhVwdFDCQamEWqWAg0oJR5VCek2lhINKAZVCAaVCAaUSUCmlaZVSmq9QKKCq5nylwjANKOVyZtkcIiKqJZWybo1LsnjAsQSNRgONRmPralhcUakOien5OJeWg3OpUovMubQcJKTnoURXeYuL1lGJFn6uaOnnhhZ+rgj1cYGzxgGOKgXUKmWFgHJ7WFGrlHBQSoFDwXRBRER1lMUDTkBAAFJTU43mpaamwt3dHU5OTlCpVFCpVJWWCQgIsHT17EJhiQ4Xr+fJQeZcmtQycykj/46njpzVKrT0c0ULPze09HdFSz9X3OPvhiaeTlAqGUyIiKhhs3jAiYqKwtatW43m7dixA1FRUQAAtVqNiIgI7Nq1S+6srNfrsWvXLkyYMMHS1bOpG3nFGLXyMP6+loU7dYFx0zigRbkA08LPFS393dDYXcsgQ0REdAcmB5zc3FycP39efp6QkIATJ07Ay8sLzZo1w9SpU3H16lV8/vnnAIAXXngBixcvxuTJk/H000/jl19+wfr167FlyxZ5GXFxcRg1ahQ6d+6Mrl27YuHChcjLy8OYMWPMsIn269d/ruOvq1kAAA8nR9zjf6tFxs/1VquMG/zdNTxVREREZCKTA84ff/yBPn36yM8NnX1HjRqFVatWITk5GUlJSfLrzZs3x5YtW/Dqq69i0aJFaNq0Kf73v/8hJiZGLjNs2DBcv34dM2bMQEpKCjp27Iht27ZV6Hhc31xMzwMADIloincfD2eQISIiMpNaXQfHXlhyHL0lvfTVcfzw5zW8MbA1nusZZuvqEBERWZUlj991a8xXPZOQngsAaO7jauOaEBER1S8MODYihEDCdekUVXMfFxvXhoiIqH5hwLGR6zlFyCvWQakAmnk527o6RERE9QoDjo0YOhg3beQMtQN3AxERkTnxyGojCek8PUVERGQpDDg2ksiAQ0REZDEMODZiOEUV6suAQ0REZG4MODbCU1RERESWw4BjAzq9wKUMBhwiIiJLYcCxgas3C1CiE1A7KBHo4WTr6hAREdU7DDg2cNFwBWNvF94RnIiIyAIYcGyA/W+IiIgsiwHHBuSAwxFUREREFsGAYwNswSEiIrIsBhwbuHjrJpuhDDhEREQWwYBjZYUlOlzLKgAAhDDgEBERWQQDjpVdysiHEICb1gHeLmpbV4eIiKheYsCxMkP/m1AfFygUHCJORERkCQw4VsYOxkRERJbHgGNlCYaL/Pm42rgmRERE9RcDjpXxGjhERESWx4BjZeX74FA9JQSQmQQkHQJ0pbauDRFRg+Rg6wo0JFkFJUjPLQbAIeL1iq4ESDkpBZrLtx45ydJrXmFAnzeAdo8CSv4/QURkLQw4VpR4q/XGz00DVw1/9XVW/g3gyhEpyCQdAq4eBUoLjMsoHQAHJ+DGBeDbZ4DfPwAemA7cEwNw9BwRkcXxKGtFHEFVBwkBZFy41TJzUAo06fEVy2k9gaCuQFAk0Oz/gMD7AKEDDi4F9n8EpJ4CvhoGNO0K9J0BNO9h9U2hGspJAZL/BK6dkH4m/ynt26adgaD/k/Z3QDjgwOtaWZQQQNYVQFcMeATZ9++7pBDIOA9cPwtcj5d+pv8DZF4G1M7S94WTJ6D1KDd963ll006egNqNrcAmYsCxoouG/jfsYGy/SgqBa8fLTjVdPgTkZ1Qs5xUmHdiCIqWHzz2Vf/n0mgx0eRbYtxA49Alw5TCw+mEgtA/QdzrQJMLim0TVZDiAGkJM8gnpZ25q5eXP/CA9AMBBK4XaZpFlnwlnL6tVvd7R64GbCeX2xa1HwQ3pdYUScAsEGoUAjYKln57BZc9d/a3TUlqcJwUXQ4i5/o/082YCIPSVv6ckD8i7bvq6FEpA4373YKR2BWDB7VYqpe+zOoIBx4rYgmOHctNunWo6CFw+LB3UdMXGZVQaILCT8cHLxaf663D2Ah6cA/zfi8Cv84Gjq4CLu6VH64eBPv8F/Nuac6uoKkIYH0ANrTOGA2h5CiXg0wpo3EF6BHaU5l8+JH1mkg5K70vaLz0MvFve+szcCsI+La1/elJXCmRfAW4mAjcvST9zUwEXX+Nw4BEEqBytWzcDvU5q7TAKMyeBoqyKZZWO0unf0gJpu7KvAJd+r1jOwQnwbFZJAAqWfmrdTatjYVZZeEmPLws0mUl3fo/GA/BrLf3z49taejQKAUoLgcJMoCBT+lmYVTZdcOv57a+XFkqBqfDWPFtRaRhwqHKGa+CEeDPg2NT1f4CT64DTm6Uv1tu5+JYFmWb/Jx3UHDS1X69bAPDQfKDbBGDPPODk18DZH4GzW4DwoUDv1wGv0Nqvx94JARTclA72DlrpS9OSTe96nXSasXyrzB0PoA6AX5tbYaaj9PBvJ51WuF1wt7Ltybhw6xTmraCcHg9knJMex7+Qyjk1Mv5cBXYCHJ1qt21CSC2MNxPLHpmXygJN1hXpdFpVFErAvemtMBAMeIaUhQPPYMDVzzzhTFcihYPyYSblL6lV43YqDRBwb1mwbNxR2jcqtdQCUj60ZRqmL0mhp7RA2geVnU4GACevylt/PIKkZZc/tXQ9Hsi5dudtcva5FWAMQaaV9NOcrUglhXcPQIbp4kp+j+ZkqxBcQwohhLB1JWorOzsbHh4eyMrKgru7icncSoQQaD/rZ+QWlWJnXE+08HOzdZUaltw04NS3wJ9fSwc5mUL60gzqeqs/RSTQqLl1/tNOOwvsfgs48730XOkA3DcS6Pka4B5o+fVbmhBA9rWKB4v0eCnglKfSSGHHQQM4am9Na8vNc5J+Ohh+asuVKzff0UmaV1ooHTgNYeZOB1D/duUOoB2k5+YIs4aO6EkHpZaeq0elOpWndJTWGRRZ1tLj5l9xWcX5t0LLpYoB5mZi5dtmtJ3qstaLRiGAawCQl1a2jMxLFet2O0fnshaR8qeCDM81lVy4tLQISDttHGZS/658XY7OQED7W6Hy1r7wbVWzA6quBMi6fOffV2WtdNXh1liqk0+rshDj28q01lyqwJLHbwYcK0nLKUTXt3ZBqQDOvNkfGgeVratU/xXnSa0jJ9cBF3aX/SerUAEtoqVWkxbR0rlrW7p6DPjl/wEXdknPHbRA17FA91cBF2/b1q069HogK6liP4Tr8UBxjq1rJ5EPoOXCjG9r6/1HWlosBa7yndVzUyqW8wyWAg9Q1iKTl1b18t0CK++LYgg0d2sh0+tvBZ47BILsqwCqOEw4+5Stz8FJumxC2hlAX1KxrMZd6pQd2LFsX3i3AJRW+k4szL5zYMy6fKtF5rbWGJ97bP89UU8x4FShLgScQxczMOyTg2jm5YxfJ/exdXXqL10pkLAHOLkeOPOj8X+3TToD4cOAdoMBV1+bVfGOEvcBu+ZIB0BAGjXRbYLUd8fUPgOWoCuVDgTXz5aNCjEEmtuHyRsoHaQO2eX/4/VtdeuA5iD9N19aBJQUSD9LC8seJYXGz43mFUnrNLzn9rJQAP7lTm/4tLTeAbQ6DBeDNHRkTzoEpP19546pGo9yp48MASak7LSKo9ZydS0tkk51VXYK7Gbi3fuEODUyPsXUuIPUQsrRQHSLJY/f7INjJexgbEFCSM3fJ9cBf31j/B9vo+ZSqAkfCniH2a6O1RHSHXh6G3B+pxR0Uk4Ce+YCh5YDPeKkzn217bNRFb1e6tORmyL1Kyl/ainjXMUO2AYqtfRfrs9t//l6hd59OK/KEdA0wNO1CkVZYAkfKs0rzAau/gFcOSr9Xsq3wjg1sl1dHTTS386d/n4KMo1bRIrzpFN9gR2l8MXrPpGNMOBYCQOOBdy8BPy1QWqtKd+Z0MkLuPcxKdg07Vy3vmAVCqDlg0BYX+DMd8Avb0nB4udpwIEl0rDzTk+ZfmpFVyoFv5wUaRRN+Z85KVKgyUmVyujvcnsJB6eKzfe+raVWBRW/TmpF6w6EPSA96hInT+nRuIOta0JkhN9IVsJr4JhJwU3g781SqCk/JNdBC7QaAIQ/IR0g7PkiYNWhVEqn0lrHSqOt9rwj9Q/48VVg3yKg9xtA+8elMFJZaMm9FVxyUqXpvHRU2Y+iPEOfCt82xqeXPIJ4eoGI6gQGHCthC04tlBYB536WTkH9s73caRKFdEXg8GFAm1jpYlf1jcoB6PRvoP0Q6fo5v74nnQbY9Bzw4ytASX71l6VQScN9Xf2lIeuu/tLIEDd/qSOq4aerX50bDkpEdDsGHCvQ6QUuZTDgmOzqMeDYauDvTdK1Hgz875X6Ldz7OODRxHb1syYHDRD5vBR2Di2Xroxs+J2o1OUCiiG8BEg/5SATADh721dHWyIiC2LAsYKrNwtQohNQOygR6GHhTqL1gRDSaZidsyCfVnELBMKHAO2HShf/aqjULlKH467PScN3XXylDqh1qZ8REZEVMOBYwcVbVzBu7u0CpZIHorsqKQC+nwj8tV563naQNHoouDtbH8rTuEp9YoiIqFIMOFbA/jfVlH0N+PpJ6WaXChUwYJ4Ubtg6QUREJmLAsYLEWwEnhAHnzi4fAdaNkEYBOXkBQ1cDzXvaulZERFRHMeBYgTxEnAGncsfXSiOCdMWAX1tg+FfSxc2IiIhqiAHHCuRTVLwGjjFdKbBjBnBwifS89cPA4GUN88q2RERkVgw4FlZYosPVTOk+PeyDU07BTWDDGODibul5rylAr9d5ETkiIjILBhwLS7qRDyEAN60DvF3q+NV1zeV6PPDVE8CNi9Jdnh9ZCrR7xNa1IiKieoQBx8IuXi/rf6PgaCAgfhvw7bNAcQ7g0QwY/iUQ0N7WtSIionqGAcfCOET8FiGA3z+Q7pINIV3XZujngIuPrWtGRET1EAOOhSUYLvLn42rjmthQcT7w/UvAqW+k552fBvrPq/s3xCQiIrvFgGNhDX4EVdZV6eJ9yScApUPZxfuIiIgsiAHHwhIa8jVwkg4B6/4N5KVJF+8btgYIud/WtSIiogaAAceCsgpKkJ5bDKABXsX42BpgS9yti/e1kzoT8+J9RERkJQw4FmS4RYOvmwaumgbyq9aVAj//Fzi0THreJhZ4ZJl0c0giIiIraSBHXdtIzGhgI6jybwDfjAEu7pGe954K9JzMi/cREZHVMeBYUPlr4NR7aWeAr4YDNxMARxfplgtt/2XrWhERUQPFgGNBDeYaOPE/3bp4Xy7g2Qx44isg4F5b14qIiBowBhwLqvcBRwjgt/eBX/4fpIv33X/r4n3etq4ZERE1cAw4FiKEKBsiXp+ugVNSACQdBBL2Aud3ASknpfldngX6vwOoHG1bPyIiIjDgWMz13CLkFpVCqQCCvJxtXZ2a05UC144DCXuAi3uBy4cBXVHZ60pHYOC70tWJiYiI7ESNhrcsWbIEISEh0Gq1iIyMxOHDh+9YtqSkBHPmzEFYWBi0Wi06dOiAbdu2GZWZNWsWFAqF0aN169Y1qZrdSLjVwbhpI2doHFQ2ro0JhABSTwMHlwJfPgG82xxYES2dhkr8TQo3bo2B8Ceku4C/8hfDDRER2R2TW3DWrVuHuLg4LFu2DJGRkVi4cCFiYmIQHx8PPz+/CuWnTZuGL774Ap9++ilat26N7du3Y/Dgwdi/fz86deokl2vXrh127txZVjGHut24VKf639y8JJ1yurgXSPhVuvJweVoPIKQHENobaN4L8GkJ8M7oRERkx0xOEQsWLMDYsWMxZswYAMCyZcuwZcsWrFy5Eq+//nqF8mvWrMF///tfDBw4EAAwbtw47Ny5E++//z6++OKLsoo4OCAgIKCm22F37Drg5KWXCzR7gZuJxq87OAHN/g8I7SUFmsYdAGUdaoUiIqIGz6SAU1xcjKNHj2Lq1KnyPKVSiejoaBw4cKDS9xQVFUGr1RrNc3Jywu+//24079y5cwgMDIRWq0VUVBTmzp2LZs2a3XGZRUVl/UCys7NN2QyruGhPHYyLcoBL+8sCTeop49cVKqBJRFmgCeoKOGhsU1ciIiIzMCngpKenQ6fTwd/f32i+v78/zp49W+l7YmJisGDBAvTs2RNhYWHYtWsXNm7cCJ1OJ5eJjIzEqlWr0KpVKyQnJ2P27Nno0aMHTp06BTc3twrLnDt3LmbPnm1K1a3OLlpwUk4BW18DrhwG9KXGr/m1Kws0wd0Arbtt6khERGQBFu/osmjRIowdOxatW7eGQqFAWFgYxowZg5UrV8plBgwYIE+Hh4cjMjISwcHBWL9+PZ555pkKy5w6dSri4uLk59nZ2QgKCrLshphApxdIysgHAIR42yjgFOUC60aUnX7yDC4LNM17Aa6+tqkXERGRFZgUcHx8fKBSqZCammo0PzU19Y79Z3x9fbF582YUFhYiIyMDgYGBeP311xEaGnrH9Xh6euKee+7B+fPnK31do9FAo7HfUyjXMgtQrNND7aBEoKeTbSqxc6YUbtybAqO+B7zDbFMPIiIiGzBpmLharUZERAR27dolz9Pr9di1axeioqLu+l6tVosmTZqgtLQU3377LQYNGnTHsrm5ubhw4QIaN25sSvXshqH/TYi3M1RKG4w2uvALcOR/0vSgxQw3RETU4Jh8HZy4uDh8+umnWL16Nc6cOYNx48YhLy9PHlU1cuRIo07Ihw4dwsaNG3Hx4kX89ttv6N+/P/R6PSZPniyXmTRpEvbu3YvExETs378fgwcPhkqlwvDhw82widaXcD0XgI363xRmAd9NkKa7jAXC+li/DkRERDZmch+cYcOG4fr165gxYwZSUlLQsWNHbNu2Te54nJSUBKWyLDcVFhZi2rRpuHjxIlxdXTFw4ECsWbMGnp6ecpkrV65g+PDhyMjIgK+vL+6//34cPHgQvr51s59IWQdjV+uvfNtUIPsq0Kg58KB9d8QmIiKyFIUQQti6ErWVnZ0NDw8PZGVlwd3d9qOBnlpxCL+dS8e7j4VjaBcrdn4+uxX4ejgABfD0NulaNkRERHbKksfvGt2qge5ObsGx5jVw8jKAH16Wpru9xHBDREQNGgOOmRWW6HA1swCAlfvgbP2PdIsF39ZAn/9ab71ERER2iAHHzJJu5EMIwE3rAG8XtXVWeupb4O9N0hWJBy8DHLVVv4eIiKgeY8Axs4u37iIe6uMChTVuSJmTAmz5jzTd8zUgsNPdyxMRETUADDhmZtVbNAgh9bspuAkEhAM9J1l+nURERHUAA46ZJVpziPiJtcA/2wCVGhi8HFA5Wn6dREREdQADjpkZWnBCfJwtu6LMJOCn16XpPv8F/Ntadn1ERER1CAOOmRlu0xBqyRYcvR74bjxQnAM07SoNCyciIiIZA44ZZReWID23CICFW3CO/A9I+BVwcJJGTSlVllsXERFRHcSAY0aG/je+bhq4aS3UHybjArBjhjT94BzeSJOIiKgSDDhmZPERVHodsOkFoLQAaN4T6PKsZdZDRERUxzHgmFH5a+BYxP6PgCuHAbUbMGgJoOTuIyIiqgyPkGZk0Rac1NPA7rek6f5zAc9m5l8HERFRPcGAY0YWCzi6EmDT84CuGGgZA3T6t3mXT0REVM8w4JiJEEIOOKHmvov4r/OBlJOAUyPgXx8C1rgFBBERUR3GgGMm13OLkFtUCqUCCPIy4xDxa8eBX9+Tph96H3ALMN+yiYiI6ikGHDNJuNXBuGkjZ2gczHRdmpJCadSU0AHtBgP3Pmae5RIREdVzDDhmkphhgf43u98Crp8FXPyAge+bb7lERET1HAOOmVw0dwfjpIPSsHAAiF0EuHibZ7lEREQNAAOOmRhOUZkl4BTnSaemIICOI4DWA2u/TCIiogaEAcdMzDpEfMdM4GYC4N5UuuYNERERmYQBxwx0eoFLGfkAzBBwLuwGjnwqTQ9aDGg9alk7IiKihocBxwyuZRagWKeH2kGJQE+nmi+oMAv4boI03eVZIKyPeSpIRETUwDDgmIGhg3GItzNUylpchG/bG0D2FaBRcyB6tplqR0RE1PAw4JhBwvVcALU8PRX/E3DiCwAK4JGlgMbVPJUjIiJqgBhwzKCsg3ENQ0n+DeD7idJ0twlAcJSZakZERNQwMeCYgeEUVWhNW3C2/AfISwN8WgF9ppmxZkRERA0TA44ZyC04NbnJ5qlvgb83AgoVMHgZ4Kg1c+2IiIgaHgacWioq1eFqZgGAGvTByb8htd4AQM9JQJP7zFw7IiKihokBp5aSMvIhBOCmdYC3i9q0Nyf+BhTcBLzCgB6TLFNBIiKiBogBp5bK34NKoTBxiHh2svQzoD3gYGI4IiIiojtiwKmlWt2iIedWwHFrbMYaEREREQNOLdXqJps5KdJPdwYcIiIic2LAqSW24BAREdkfBpxaKrsGTg0u8icHnAAz1oiIiIgYcGohu7AE6blFAIAQH2fTF2A4RcUWHCIiIrNiwKmFxFutN75uGrhpHU17c1EuUJQtTbMFh4iIyKwYcGqhdv1vbrXeqN0AjZsZa0VEREQMOLVw8Xot7kHF/jdEREQWw4BTC4kZZmjBYcAhIiIyOwacWjDLEHH3QDPWiIiIiAAGnBoTQtTyIn88RUVERGQpDDg1lJ5bjJyiUigUQDPvmgwR50X+iIiILIUBp4YMp6eaNnKCxkFl+gLYB4eIiMhiGHBqKCE9FwDQvCZXMAaA7GvSTzf2wSEiIjI3BpwaKrtFQw363wjBFhwiIiILYsCpoVp1MC64CeikWzww4BAREZkfA04NmeUqxs7egIPGjLUiIiIigAGnRnR6gUsZ+QBqGnAM/W84goqIiMgSGHBq4FpmAYp1eqgdlAj0dDJ9Aex/Q0REZFEMODVg6GAc4u0MlVJh+gJ4kT8iIiKLYsCpgcTa9L8ByrXgcIg4ERGRJTDg1EBZB+OaXgOHLThERESWxIBTAxflgFODWzQAvE0DERGRhTHg1ECtr2LMTsZEREQWxYBjoqJSHa7cLABQwz44eh2QmypNu7MPDhERkSUw4JgoKSMfQgBuGgf4uKpNX0DedUDoAIUScPE1fwWJiIiIAcdUcv8bXxcoFLUYIu7qDyhrcBdyIiIiqlKNAs6SJUsQEhICrVaLyMhIHD58+I5lS0pKMGfOHISFhUGr1aJDhw7Ytm1brZZpS7W6RQNQrv8NOxgTERFZiskBZ926dYiLi8PMmTNx7NgxdOjQATExMUhLS6u0/LRp07B8+XJ89NFHOH36NF544QUMHjwYx48fr/EybalWN9kEgGzepoGIiMjSTA44CxYswNixYzFmzBi0bdsWy5Ytg7OzM1auXFlp+TVr1uCNN97AwIEDERoainHjxmHgwIF4//33a7xMWzJfCw5HUBEREVmKSQGnuLgYR48eRXR0dNkClEpER0fjwIEDlb6nqKgIWq3WaJ6TkxN+//33Wi0zOzvb6GEthj44oTUeIs5r4BAREVmaSQEnPT0dOp0O/v7+RvP9/f2RkpJS6XtiYmKwYMECnDt3Dnq9Hjt27MDGjRuRnJxc42XOnTsXHh4e8iMoKMiUzaixnMISpOcWAQBCanyRv1vb5M6AQ0REZCkWH0W1aNEitGzZEq1bt4ZarcaECRMwZswYKJU1X/XUqVORlZUlPy5fvmzGGt9ZYno+AMDXTQM3rWPNFsIbbRIREVmcSSnDx8cHKpUKqampRvNTU1MREFD5AdvX1xebN29GXl4eLl26hLNnz8LV1RWhoaE1XqZGo4G7u7vRwxouylcwrmH/G4CnqIiIiKzApICjVqsRERGBXbt2yfP0ej127dqFqKiou75Xq9WiSZMmKC0txbfffotBgwbVepnWJncw9q5hwCktAvIzpGkGHCIiIotxMPUNcXFxGDVqFDp37oyuXbti4cKFyMvLw5gxYwAAI0eORJMmTTB37lwAwKFDh3D16lV07NgRV69exaxZs6DX6zF58uRqL9NeJJS7yF+NGPrfqDSAUyMz1YqIiIhuZ3LAGTZsGK5fv44ZM2YgJSUFHTt2xLZt2+ROwklJSUb9awoLCzFt2jRcvHgRrq6uGDhwINasWQNPT89qL9NemHWIeE2ugkxERETVohBCCFtXorays7Ph4eGBrKwsi/XHEUIgfNbPyCkqxY5Xe6Klv5vpC/l7M7BhFBD0f8Az281eRyIiorrEksdv3ouqmtJzi5FTVAqFAmjmXcsh4hxBRUREZFEMONVkOD3VtJETNA41vElmzq3bNLgHmqlWREREVBkGnGpKkIeI1/AKxgBbcIiIiKyEAaeaym7RwGvgEBER2TsGnGpKrO0IKqBcCw4DDhERkSUx4FRTrYeIA0A2W3CIiIisgQGnGnR6gcQM6T5UNQ44RTlAcY407WZf1/chIiKqbxhwquFaZgGKS/VQOygR6OlUs4Xk3LrXltoN0NTgGjpERERUbQw41WA4PRXs5QyVsoZXIJaHiPP0FBERkaUx4FSDWfrfcIg4ERGR1TDgVEOtb7IJcIg4ERGRFTHgVIN5roHDFhwiIiJrYcCpBrNcxTj7Vh8cN96mgYiIyNIYcKpQVKrDlZsFANgHh4iIqK5gwKlCUkY+hADcNA7wcVXXfEHsg0NERGQ1DDhVuFiug7FCUcMh4kKUteBwmDgREZHFMeBUwSz3oCq4CeiKpGlXXsWYiIjI0hhwqmCea+DcOj3l7A04aMxQKyIiIrobBpwqXDRnwGH/GyIiIqtgwKlCgnwNnNoMEWfAISIisiYGnLvIKSzB9Ryp70yIj3MtFsQh4kRERNbkYOsK2DOVUoH3Hg9HclYh3LSONV8QT1ERERFZFQPOXTirHTCkc1DtF8QWHCIiIqviKSpryLl1mwZ33qaBiIjIGhhwrIEtOERERFbFgGNpeh2QmypNsw8OERGRVTDgWFpuGiD0gEIFuPjaujZEREQNAgOOpRlGULn6A0qVbetCRETUQDDgWBr73xAREVkdA46l8Ro4REREVseAY2mGgOPOgENERGQtDDiWJrfg8BQVERGRtTDgWJrcB4ctOERERNbCgGNp7GRMRERkdQw4lpZ96zYNbrxNAxERkbUw4FhSaRFQcEOaZgsOERGR1TDgWJLh9JRKAzg1sm1diIiIGhAGHEsqP4JKobBtXYiIiBoQBhxLkq+Bw/43RERE1sSAY0kcQUVERGQTDDiWxNs0EBER2QQDjiVlM+AQERHZAgOOJbEFh4iIyCYYcCyJfXCIiIhsggHHkngfKiIiIptgwLGUohygOEeaZgsOERGRVTHgWIqh9UbjDmhcbVsXIiKiBoYBx1LKX8WYiIiIrIoBx1KyGXCIiIhshQHHUuQWHN6mgYiIyNoYcCyFQ8SJiIhshgHHUniRPyIiIpthwLEUdjImIiKyGQYcSzEEHHf2wSEiIrI2BhxLEIJ9cIiIiGyIAccSCm4CumJp2pUBh4iIyNoYcCwh+5r009kHcFDbti5EREQNEAOOJfAmm0RERDZVo4CzZMkShISEQKvVIjIyEocPH75r+YULF6JVq1ZwcnJCUFAQXn31VRQWFsqvz5o1CwqFwujRunXrmlTNPnAEFRERkU05mPqGdevWIS4uDsuWLUNkZCQWLlyImJgYxMfHw8/Pr0L5L7/8Eq+//jpWrlyJbt264Z9//sHo0aOhUCiwYMECuVy7du2wc+fOsoo5mFw1+8GAQ0REZFMmt+AsWLAAY8eOxZgxY9C2bVssW7YMzs7OWLlyZaXl9+/fj+7du+PJJ59ESEgI+vXrh+HDh1do9XFwcEBAQID88PHxqdkW2QMOESciIrIpkwJOcXExjh49iujo6LIFKJWIjo7GgQMHKn1Pt27dcPToUTnQXLx4EVu3bsXAgQONyp07dw6BgYEIDQ3FiBEjkJSUdMd6FBUVITs72+hhVzhEnIiIyKZMOg+Unp4OnU4Hf39/o/n+/v44e/Zspe958sknkZ6ejvvvvx9CCJSWluKFF17AG2+8IZeJjIzEqlWr0KpVKyQnJ2P27Nno0aMHTp06BTc3twrLnDt3LmbPnm1K1a2Lt2kgIiKyKYuPotqzZw/efvttfPzxxzh27Bg2btyILVu24M0335TLDBgwAEOGDEF4eDhiYmKwdetWZGZmYv369ZUuc+rUqcjKypIfly9ftvRmmCabfXCIiIhsyaQWHB8fH6hUKqSmphrNT01NRUBA5Qfz6dOn46mnnsKzzz4LAGjfvj3y8vLw3HPP4b///S+UyooZy9PTE/fccw/Onz9f6TI1Gg00Go0pVbceXSmQlyZNu7EPDhERkS2Y1IKjVqsRERGBXbt2yfP0ej127dqFqKioSt+Tn59fIcSoVCoAgBCi0vfk5ubiwoULaNy4Dp7iybsOCD2gUAEudbijNBERUR1m8ljsuLg4jBo1Cp07d0bXrl2xcOFC5OXlYcyYMQCAkSNHokmTJpg7dy4AIDY2FgsWLECnTp0QGRmJ8+fPY/r06YiNjZWDzqRJkxAbG4vg4GBcu3YNM2fOhEqlwvDhw824qVZi6H/j6g8oVbatCxERUQNlcsAZNmwYrl+/jhkzZiAlJQUdO3bEtm3b5I7HSUlJRi0206ZNg0KhwLRp03D16lX4+voiNjYWb731llzmypUrGD58ODIyMuDr64v7778fBw8ehK+vrxk20crkIeJ1sPWJiIionlCIO50nqkOys7Ph4eGBrKwsuLu727YyR/4HbPkP0Pph4Im1tq0LERGRHbPk8Zv3ojI3XgOHiIjI5hhwzI1DxImIiGyOAcfc5Iv8cYg4ERGRrTDgmBtPUREREdkcA4658TYNRERENseAY04lhUDBDWmaLThEREQ2w4BjTrm3Tk85aAGnRratCxERUQPGgGNO5fvfKBS2rQsREVEDxoBjTtnXpJ/sf0NERGRTDDjmxBFUREREdoEBx5x4DRwiIiK7wIBjTmzBISIisgsMOObEa+AQERHZBQYcczIEHHcGHCIiIltiwDEn+RQVAw4REZEtMeCYS1EOUJwrTbv627YuREREDRwDjrlk3zo9pXEHNK62rQsREVEDx4BjLuxgTEREZDcYcMyFQ8SJiIjsBgOOueTwNg1ERET2ggHHXNiCQ0REZDcYcMxFvgYOb9NARERkaww45sIWHCIiIrvBgGMu2RxFRUREZC8YcMxBCA4TJyIisiMMOOaQfwPQl0jTvIoxERGRzTHgmIOh9cbZB3BQ27YuRERExIBjFjw9RUREZFcYcMxBHiLOgENERGQPGHDMgUPEiYiI7AoDjjlk8zYNRERE9oQBxxzYgkNERGRXGHDMQe5kzNs0EBER2QMGHHNgCw4REZFdYcCpLV0pkJcmTbMPDhERkV1gwKmtvDRA6AGFCnDxsXVtiIiICAw4tSf3vwkAlCrb1oWIiIgAMODUHvvfEBER2R0GnNriNXCIiIjsDgNObcktOAw4RERE9oIBp7Z4ioqIiMjuMODUVg5PUREREdkbBpzaYgsOERGR3WHAqS3DMHF33qaBiIjIXjDg1EZJIVBwU5pmCw4REZHdYMCpDUPrjYMW0HratCpERERUhgGnNsr3v1EobFsXIiIikjHg1IZ8mwb2vyEiIrInDDi1Uf4+VERERGQ3GHBqQw44vAYOERGRPWHAqQ1DHxx3BhwiIiJ7woBTG7wPFRERkV1iwKkN+U7i7INDRERkTxhwakoItuAQERHZKQacmirKAUrypGm24BAREdkVBpyaMrTeaDwAtYtt60JERERGGHBqKof9b4iIiOxVjQLOkiVLEBISAq1Wi8jISBw+fPiu5RcuXIhWrVrByckJQUFBePXVV1FYWFirZdpc+ds0EBERkV0xOeCsW7cOcXFxmDlzJo4dO4YOHTogJiYGaWlplZb/8ssv8frrr2PmzJk4c+YMVqxYgXXr1uGNN96o8TLtguEif+68TQMREZG9MTngLFiwAGPHjsWYMWPQtm1bLFu2DM7Ozli5cmWl5ffv34/u3bvjySefREhICPr164fhw4cbtdCYuky7kM3bNBAREdkrkwJOcXExjh49iujo6LIFKJWIjo7GgQMHKn1Pt27dcPToUTnQXLx4EVu3bsXAgQNrvMyioiJkZ2cbPayOt2kgIiKyWw6mFE5PT4dOp4O/v7/RfH9/f5w9e7bS9zz55JNIT0/H/fffDyEESktL8cILL8inqGqyzLlz52L27NmmVN382AeHiIjIbll8FNWePXvw9ttv4+OPP8axY8ewceNGbNmyBW+++WaNlzl16lRkZWXJj8uXL5uxxtUkBxz2wSEiIrI3JrXg+Pj4QKVSITU11Wh+amoqAgIqb8mYPn06nnrqKTz77LMAgPbt2yMvLw/PPfcc/vvf/9ZomRqNBhqNxpSqm5deX+4UFVtwiIiI7I1JLThqtRoRERHYtWuXPE+v12PXrl2Iioqq9D35+flQKo1Xo1KpAABCiBot0+YKbgD6Emna1f/uZYmIiMjqTGrBAYC4uDiMGjUKnTt3RteuXbFw4ULk5eVhzJgxAICRI0eiSZMmmDt3LgAgNjYWCxYsQKdOnRAZGYnz589j+vTpiI2NlYNOVcu0O4bWGxdfwEFt27oQERFRBSYHnGHDhuH69euYMWMGUlJS0LFjR2zbtk3uJJyUlGTUYjNt2jQoFApMmzYNV69eha+vL2JjY/HWW29Ve5l2hx2MiYiI7JpCCCFsXYnays7OhoeHB7KysuDu7m75FR5dDfwwEWjZDxixwfLrIyIiqocsefzmvahqgi04REREdo0BpybkEVQcIk5ERGSPGHBqgkPEiYiI7BoDTk3wNg1ERER2jQGnJtgHh4iIyK4x4JhKVwrkpknT7uyDQ0REZI8YcEyVmwpAAAoV4Oxj69oQERFRJRhwTFX+9JSSvz4iIiJ7xCO0qdjBmIiIyO4x4JiKQ8SJiIjsHgOOqdiCQ0REZPcYcEzFIeJERER2jwHHVIYWHA4RJyIislsMOKbKZh8cIiIie8eAYyr2wSEiIrJ7DDimKCkACjOlabbgEBER2S0GHFMYOhg7OAFaT5tWhYiIiO7MwdYVqFPKXwNHobBtXYiILEyn06GkpMTW1aA6ztHRESqVyurrZcAxBfvfEFEDIIRASkoKMjMzbV0Vqic8PT0REBAAhRUbBxhwTMFr4BBRA2AIN35+fnB2drbqQYnqFyEE8vPzkZaWBgBo3Nh6DQQMOKbgNXCIqJ7T6XRyuPH29rZ1dagecHJyAgCkpaXBz8/Paqer2MnYFLwGDhHVc4Y+N87OzjauCdUnhs+TNft0MeCYQj5FxT44RFS/8bQUmZMtPk8MOKZgJ2MiIqI6gQGnuoQwHiZORET1VkhICBYuXFjt8nv27IFCobD4yLNVq1bB09PTouuoL9jJuLqKsoGSfGmaAYeIyK707t0bHTt2NCmU3M2RI0fg4uJS7fLdunVDcnIyPDw8zLJ+qj0GnOoy9L/ReADq6n/oiYjIPgghoNPp4OBQ9aHP19fXpGWr1WoEBPCfX3vCU1TVJQ8RZ/8bIiJ7Mnr0aOzduxeLFi2CQqGAQqFAYmKifNrop59+QkREBDQaDX7//XdcuHABgwYNgr+/P1xdXdGlSxfs3LnTaJm3n6JSKBT43//+h8GDB8PZ2RktW7bE999/L79++ykqw6mk7du3o02bNnB1dUX//v2RnJwsv6e0tBQTJ06Ep6cnvL29MWXKFIwaNQqPPPKISdu/dOlShIWFQa1Wo1WrVlizZo38mhACs2bNQrNmzaDRaBAYGIiJEyfKr3/88cdo2bIltFot/P398fjjj5u0bnvGgFNdHCJORA2QEAL5xaU2eQghqlXHRYsWISoqCmPHjkVycjKSk5MRFBQkv/7666/jnXfewZkzZxAeHo7c3FwMHDgQu3btwvHjx9G/f3/ExsYiKSnpruuZPXs2hg4dipMnT2LgwIEYMWIEbty4ccfy+fn5mD9/PtasWYNff/0VSUlJmDRpkvz6vHnzsHbtWnz22WfYt28fsrOzsXnz5mpts8GmTZvw8ssv4z//+Q9OnTqF559/HmPGjMHu3bsBAN9++y0++OADLF++HOfOncPmzZvRvn17AMAff/yBiRMnYs6cOYiPj8e2bdvQs2dPk9Zvz3iKqro4goqIGqCCEh3azthuk3WfnhMDZ3XVhykPDw+o1Wo4OztXeppozpw5ePDBB+XnXl5e6NChg/z8zTffxKZNm/D9999jwoQJd1zP6NGjMXz4cADA22+/jQ8//BCHDx9G//79Ky1fUlKCZcuWISwsDAAwYcIEzJkzR379o48+wtSpUzF48GAAwOLFi7F169Yqt7e8+fPnY/To0XjxxRcBAHFxcTh48CDmz5+PPn36ICkpCQEBAYiOjoajoyOaNWuGrl27AgCSkpLg4uKChx9+GG5ubggODkanTp1MWr89YwtOdfE2DUREdVLnzp2Nnufm5mLSpElo06YNPD094erqijNnzlTZghMeHi5Pu7i4wN3dXb4FQWWcnZ3lcANItykwlM/KykJqaqocNgBApVIhIiLCpG07c+YMunfvbjSve/fuOHPmDABgyJAhKCgoQGhoKMaOHYtNmzahtLQUAPDggw8iODgYoaGheOqpp7B27Vrk5+ebtH57xhac6sq5Jv10420aiKjhcHJU4fScGJut2xxuHw01adIk7NixA/Pnz0eLFi3g5OSExx9/HMXFxXddjqOjo9FzhUIBvV5vUvnqnnYzl6CgIMTHx2Pnzp3YsWMHXnzxRbz33nvYu3cv3NzccOzYMezZswc///wzZsyYgVmzZuHIkSP1Yig6W3Cqiy04RNQAKRQKOKsdbPIw5eq3arUaOp2uWmX37duH0aNHY/DgwWjfvj0CAgKQmJhYw99QzXh4eMDf3x9HjhyR5+l0Ohw7dsyk5bRp0wb79u0zmrdv3z60bdtWfu7k5ITY2Fh8+OGH2LNnDw4cOIC//voLAODg4IDo6Gi8++67OHnyJBITE/HLL7/UYsvsB1twqou3aSAislshISE4dOgQEhMT4erqCi8vrzuWbdmyJTZu3IjY2FgoFApMnz79ri0xlvLSSy9h7ty5aNGiBVq3bo2PPvoIN2/eNCnYvfbaaxg6dCg6deqE6Oho/PDDD9i4caM8KmzVqlXQ6XSIjIyEs7MzvvjiCzg5OSE4OBg//vgjLl68iJ49e6JRo0bYunUr9Ho9WrVqZalNtiq24FSHXl8WcDhMnIjI7kyaNAkqlQpt27aFr6/vXfvTLFiwAI0aNUK3bt0QGxuLmJgY3HfffVasrWTKlCkYPnw4Ro4ciaioKLi6uiImJgZarbbay3jkkUewaNEizJ8/H+3atcPy5cvx2WefoXfv3gAAT09PfPrpp+jevTvCw8Oxc+dO/PDDD/D29oanpyc2btyIBx54AG3atMGyZcvw1VdfoV27dhbaYutSCGufELSA7OxseHh4ICsrC+7u7uZfQe51YH4LaXp6OqByvHt5IqI6qrCwEAkJCWjevLlJB1qqPb1ejzZt2mDo0KF48803bV0ds7rT58qSx2+eoqoOwxBxF1+GGyIiMotLly7h559/Rq9evVBUVITFixcjISEBTz75pK2rVi/wFFV1sIMxERGZmVKpxKpVq9ClSxd0794df/31F3bu3Ik2bdrYumr1AltwqkO+yB+HiBMRkXkEBQVVGAFF5sMWnOrI4W0aiIiI6hIGnOrgbRqIiIjqFAac6mAfHCIiojqFAac6sm/dpsGdfXCIiIjqAgac6mALDhERUZ3CgFMVXQmQd12aZh8cIiKiOoEBpyq5aQAEoHQAnH1sXRsiIrKQkJAQLFy4UH6uUCiwefPmO5ZPTEyEQqHAiRMnarVecy2nKqNHj8Yjjzxi0XXYE14HpyqGEVSuAYCSeZCIqKFITk5Go0aNzLrM0aNHIzMz0yg4BQUFITk5GT4+/CfanBhwqsJr4BARNUgBAdb53lepVFZbV0PCJomqsIMxEZFd++STTxAYGAi9Xm80f9CgQXj66acBABcuXMCgQYPg7+8PV1dXdOnSBTt37rzrcm8/RXX48GF06tQJWq0WnTt3xvHjx43K63Q6PPPMM2jevDmcnJzQqlUrLFq0SH591qxZWL16Nb777jsoFAooFArs2bOn0lNUe/fuRdeuXaHRaNC4cWO8/vrrKC0tlV/v3bs3Jk6ciMmTJ8PLywsBAQGYNWuWSb+3oqIiTJw4EX5+ftBqtbj//vtx5MgR+fWbN29ixIgR8PX1hZOTE1q2bInPPvsMAFBcXIwJEyagcePG0Gq1CA4Oxty5c01av6WxBacqhhYcDhEnooZICKAk3zbrdnQGFIoqiw0ZMgQvvfQSdu/ejb59+wIAbty4gW3btmHr1q0AgNzcXAwcOBBvvfUWNBoNPv/8c8TGxiI+Ph7NmjWrch25ubl4+OGH8eCDD+KLL75AQkICXn75ZaMyer0eTZs2xYYNG+Dt7Y39+/fjueeeQ+PGjTF06FBMmjQJZ86cQXZ2thwUvLy8cO3aNaPlXL16FQMHDsTo0aPx+eef4+zZsxg7diy0Wq1RiFm9ejXi4uJw6NAhHDhwAKNHj0b37t3x4IMPVrk9ADB58mR8++23WL16NYKDg/Huu+8iJiYG58+fh5eXF6ZPn47Tp0/jp59+go+PD86fP4+CggIAwIcffojvv/8e69evR7NmzXD58mVcvny5Wuu1FgacqmTzFBURNWAl+cDbNvoH741rgNqlymKNGjXCgAED8OWXX8oB55tvvoGPjw/69OkDAOjQoQM6dOggv+fNN9/Epk2b8P3332PChAlVruPLL7+EXq/HihUroNVq0a5dO1y5cgXjxo2Tyzg6OmL27Nny8+bNm+PAgQNYv349hg4dCldXVzg5OaGoqOiup6Q+/vhjBAUFYfHixVAoFGjdujWuXbuGKVOmYMaMGVDe6g8aHh6OmTNnAgBatmyJxYsXY9euXdUKOHl5eVi6dClWrVqFAQMGAAA+/fRT7NixAytWrMBrr72GpKQkdOrUCZ07dwYgdcI2SEpKQsuWLXH//fdDoVAgODi4ynVaG09RVYW3aSAisnsjRozAt99+i6KiIgDA2rVr8cQTT8hhIDc3F5MmTUKbNm3g6ekJV1dXnDlzBklJSdVa/pkzZxAeHg6tVivPi4qKqlBuyZIliIiIgK+vL1xdXfHJJ59Uex3l1xUVFQVFudar7t27Izc3F1euXJHnhYeHG72vcePGSEtLq9Y6Lly4gJKSEnTv3l2e5+joiK5du+LMmTMAgHHjxuHrr79Gx44dMXnyZOzfv18uO3r0aJw4cQKtWrXCxIkT8fPPP5u0jdbAFpyqsA8OETVkjs5SS4qt1l1NsbGxEEJgy5Yt6NKlC3777Td88MEH8uuTJk3Cjh07MH/+fLRo0QJOTk54/PHHUVxcbLbqfv3115g0aRLef/99REVFwc3NDe+99x4OHTpktnWU5+joaPRcoVBU6IdUGwMGDMClS5ewdetW7NixA3379sX48eMxf/583HfffUhISMBPP/2EnTt3YujQoYiOjsY333xjtvXXFgNOVXJu/WG7sQ8OETVACkW1ThPZmlarxaOPPoq1a9fi/PnzaNWqFe677z759X379mH06NEYPHgwAKlFJzExsdrLb9OmDdasWYPCwkK5FefgwYNGZfbt24du3brhxRdflOdduHDBqIxarYZOp6tyXd9++y2EEHIrzr59++Dm5oamTZtWu853ExYWBrVajX379smnl0pKSnDkyBG88sorcjlfX1+MGjUKo0aNQo8ePfDaa69h/vz5AAB3d3cMGzYMw4YNw+OPP47+/fvjxo0b8PLyMksda4unqO6mOB8ozJKm2YJDRGTXRowYgS1btmDlypUYMWKE0WstW7bExo0bceLECfz555948sknTWrtePLJJ6FQKDB27FicPn0aW7dulQ/05dfxxx9/YPv27fjnn38wffp0o1FJgNSP5eTJk4iPj0d6ejpKSkoqrOvFF1/E5cuX8dJLL+Hs2bP47rvvMHPmTMTFxcmn3GrLxcUF48aNw2uvvYZt27bh9OnTGDt2LPLz8/HMM88AAGbMmIHvvvsO58+fx99//40ff/wRbdq0AQAsWLAAX331Fc6ePYt//vkHGzZsQEBAADw9Pc1SP3NgC87dCD3Qd6Z0NWOth61rQ0REd/HAAw/Ay8sL8fHxePLJJ41eW7BgAZ5++ml069YNPj4+mDJlCrKzs6u9bFdXV/zwww944YUX0KlTJ7Rt2xbz5s3DY489Jpd5/vnncfz4cQwbNgwKhQLDhw/Hiy++iJ9++kkuM3bsWOzZswedO3dGbm4udu/ebdR5FwCaNGmCrVu34rXXXkOHDh3g5eWFZ555BtOmTavZL+YO3nnnHej1ejz11FPIyclB586dsX37dvnihmq1GlOnTkViYiKcnJzQo0cPfP311wAANzc3vPvuuzh37hxUKhW6dOmCrVu3mi2AmYNCCCFsXYnays7OhoeHB7KysuDu7m7r6hAR1VmFhYVISEhA8+bNjTrUEtXGnT5Xljx+20/UIiIiIjKTGgWcJUuWICQkBFqtFpGRkTh8+PAdy/bu3Vu+YmP5x0MPPSSXGT16dIXX+/fvX5OqEREREZneB2fdunWIi4vDsmXLEBkZiYULFyImJgbx8fHw8/OrUH7jxo1Gw/AyMjLQoUMHDBkyxKhc//795Ss7AoBGozG1akREREQAatCCs2DBAowdOxZjxoxB27ZtsWzZMjg7O2PlypWVljfcI8Pw2LFjB5ydnSsEHI1GY1TO3HdwJSIioobDpIBTXFyMo0ePIjo6umwBSiWio6Nx4MCBai1jxYoVeOKJJ+DiYnxdhT179sDPzw+tWrXCuHHjkJGRccdlFBUVITs72+hBREREZGBSwElPT4dOp4O/v7/RfH9/f6SkpFT5/sOHD+PUqVN49tlnjeb3798fn3/+OXbt2oV58+Zh7969GDBgwB0vhjR37lx4eHjIj6CgIFM2g4iIqmDOK+IS2eLzZNXr4KxYsQLt27dH165djeY/8cQT8nT79u0RHh6OsLAw7NmzR75xWnlTp05FXFyc/Dw7O5shh4jIDNRqNZRKJa5duwZfX1+o1WqjeyIRmUIIgeLiYly/fh1KpRJqtdpq6zYp4Pj4+EClUiE1NdVofmpq6l3vjApIdy79+uuvMWfOnCrXExoaKt+avbKAo9Fo2AmZiMgClEolmjdvjuTkZFy7ZqN7UFG94+zsjGbNmln1QoAmBRy1Wo2IiAjs2rULjzzyCACp2WnXrl1V3m5+w4YNKCoqwr///e8q13PlyhVkZGSgcWPewZuIyNrUajWaNWuG0tLSKu+bRFQVlUoFBwcHq7cEmnyKKi4uDqNGjULnzp3RtWtXLFy4EHl5eRgzZgwAYOTIkWjSpAnmzp1r9L4VK1bgkUcegbe3t9H83NxczJ49G4899hgCAgJw4cIFTJ48GS1atEBMTEwtNo2IiGpKoVDA0dGxwh2rieoKkwPOsGHDcP36dcyYMQMpKSno2LEjtm3bJnc8TkpKqtAEFR8fj99//x0///xzheWpVCqcPHkSq1evRmZmJgIDA9GvXz+8+eabPA1FRERENcJ7UREREZFN8F5URERERCaw6jBxSzE0QvGCf0RERHWH4bhtiZNJ9SLg5OTkAACvhUNERFQH5eTkwMPDw6zLrBd9cPR6Pa5duwY3NzezDUMzXDzw8uXL9b5fD7e1/mpI28ttrb8a0vY2xG09ffo0WrVqZfZr5NSLFhylUommTZtaZNnu7u71/kNmwG2tvxrS9nJb66+GtL0NaVubNGlikQsAspMxERER1TsMOERERFTvMODcgUajwcyZMxvExQa5rfVXQ9pebmv91ZC2l9tqPvWikzERERFReWzBISIionqHAYeIiIjqHQYcIiIiqncYcIiIiKjeYcAhIiKieocBpxJLlixBSEgItFotIiMjcfjwYVtXqdbmzp2LLl26wM3NDX5+fnjkkUcQHx9vVKZ3795QKBRGjxdeeMFGNa6dWbNmVdiW1q1by68XFhZi/Pjx8Pb2hqurKx577DGkpqbasMY1FxISUmFbFQoFxo8fD6Bu79dff/0VsbGxCAwMhEKhwObNm41eF0JgxowZaNy4MZycnBAdHY1z584Zlblx4wZGjBgBd3d3eHp64plnnkFubq4Vt6L67ra9JSUlmDJlCtq3bw8XFxcEBgZi5MiRuHbtmtEyKvs8vPPOO1bekqpVtW9Hjx5dYTv69+9vVKau7NuqtrWyv1+FQoH33ntPLlNX9mt1jjXV+f5NSkrCQw89BGdnZ/j5+eG1115DaWmpSXVhwLnNunXrEBcXh5kzZ+LYsWPo0KEDYmJikJaWZuuq1crevXsxfvx4HDx4EDt27EBJSQn69euHvLw8o3Jjx45FcnKy/Hj33XdtVOPaa9eundG2/P777/Jrr776Kn744Qds2LABe/fuxbVr1/Doo4/asLY1d+TIEaPt3LFjBwBgyJAhcpm6ul/z8vLQoUMHLFmypNLX3333XXz44YdYtmwZDh06BBcXF8TExKCwsFAuM2LECPz999/YsWMHfvzxR/z666947rnnrLUJJrnb9ubn5+PYsWOYPn06jh07ho0bNyI+Ph7/+te/KpSdM2eO0f5+6aWXrFF9k1S1bwGgf//+Rtvx1VdfGb1eV/ZtVdtafhuTk5OxcuVKKBQKPPbYY0bl6sJ+rc6xpqrvX51Oh4ceegjFxcXYv38/Vq9ejVWrVmHGjBmmVUaQka5du4rx48fLz3U6nQgMDBRz5861Ya3MLy0tTQAQe/fulef16tVLvPzyy7arlBnNnDlTdOjQodLXMjMzhaOjo9iwYYM878yZMwKAOHDggJVqaDkvv/yyCAsLE3q9XghRf/YrALFp0yb5uV6vFwEBAeK9996T52VmZgqNRiO++uorIYQQp0+fFgDEkSNH5DI//fSTUCgU4urVq1are03cvr2VOXz4sAAgLl26JM8LDg4WH3zwgWUrZ2aVbeuoUaPEoEGD7vieurpvq7NfBw0aJB544AGjeXVxvwpR8VhTne/frVu3CqVSKVJSUuQyS5cuFe7u7qKoqKja62YLTjnFxcU4evQooqOj5XlKpRLR0dE4cOCADWtmfllZWQAALy8vo/lr166Fj48P7r33XkydOhX5+fm2qJ5ZnDt3DoGBgQgNDcWIESOQlJQEADh69ChKSkqM9nPr1q3RrFmzOr+fi4uL8cUXX+Dpp5+GQqGQ59en/WqQkJCAlJQUo/3o4eGByMhIeT8eOHAAnp6e6Ny5s1wmOjoaSqUShw4dsnqdzS0rKwsKhQKenp5G89955x14e3ujU6dOeO+990xu2rcXe/bsgZ+fH1q1aoVx48YhIyNDfq2+7tvU1FRs2bIFzzzzTIXX6uJ+vf1YU53v3wMHDqB9+/bw9/eXy8TExCA7Oxt///13tdddL+4mbi7p6enQ6XRGv1QA8Pf3x9mzZ21UK/PT6/V45ZVX0L17d9x7773y/CeffBLBwcEIDAzEyZMnMWXKFMTHx2Pjxo02rG3NREZGYtWqVWjVqhWSk5Mxe/Zs9OjRA6dOnUJKSgrUanWFg4K/vz9SUlJsU2Ez2bx5MzIzMzF69Gh5Xn3ar+UZ9lVlf6+G11JSUuDn52f0uoODA7y8vOr8vi4sLMSUKVMwfPhwo7tOT5w4Effddx+8vLywf/9+TJ06FcnJyViwYIENa2u6/v3749FHH0Xz5s1x4cIFvPHGGxgwYAAOHDgAlUpVb/ft6tWr4ebmVuGUeV3cr5Uda6rz/ZuSklLp37XhtepiwGmAxo8fj1OnThn1SQFgdO66ffv2aNy4Mfr27YsLFy4gLCzM2tWslQEDBsjT4eHhiIyMRHBwMNavXw8nJycb1syyVqxYgQEDBiAwMFCeV5/2K0lKSkowdOhQCCGwdOlSo9fi4uLk6fDwcKjVajz//POYO3dunbq/0RNPPCFPt2/fHuHh4QgLC8OePXvQt29fG9bMslauXIkRI0ZAq9Uaza+L+/VOxxpr4Smqcnx8fKBSqSr05k5NTUVAQICNamVeEyZMwI8//ojdu3ejadOmdy0bGRkJADh//rw1qmZRnp6euOeee3D+/HkEBASguLgYmZmZRmXq+n6+dOkSdu7ciWefffau5erLfjXsq7v9vQYEBFQYIFBaWoobN27U2X1tCDeXLl3Cjh07jFpvKhMZGYnS0lIkJiZap4IWEhoaCh8fH/lzWx/37W+//Yb4+Pgq/4YB+9+vdzrWVOf7NyAgoNK/a8Nr1cWAU45arUZERAR27dolz9Pr9di1axeioqJsWLPaE0JgwoQJ2LRpE3755Rc0b968yvecOHECANC4cWML187ycnNzceHCBTRu3BgRERFwdHQ02s/x8fFISkqq0/v5s88+g5+fHx566KG7lqsv+7V58+YICAgw2o/Z2dk4dOiQvB+joqKQmZmJo0ePymV++eUX6PV6OejVJYZwc+7cOezcuRPe3t5VvufEiRNQKpUVTufUNVeuXEFGRob8ua1v+xaQWmAjIiLQoUOHKsva636t6lhTne/fqKgo/PXXX0YB1hDm27Zta1JlqJyvv/5aaDQasWrVKnH69Gnx3HPPCU9PT6Pe3HXRuHHjhIeHh9izZ49ITk6WH/n5+UIIIc6fPy/mzJkj/vjjD5GQkCC+++47ERoaKnr27GnjmtfMf/7zH7Fnzx6RkJAg9u3bJ6Kjo4WPj49IS0sTQgjxwgsviGbNmolffvlF/PHHHyIqKkpERUXZuNY1p9PpRLNmzcSUKVOM5tf1/ZqTkyOOHz8ujh8/LgCIBQsWiOPHj8ujht555x3h6ekpvvvuO3Hy5EkxaNAg0bx5c1FQUCAvo3///qJTp07i0KFD4vfffxctW7YUw4cPt9Um3dXdtre4uFj861//Ek2bNhUnTpww+js2jCzZv3+/+OCDD8SJEyfEhQsXxBdffCF8fX3FyJEjbbxlFd1tW3NycsSkSZPEgQMHREJCgti5c6e47777RMuWLUVhYaG8jLqyb6v6HAshRFZWlnB2dhZLly6t8P66tF+rOtYIUfX3b2lpqbj33ntFv379xIkTJ8S2bduEr6+vmDp1qkl1YcCpxEcffSSaNWsm1Gq16Nq1qzh48KCtq1RrACp9fPbZZ0IIIZKSkkTPnj2Fl5eX0Gg0okWLFuK1114TWVlZtq14DQ0bNkw0btxYqNVq0aRJEzFs2DBx/vx5+fWCggLx4osvikaNGglnZ2cxePBgkZycbMMa18727dsFABEfH280v67v1927d1f6uR01apQQQhoqPn36dOHv7y80Go3o27dvhd9BRkaGGD58uHB1dRXu7u5izJgxIicnxwZbU7W7bW9CQsId/453794thBDi6NGjIjIyUnh4eAitVivatGkj3n77baNQYC/utq35+fmiX79+wtfXVzg6Oorg4GAxduzYCv9o1pV9W9XnWAghli9fLpycnERmZmaF99el/VrVsUaI6n3/JiYmigEDBggnJyfh4+Mj/vOf/4iSkhKT6qK4VSEiIiKieoN9cIiIiKjeYcAhIiKieocBh4iIiOodBhwiIiKqdxhwiIiIqN5hwCEiIqJ6hwGHiIiI6h0GHCIiIqp3GHCIiIio3mHAISIionqHAYeIiIjqnf8PpNllOoSrXCwAAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "to_plot = []\n", "params_history = []\n", "params = best_params.copy()\n", "for n_estimators in range(1, 201, 10):\n", " params['n_estimators'] = n_estimators\n", " params_history.append(params['n_estimators'])\n", " print(params['n_estimators'])\n", " process_params = {key: params[key] for key in ['baseline_lam', 'baseline_p', 'smooth_window_length', 'smooth_polyorder']}\n", " classifier_params = {key: params[key] for key in best_params.keys() if key not in ['baseline_lam', 'baseline_p', 'smooth_window_length', 'smooth_polyorder']}\n", " X_train, X_test = process_train_test(process_params, experiments_train, metadata_train, experiments_test, metadata_test, scale=True)\n", " to_plot.append(evaluate_classifier_params(RandomForestClassifier, classifier_params, X_train, truth_train, X_test, truth_test, iters=10))\n", "best_params['n_estimators'] = params_history[list(map(lambda x: x[1], to_plot)).index(max(map(lambda x: x[1], to_plot)))]\n", "_ = plt.plot(range(1, 201, 10), to_plot)\n", "_ = plt.title(\"Impact of varying number of trees\")\n", "_ = plt.legend([\"training loss\", \"validation loss\"])\n", "plt.savefig('../images/random_forest/vary_tree_number.svg', format='svg', dpi=1200)" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-05-01T10:12:17.984926100Z", "start_time": "2024-05-01T10:09:44.735234400Z" } }, "id": "a12b68fb6514154c", "execution_count": 28 }, { "cell_type": "code", "outputs": [ { "data": { "text/plain": "(1.0, 0.9720338983050848)" }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "process_params = {key: best_params[key] for key in ['baseline_lam', 'baseline_p', 'smooth_window_length', 'smooth_polyorder']}\n", "classifier_params = {key: best_params[key] for key in best_params.keys() if key not in ['baseline_lam', 'baseline_p', 'smooth_window_length', 'smooth_polyorder']}\n", "X_train, X_test = process_train_test(process_params, experiments_train, metadata_train, experiments_test, metadata_test, scale=True)\n", "evaluate_classifier_params(RandomForestClassifier, classifier_params, X_train, truth_train, X_test, truth_test, iters=20)" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-05-01T10:26:49.701212600Z", "start_time": "2024-05-01T10:26:40.117568500Z" } }, "id": "f4a13b062b66fa12", "execution_count": 32 }, { "cell_type": "markdown", "source": [ "# Removing data" ], "metadata": { "collapsed": false }, "id": "cb73da091b1f3d9c" }, { "cell_type": "code", "outputs": [], "source": [ "process_params = {key: best_params[key] for key in ['baseline_lam', 'baseline_p', 'smooth_window_length', 'smooth_polyorder']}\n", "X_train, X_test = process_train_test(process_params, experiments_train, metadata_train, experiments_test, metadata_test, scale=False)" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-05-01T10:29:17.129159200Z", "start_time": "2024-05-01T10:29:15.119157800Z" } }, "id": "ea25ffb654d57354", "execution_count": 36 }, { "cell_type": "code", "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0 1748 0.9678062678062677\n", "0.05 1748 0.9735042735042734\n", "0.1 1432 0.9697293447293447\n", "0.15 580 0.9829772079772079\n", "0.2 268 0.9866096866096866\n", "0.25 137 0.9827635327635328\n", "0.3 89 0.9733618233618232\n", "0.35 58 0.9734330484330483\n", "0.4 40 0.9544159544159545\n", "0.45 30 0.9544871794871795\n", "0.5 16 0.9412393162393162\n", "0.55 10 0.922150997150997\n" ] } ], "source": [ "param_grid = {\n", " 'n_estimators': range(1, 201, 100),\n", " 'max_depth': range(5, 21, 5)\n", "}\n", "results = []\n", "X_size = []\n", "for min_std in [0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55]:\n", " to_drop = X_train.std() > min_std\n", " X_train_small = X_train.loc[:, to_drop]\n", " X_size.append(len(X_train_small.columns))\n", "\n", " scaler = StandardScaler()\n", " scaler.fit(X_train_small)\n", " X_train_small = scaler.transform(X_train_small)\n", " \n", " hyper_results = []\n", " for params in ParameterGrid(param_grid):\n", " try:\n", " clf = RandomForestClassifier(**params)\n", " hyper_results.append([params, cross_validate(clf, X_train_small, truth_train.to_numpy().ravel(), cv=20, return_estimator=True)])\n", " except Exception as e:\n", " pass # print(params, e)\n", " \n", " crossval_res = 0\n", " best_params = dict()\n", " for r in hyper_results:\n", " mean = np.mean(r[1]['test_score'])\n", " if mean > crossval_res:\n", " crossval_res = mean\n", " best_params = r[0]\n", " \n", " print(min_std, X_size[-1], crossval_res)\n", " results.append(crossval_res)" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-05-01T10:35:52.528405500Z", "start_time": "2024-05-01T10:29:18.116993Z" } }, "id": "8e64395e456294ff", "execution_count": 37 }, { "cell_type": "code", "outputs": [ { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAHHCAYAAAChjmJTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABWOklEQVR4nO3deXgT1f4G8HeSNumebrRpoQtlXwoIaCnIpkhZBURQQBZl8Sq4VRC4l5+CKCAggop68cqi9gpyBVRUZAeFshXKUqBsLQVpy9IlXaBJk/P7o3QktEALaZM07+d55oGcOTPzzYD0dc6ZGUkIIUBERERkRxTWLoCIiIioshhgiIiIyO4wwBAREZHdYYAhIiIiu8MAQ0RERHaHAYaIiIjsDgMMERER2R0GGCIiIrI7DDBERERkdxhgiMjuzZs3DxEREVAqlWjVqtVd+37zzTdo3LgxnJ2d4e3tXS31EZHlMcAQ2YjPPvsMkiQhKirK2qVUif/+979YuHChxfe7ceNGvPXWW+jQoQOWLVuGWbNm3bHvyZMnMWrUKNSrVw9ffvkllixZYvF6AGD37t2YPn06cnJyqmT/RARIfBcSkW3o0KEDLl26hNTUVJw+fRr169e3dkkW1adPHxw7dgypqakW3e+UKVMwb948XL9+HSqV6q59v/jiC7z00ktVfn7nz5+PSZMmISUlBeHh4VV2HCJHxiswRDYgJSUFu3fvxoIFC1CrVi3ExcVZuyS7cfnyZbi6ut4zvJT2BWC3Q0cFBQXWLoHIZjDAENmAuLg4+Pj4oHfv3nj66afLDTCpqamQJAnz58/H4sWLERERATc3N3Tv3h0XLlyAEAIzZ85EnTp14Orqin79+iErK6vMfj777DM0a9YMarUawcHBGD9+fJmhjvDwcIwaNarMtl26dEGXLl3kz9u3b4ckSfj+++/x/vvvo06dOnBxccHjjz+OM2fOmG33yy+/4Pz585AkCZIk3fPKRHFxMWbOnIl69epBrVYjPDwc//znP1FUVCT3kSQJy5YtQ0FBgbzf5cuXl7u/8PBwvPPOOwCAWrVqQZIkTJ8+XV7/22+/oWPHjnB3d4enpyd69+6NpKQks30cOXIEo0aNQkREBFxcXKDVavHCCy/g2rVrcp/p06dj0qRJAIC6devKdaWmpsp/huXVeHs906dPhyRJOH78OIYOHQofHx88+uij8vpvv/0Wbdq0gaurK3x9ffHss8/iwoULZvs8ffo0Bg4cCK1WCxcXF9SpUwfPPvsscnNz73ruieyBk7ULIKKSAPPUU09BpVJhyJAh+Pzzz7F//348/PDD5fbV6/V45ZVXkJWVhblz52Lw4MF47LHHsH37dkyePBlnzpzBJ598gokTJ2Lp0qXyttOnT8eMGTPQrVs3vPTSS0hOTpaPtWvXLjg7O99X/XPmzIFCocDEiRORm5uLuXPnYtiwYdi7dy8A4F//+hdyc3Nx8eJFfPTRRwAADw+Pu+5zzJgxWLFiBZ5++mm8+eab2Lt3L2bPno0TJ05g7dq1AEom5C5ZsgT79u3Df/7zHwBA+/bty93fwoUL8fXXX2Pt2rX4/PPP4eHhgRYtWsj7GTlyJGJiYvDBBx+gsLAQn3/+OR599FEcOnRIDlubNm3CuXPn8Pzzz0Or1SIpKQlLlixBUlIS9uzZA0mS8NRTT+HUqVP47rvv8NFHH8Hf3x9ASWi6cuVKpc/toEGD0KBBA8yaNQulI/7vv/8+/u///g+DBw/GmDFjcOXKFXzyySfo1KkTDh06BG9vb+j1esTExKCoqAivvPIKtFot/vrrL6xfvx45OTnQaDSVroXIpggisqoDBw4IAGLTpk1CCCFMJpOoU6eOeO2118z6paSkCACiVq1aIicnR26fOnWqACBatmwpDAaD3D5kyBChUqnEjRs3hBBCXL58WahUKtG9e3dhNBrlfp9++qkAIJYuXSq3hYWFiZEjR5aptXPnzqJz587y523btgkAokmTJqKoqEhuX7RokQAgjh49Krf17t1bhIWFVeicJCYmCgBizJgxZu0TJ04UAMTWrVvltpEjRwp3d/cK7fedd94RAMSVK1fktry8POHt7S3Gjh1r1jcjI0NoNBqz9sLCwjL7/O677wQAsXPnTrlt3rx5AoBISUkx61v6Z7hs2bIy+wEg3nnnnTK1DhkyxKxfamqqUCqV4v333zdrP3r0qHBycpLbDx06JACI1atXl38yiOwch5CIrCwuLg6BgYHo2rUrgJKhhGeeeQYrV66E0Wgs03/QoEFm//dcetfSc889BycnJ7N2vV6Pv/76CwCwefNm6PV6vP7661Ao/v5Pf+zYsfDy8sIvv/xy39/h+eefN5uD0rFjRwDAuXPn7mt/v/76KwAgNjbWrP3NN98EgAeq9XabNm1CTk4OhgwZgqtXr8qLUqlEVFQUtm3bJvd1dXWVf3/jxg1cvXoV7dq1AwAcPHjQYjXd6h//+IfZ5zVr1sBkMmHw4MFm9Wq1WjRo0ECut/TvyO+//47CwsIqqY3ImjiERGRFRqMRK1euRNeuXZGSkiK3R0VF4cMPP8SWLVvQvXt3s21CQ0PNPpf+oAoJCSm3PTs7GwBw/vx5AECjRo3M+qlUKkRERMjr78ftNfn4+Jgdu7LOnz8PhUJR5k4hrVYLb2/vB6r1dqdPnwYAPPbYY+Wu9/Lykn+flZWFGTNmYOXKlfKE4FJVNa+kbt26Zp9Pnz4NIQQaNGhQbv/SYcC6desiNjYWCxYsQFxcHDp27Ignn3wSzz33HIePqEZggCGyoq1btyI9PR0rV67EypUry6yPi4srE2CUSmW5+7pTu7iPJyVIklRuu9FoLPc4ljx2ReqwJJPJBKBkHoxWqy2z/tarWoMHD8bu3bsxadIktGrVCh4eHjCZTOjRo4e8n7u523m9k1uv+pTWK0kSfvvtt3LP+61ziz788EOMGjUKP/74IzZu3IhXX30Vs2fPxp49e1CnTp171ktkyxhgiKwoLi4OAQEBWLx4cZl1a9aswdq1a/HFF1+U+SF2P8LCwgAAycnJiIiIkNv1ej1SUlLQrVs3uc3Hx6fch7CdP3/ebNvKqEwYCQsLg8lkwunTp9GkSRO5PTMzEzk5OfJ3sYR69eoBAAICAszOwe2ys7OxZcsWzJgxA2+//bbcXnoF51Z3+q6lV6ZuP7eVuaJUr149CCFQt25dNGzY8J79IyMjERkZiWnTpmH37t3o0KEDvvjiC7z33nsVPiaRLeIcGCIruX79OtasWYM+ffrg6aefLrNMmDABeXl5+OmnnyxyvG7dukGlUuHjjz82uzLy1VdfITc3F71795bb6tWrhz179kCv18tt69evL3ObbmW4u7tXeJilV69eAFDmyb0LFiwAALNaH1RMTAy8vLwwa9YsGAyGMutL7xwqvdpx+1Wl8p4u7O7uDqBsUPHy8oK/vz927txp1v7ZZ59VuN6nnnoKSqUSM2bMKFOLEEK+pVun06G4uNhsfWRkJBQKhdmt6ET2ildgiKzkp59+Ql5eHp588sly17dr105+qN0zzzzzwMerVasWpk6dihkzZqBHjx548sknkZycjM8++wwPP/wwnnvuObnvmDFj8L///Q89evTA4MGDcfbsWXz77bfy1Yr70aZNG6xatQqxsbF4+OGH4eHhgb59+5bbt2XLlhg5ciSWLFmCnJwcdO7cGfv27cOKFSvQv39/ecKzJXh5eeHzzz/H8OHD0bp1azz77LOoVasW0tLS8Msvv6BDhw749NNP4eXlhU6dOmHu3LkwGAyoXbs2Nm7caDZ36dbvCpTcPv7ss8/C2dkZffv2hbu7O8aMGYM5c+ZgzJgxaNu2LXbu3IlTp05VuN569erhvffew9SpU5Gamor+/fvD09MTKSkpWLt2LcaNG4eJEydi69atmDBhAgYNGoSGDRuiuLgY33zzDZRKJQYOHGix80dkNda7AYrIsfXt21e4uLiIgoKCO/YZNWqUcHZ2FlevXpVvwZ03b55Zn9JbmW+/XXbZsmUCgNi/f79Z+6effioaN24snJ2dRWBgoHjppZdEdnZ2mWN/+OGHonbt2kKtVosOHTqIAwcO3PE26tuPXd7twvn5+WLo0KHC29tbALjnLdUGg0HMmDFD1K1bVzg7O4uQkBAxdepU+bbwUg96G/Wt3yUmJkZoNBrh4uIi6tWrJ0aNGiUOHDgg97l48aIYMGCA8Pb2FhqNRgwaNEhcunSpzC3QQggxc+ZMUbt2baFQKMxuqS4sLBSjR48WGo1GeHp6isGDB4vLly/f8Tbq8moVQogffvhBPProo8Ld3V24u7uLxo0bi/Hjx4vk5GQhhBDnzp0TL7zwgqhXr55wcXERvr6+omvXrmLz5s0VOldEto7vQiIiIiK7wzkwREREZHcYYIiIiMjuMMAQERGR3WGAISIiIrvDAENERER2hwGGiIiI7E6NfZCdyWTCpUuX4OnpWS3vUyEiIqIHJ4RAXl4egoODoVDc+TpLjQ0wly5dKvN2XiIiIrIPFy5cuOtLR2tsgPH09ARQcgK8vLysXA0RERFVhE6nQ0hIiPxz/E5qbIApHTby8vJigCEiIrIz95r+wUm8REREZHcYYIiIiMjuMMAQERGR3WGAISIiIrvDAENERER2hwGGiIiI7A4DDBEREdkdBhgiIiKyOwwwREREZHcqHWB27tyJvn37Ijg4GJIkYd26dWbrJUkqd5k3b57cJzw8vMz6OXPmmO3nyJEj6NixI1xcXBASEoK5c+fe3zckIiKiGqfSAaagoAAtW7bE4sWLy12fnp5utixduhSSJGHgwIFm/d59912zfq+88oq8TqfToXv37ggLC0NCQgLmzZuH6dOnY8mSJZUtl4iIiGqgSr8LqWfPnujZs+cd12u1WrPPP/74I7p27YqIiAizdk9PzzJ9S8XFxUGv12Pp0qVQqVRo1qwZEhMTsWDBAowbN66yJRMREVENU6Uvc8zMzMQvv/yCFStWlFk3Z84czJw5E6GhoRg6dCjeeOMNODmVlBMfH49OnTpBpVLJ/WNiYvDBBx8gOzsbPj4+VVn2XV3LL8J1g9Fqx68oN5UTfN1V9+5IRERkh6o0wKxYsQKenp546qmnzNpfffVVtG7dGr6+vti9ezemTp2K9PR0LFiwAACQkZGBunXrmm0TGBgorysvwBQVFaGoqEj+rNPpLP11AAAzfj6Onw5fqpJ9W9qnQx9CnxbB1i6DiIjI4qo0wCxduhTDhg2Di4uLWXtsbKz8+xYtWkClUuHFF1/E7NmzoVar7+tYs2fPxowZMx6o3opwUkpQO9n2zVtCAHqjCf9aewyPhPsiwMvl3hsRERHZkSoLMH/88QeSk5OxatWqe/aNiopCcXExUlNT0ahRI2i1WmRmZpr1Kf18p3kzU6dONQtGOp0OISEhD/ANyrdgcCssGNzK4vu1JIPRhAGf7cKxv3T459qj+HJEW0iSZO2yiIiILKbKLiV89dVXaNOmDVq2bHnPvomJiVAoFAgICAAAREdHY+fOnTAYDHKfTZs2oVGjRnec/6JWq+Hl5WW2OCpnpQIfDmoFZ6WEzScuY83Bv6xdEhERkUVVOsDk5+cjMTERiYmJAICUlBQkJiYiLS1N7qPT6bB69WqMGTOmzPbx8fFYuHAhDh8+jHPnziEuLg5vvPEGnnvuOTmcDB06FCqVCqNHj0ZSUhJWrVqFRYsWmV1hobtrpPXE690aAgCm/5yEjNwbVq6IiIjIciQhhKjMBtu3b0fXrl3LtI8cORLLly8HACxZsgSvv/460tPTodFozPodPHgQL7/8Mk6ePImioiLUrVsXw4cPR2xsrNn8lyNHjmD8+PHYv38//P398corr2Dy5MkVrlOn00Gj0SA3N9dhr8YUG00Y+PluHL6Yi66NamHpqIc5lERERDatoj+/Kx1g7AUDTInTmXno/fGf0BtNmPt0Cwxua/l5QURERJZS0Z/ftn07DT2wBoGeiO1eMpQ08+fjuJRz3coVERERPTgGGAcwtmMEHgr1Rl5RMaasOYoaetGNiIgcCAOMA1AqJMwf1BJqJwV2nrqCVfsvWLskIiKiB8IA4yDq1fLApJhGAID3fjmBi9mFVq6IiIjo/jHAOJDnO9RF2zAf5BcVY/IPRziUREREdosBxoEoFRLmPt0CLs4K7DpzDXF70+69ERERkQ1igHEwEbU88FZMYwDArF9P4EIWh5KIiMj+MMA4oFHtw/FIuC8K9Ua89b8jMJk4lERERPaFAcYBKRQS5g1qAVdnJeLPXcO3e89buyQiIqJKYYBxUGF+7pjSs2QoafavJ3H+WoGVKyIiIqo4BhgHNrxdGNpF+OK6wYhJHEoiIiI7wgDjwBQKCfOebgk3lRL7UrKwIj7V2iURERFVCAOMgwvxdcM/ezUBAHyw4SRSrnIoiYiIbB8DDGFYVCg61PfDDYMJk1YfhpFDSUREZOMYYAiSJOGDgS3grlLiwPlsLNuVYu2SiIiI7ooBhgAAdXzcMK1PUwDAvN+TcfZKvpUrIiIiujMGGJI9+3AIOjbwR1GxCRM5lERERDaMAYZkpUNJnmonHErLwX/+OGftkoiIiMrFAENmgr1d8X83h5I+3HQKpzPzrFwRERFRWQwwVMagtnXQpVEt6G8OJRUbTdYuiYiIyAwDDJUhSRLmPNUCni5OOHwxF//eyaEkIiKyLQwwVC6txgXT+zYDACzafBrJGRxKIiIi28EAQ3f0VOva6NYkAHpjyVCSgUNJRERkIxhg6I4kScKsAZHQuDrj6F+5+GL7WWuXREREBIABhu4hwMsFM54sGUr6eOtpnEjXWbkiIiIiBhiqgH6tgtG9aSAMRoE3v+dQEhERWR8DDN2TJEl4f0AkfNyccTxdh8Xbzli7JCIicnAMMFQhtTzVmNGvOQDg061ncOyvXCtXREREjowBhiqsb4sg9GyuRbFJYOLqw9AXcyiJiIisgwGGKkySJMzs3xy+7iqczMjDJ1tPW7skIiJyUAwwVCn+HmrMvDmU9Nn2szh6kUNJRERU/RhgqNJ6twhCnxZBMJoE3lydiKJio7VLIiIiB8MAQ/fl3X7N4e+hwqnMfCzazKEkIiKqXgwwdF983VV4r38kAOCLHWeReCHHugUREZFDYYCh+9ajuRb9WgXDJICJqw/jhoFDSUREVD0YYOiBTO/bDLU81ThzOR8fbT5l7XKIiMhBMMDQA/FxV2HWgJKhpC93nkPC+WwrV0RERI6AAYYe2BNNA/HUQ7VhEsAkDiUREVE1qHSA2blzJ/r27Yvg4GBIkoR169aZrR81ahQkSTJbevToYdYnKysLw4YNg5eXF7y9vTF69Gjk5+eb9Tly5Ag6duwIFxcXhISEYO7cuZX/dlRt3unbDAGeapy7WoD5vydbuxwiIqrhKh1gCgoK0LJlSyxevPiOfXr06IH09HR5+e6778zWDxs2DElJSdi0aRPWr1+PnTt3Yty4cfJ6nU6H7t27IywsDAkJCZg3bx6mT5+OJUuWVLZcqiYaN2fMGVgylPTVrhQcSM2yckVERFSTOVV2g549e6Jnz5537aNWq6HVastdd+LECWzYsAH79+9H27ZtAQCffPIJevXqhfnz5yM4OBhxcXHQ6/VYunQpVCoVmjVrhsTERCxYsMAs6JBteaxxIAa1qYPVCRcxcfVh/PZaJ7iqlNYui4iIaqAqmQOzfft2BAQEoFGjRnjppZdw7do1eV18fDy8vb3l8AIA3bp1g0KhwN69e+U+nTp1gkqlkvvExMQgOTkZ2dnlTxItKiqCTqczW6j6TevTFFovF6ReK8Tc309auxwiIqqhLB5gevToga+//hpbtmzBBx98gB07dqBnz54wGksmdmZkZCAgIMBsGycnJ/j6+iIjI0PuExgYaNan9HNpn9vNnj0bGo1GXkJCQiz91agCNK5/DyUt25WKveeu3WMLIiKiyrN4gHn22Wfx5JNPIjIyEv3798f69euxf/9+bN++3dKHMjN16lTk5ubKy4ULF6r0eHRnXRoF4NmHSwLkpP8dQaG+2MoVERFRTVPlt1FHRETA398fZ86cAQBotVpcvnzZrE9xcTGysrLkeTNarRaZmZlmfUo/32lujVqthpeXl9lC1vOv3k0QrHFBWlYhPviNQ0lERGRZVR5gLl68iGvXriEoKAgAEB0djZycHCQkJMh9tm7dCpPJhKioKLnPzp07YTAY5D6bNm1Co0aN4OPjU9UlkwV4ujhj7tMtAQAr4s9j99mrVq6IiIhqkkoHmPz8fCQmJiIxMREAkJKSgsTERKSlpSE/Px+TJk3Cnj17kJqaii1btqBfv36oX78+YmJiAABNmjRBjx49MHbsWOzbtw+7du3ChAkT8OyzzyI4OBgAMHToUKhUKowePRpJSUlYtWoVFi1ahNjYWMt9c6pyjzbwx9CoUADAW/87gvwiDiUREZGFiEratm2bAFBmGTlypCgsLBTdu3cXtWrVEs7OziIsLEyMHTtWZGRkmO3j2rVrYsiQIcLDw0N4eXmJ559/XuTl5Zn1OXz4sHj00UeFWq0WtWvXFnPmzKlUnbm5uQKAyM3NrexXJAvKu2EQ7WdvEWGT14t/rjli7XKIiMjGVfTntySEEFbMT1VGp9NBo9EgNzeX82GsbPeZqxj6n5Jb5L8dHYVHG/hbuSIiIrJVFf35zXchUZVrX98fI6LDAACTfziCvBuGe2xBRER0dwwwVC0m92iMUF83/JVzHbN+PWHtcoiIyM4xwFC1cFc7Ye7TLQAA3+27gB2nrli5IiIismcMMFRt2kX4YVT7cADAlB+OQMehJCIiuk8MMFSt3urRCOF+bkjPvYH31h+3djlERGSnGGCoWrmpnDBvUEtIEvD9gYvYw3clERHRfWCAoWr3cLgvnm5dBwCw4Vj5L+ckIiK6GwYYsoqujUveSM4rMEREdD8YYMgqHqnrCwA4mZGH7AK9lashIiJ7wwBDVuHvoUaDAA8AwN6ULCtXQ0RE9oYBhqymXYQfAA4jERFR5THAkNWUBhhegSEiospigCGr+XsejA45hZwHQ0REFccAQ1ZTy1ON+gEeEIJXYYiIqHIYYMiq2kWUXIXZe44BhoiIKo4Bhqwqqi4n8hIRUeUxwJBVRd28AnMiQ4fcQr7ckYiIKoYBhqwqwNMF9Wq5QwhgXyqHkYiIqGIYYMjq+DwYIiKqLAYYsrooBhgiIqokBhiyunY3nwdzPJ3zYIiIqGIYYMjqArxcEHFzHsx+zoMhIqIKYIAhm8DbqYmIqDIYYMgmlD7Qbk8KAwwREd0bAwzZhNI7kY5f0iH3OufBEBHR3THAkE0I9HJBhL87TAI4wHkwRER0DwwwZDNKn8rLeTBERHQvDDBkM/5+oB2vwBAR0d0xwJDNKL0TKelSLnQ3OA+GiIjujAGGbIZW44JwPzfOgyEiontigCGbwmEkIiKqCAYYsimlAWYvJ/ISEdFdMMCQTSm9E+noX7nI4zwYIiK6AwYYsilBGleEyfNgsq1dDhER2SgGGLI57fheJCIiugcGGLI57eqVvheJE3mJiKh8DDBkc0qfB3OM82CIiOgOKh1gdu7cib59+yI4OBiSJGHdunXyOoPBgMmTJyMyMhLu7u4IDg7GiBEjcOnSJbN9hIeHQ5Iks2XOnDlmfY4cOYKOHTvCxcUFISEhmDt37v19Q7I7wd6uCPV1g9EkcOA858EQEVFZlQ4wBQUFaNmyJRYvXlxmXWFhIQ4ePIj/+7//w8GDB7FmzRokJyfjySefLNP33XffRXp6ury88sor8jqdTofu3bsjLCwMCQkJmDdvHqZPn44lS5ZUtlyyU+1u3o20l8+DISKicjhVdoOePXuiZ8+e5a7TaDTYtGmTWdunn36KRx55BGlpaQgNDZXbPT09odVqy91PXFwc9Ho9li5dCpVKhWbNmiExMRELFizAuHHjKlsy2aGoun74/sBFTuQlIqJyVfkcmNzcXEiSBG9vb7P2OXPmwM/PDw899BDmzZuH4uJieV18fDw6deoElUolt8XExCA5ORnZ2eUPKRQVFUGn05ktZL9ufR5MflHxPXoTEZGjqdIAc+PGDUyePBlDhgyBl5eX3P7qq69i5cqV2LZtG1588UXMmjULb731lrw+IyMDgYGBZvsq/ZyRkVHusWbPng2NRiMvISEhVfCNqLrU8XFDiK8rjCaBBM6DISKi21R6CKmiDAYDBg8eDCEEPv/8c7N1sbGx8u9btGgBlUqFF198EbNnz4Zarb6v402dOtVsvzqdjiHGzrWr64cLWSXDSJ0b1rJ2OUREZEOq5ApMaXg5f/48Nm3aZHb1pTxRUVEoLi5GamoqAECr1SIzM9OsT+nnO82bUavV8PLyMlvIvkVF8IF2RERUPosHmNLwcvr0aWzevBl+fn733CYxMREKhQIBAQEAgOjoaOzcuRMGw9/PANm0aRMaNWoEHx8fS5dMNiqqbsk8mCMXc1HAeTBERHSLSgeY/Px8JCYmIjExEQCQkpKCxMREpKWlwWAw4Omnn8aBAwcQFxcHo9GIjIwMZGRkQK/XAyiZoLtw4UIcPnwY586dQ1xcHN544w0899xzcjgZOnQoVCoVRo8ejaSkJKxatQqLFi0yGyKimi/E1w11fDgPhoiIypKEEKIyG2zfvh1du3Yt0z5y5EhMnz4ddevWLXe7bdu2oUuXLjh48CBefvllnDx5EkVFRahbty6GDx+O2NhYs/kvR44cwfjx47F//374+/vjlVdeweTJkytcp06ng0ajQW5uLoeT7Nib3x/GDwcv4uUu9fBWj8bWLoeIiKpYRX9+VzrA2AsGmJph9YELmPS/I2gd6o01L3ewdjlERFTFKvrzm+9CIpvW7uZE3iMXc1Go5zwYIiIqwQBDNi3E1w21vV1RzHkwRER0CwYYsnmlT+Xl7dRERFSKAYZsXjv5eTB8sSMREZVggCGbFy3Pg8nhPBgiIgLAAEN2oI6PK4I1LjAYBQ6ez7F2OUREZAMYYMjmSZJ0yzAS58EQEREDDNmJ0gCzN4UBhoiIGGDITpTeiZR4IQfX9UYrV0NERNbGAEN2IdTXDUGl82DS+DwYIiJHxwBDdoHzYIiI6FYMMGQ32t0cRtrL58EQETk8BhiyG1F1S67AcB4MERExwJDdCPNzg9bLBXqjCYc4D4aIyKExwJDdKJkHc/O9SCkcRiIicmQMMGRXojiRl4iIwABDdqb0TqTEtBzcMHAeDBGRo2KAIbsS7ueGQC/1zXkwOdYuh4iIrIQBhuyKJEny3UgcRiIiclwMMGR3+EA7IiJigCG7U3on0qELnAdDROSoGGDI7tT1d0eApxr6YhMSL+RYuxwiIrICBhiyO5Ik8XZqIiIHxwBDdkl+oB0DDBGRQ2KAIbtUOpH3EJ8HQ0TkkBhgyC5F+LvD30ONomITDnMeDBGRw2GAIbtk9l6kc3wvEhGRo2GAIbvF58EQETkuBhiyW6UB5mBaNoqKOQ+GiMiRMMCQ3apX69Z5MLnWLoeIiKoRAwzZrZLnwfB2aiIiR8QAQ3atdBhpbwoDDBGRI2GAIbvWrm7JFZiE85wHQ0TkSBhgyK7VD/CAn7sKNwwmHLnIeTBERI6CAYbsWsnzYG7eTn2Ww0hERI6CAYbsXukD7fam8IF2RESOggGG7F7pm6kPnM+Cvthk5WqIiKg6VDrA7Ny5E3379kVwcDAkScK6devM1gsh8PbbbyMoKAiurq7o1q0bTp8+bdYnKysLw4YNg5eXF7y9vTF69Gjk5+eb9Tly5Ag6duwIFxcXhISEYO7cuZX/duQQGgR4wFeeB5Nj7XKIiKgaVDrAFBQUoGXLlli8eHG56+fOnYuPP/4YX3zxBfbu3Qt3d3fExMTgxo0bcp9hw4YhKSkJmzZtwvr167Fz506MGzdOXq/T6dC9e3eEhYUhISEB8+bNw/Tp07FkyZL7+IpU0936XiQOIxEROQjxAACItWvXyp9NJpPQarVi3rx5cltOTo5Qq9Xiu+++E0IIcfz4cQFA7N+/X+7z22+/CUmSxF9//SWEEOKzzz4TPj4+oqioSO4zefJk0ahRowrXlpubKwCI3Nzc+/16ZEeW70oRYZPXi+f+s8fapRAR0QOo6M9vi86BSUlJQUZGBrp16ya3aTQaREVFIT4+HgAQHx8Pb29vtG3bVu7TrVs3KBQK7N27V+7TqVMnqFQquU9MTAySk5ORnZ1tyZKphii9E+lAajYMRs6DISKq6SwaYDIyMgAAgYGBZu2BgYHyuoyMDAQEBJitd3Jygq+vr1mf8vZx6zFuV1RUBJ1OZ7aQ4yidB3PdYOTzYIiIHECNuQtp9uzZ0Gg08hISEmLtkqgaKRQSHgnne5GIiByFRQOMVqsFAGRmZpq1Z2Zmyuu0Wi0uX75str64uBhZWVlmfcrbx63HuN3UqVORm5srLxcuXHjwL0R2pR1f7EhE5DAsGmDq1q0LrVaLLVu2yG06nQ579+5FdHQ0ACA6Oho5OTlISEiQ+2zduhUmkwlRUVFyn507d8JgMMh9Nm3ahEaNGsHHx6fcY6vVanh5eZkt5Fja1SuZB5NwnvNgiIhqukoHmPz8fCQmJiIxMRFAycTdxMREpKWlQZIkvP7663jvvffw008/4ejRoxgxYgSCg4PRv39/AECTJk3Qo0cPjB07Fvv27cOuXbswYcIEPPvsswgODgYADB06FCqVCqNHj0ZSUhJWrVqFRYsWITY21mJfnGqehgGe8HFzRqHeiKN/cR4MEVFN5lTZDQ4cOICuXbvKn0tDxciRI7F8+XK89dZbKCgowLhx45CTk4NHH30UGzZsgIuLi7xNXFwcJkyYgMcffxwKhQIDBw7Exx9/LK/XaDTYuHEjxo8fjzZt2sDf3x9vv/222bNiiG6nUEh4pK4vfk/KxJ5z19A6tPyrdUREZP8kIYSwdhFVQafTQaPRIDc3l8NJDmTZrhTM+Pk4OjWsha9feMTa5RARUSVV9Od3jbkLiQj4+3kwCalZnAdDRFSDMcBQjdIo0BPebs4o0BtxjPNgiIhqLAYYqlHMnwfD9yIREdVUDDBU45QOI/F5MERENRcDDNU4f78XKQvFnAdDRFQjMcBQjdNY6wmN6815MJf4TiwiopqIAYZqnNLnwQAcRiIiqqkYYKhGKh1G2ssAQ0RUIzHAUI0UdfMKzP7UbM6DISKqgRhgqEZqEuQFLxcn5BcVI4nzYIiIahwGGKqRlAoJj9Tl7dRERDUVAwzVWO0iSoaR9qbwgXZERDUNAwzVWKUTefen8HkwREQ1DQMM1VhNgrzg6eKEvKJiHE/nPBgiopqEAYZqLKVCku9G2sv3IhER1SgMMFSjRXEiLxFRjcQAQzVa6TyYfSlZMJqElashIiJLYYChGq1psBc81SXzYE5wHgwRUY3BAEM1mlIh4WG+F4mIqMZhgKEar/R5MAwwREQ1BwMM1Xjyix05D4aIqMZggKEar2nQzXkwNzgPhoiopmCAoRrPSalA23AfABxGIiKqKRhgyCGUDiPt4QPtiIhqBAYYcgjye5FSs2DiPBgiIrvHAEMOoVmwFzzUTsi9bsCJDM6DISKydwww5BDM58FwGImIyN4xwJDD+HseDCfyEhHZOwYYchilb6bel8J5MERE9o4BhhxG89oauKuUyL1uwMmMPGuXQ0RED4ABhhyGs1KBtuF8rQARUU3AAEMO5e/XCjDAEBHZMwYYcihRN1/suJfzYIiI7BoDDDmUyNoauKmUyCk0IDmT82CIiOwVAww5FM6DISKqGRhgyOGU3k69lw+0IyKyWwww5HBuncjLeTBERPaJAYYcTos6Grg6K5FdaMCpy5wHQ0RkjyweYMLDwyFJUpll/PjxAIAuXbqUWfePf/zDbB9paWno3bs33NzcEBAQgEmTJqG4uNjSpZKDcr7lvUgcRiIisk9Olt7h/v37YTQa5c/Hjh3DE088gUGDBsltY8eOxbvvvit/dnNzk39vNBrRu3dvaLVa7N69G+np6RgxYgScnZ0xa9YsS5dLDqpdhB/+OH0Ve85dw8j24dYuh4iIKsniAaZWrVpmn+fMmYN69eqhc+fOcpubmxu0Wm2522/cuBHHjx/H5s2bERgYiFatWmHmzJmYPHkypk+fDpVKZemSyQG1u+V5MEIISJJk5YqIiKgyqnQOjF6vx7fffosXXnjB7AdEXFwc/P390bx5c0ydOhWFhYXyuvj4eERGRiIwMFBui4mJgU6nQ1JS0h2PVVRUBJ1OZ7YQ3UlkbW+4OiuRVaDH6cv51i6HiIgqyeJXYG61bt065OTkYNSoUXLb0KFDERYWhuDgYBw5cgSTJ09GcnIy1qxZAwDIyMgwCy8A5M8ZGRl3PNbs2bMxY8YMy38JqpFUTgq0CfPBn2dKhpEaBnpauyQiIqqEKg0wX331FXr27Ing4GC5bdy4cfLvIyMjERQUhMcffxxnz55FvXr17vtYU6dORWxsrPxZp9MhJCTkvvdHNV+7CF85wIyIDrd2OUREVAlVNoR0/vx5bN68GWPGjLlrv6ioKADAmTNnAABarRaZmZlmfUo/32neDACo1Wp4eXmZLUR3Iz8P5lzJPBgiIrIfVRZgli1bhoCAAPTu3fuu/RITEwEAQUFBAIDo6GgcPXoUly9flvts2rQJXl5eaNq0aVWVSw6oRR1vuDgrcK1AjzOcB0NEZFeqJMCYTCYsW7YMI0eOhJPT36NUZ8+excyZM5GQkIDU1FT89NNPGDFiBDp16oQWLVoAALp3746mTZti+PDhOHz4MH7//XdMmzYN48ePh1qtropyyUGVzoMB+F4kIiJ7UyUBZvPmzUhLS8MLL7xg1q5SqbB582Z0794djRs3xptvvomBAwfi559/lvsolUqsX78eSqUS0dHReO655zBixAiz58YQWUq7uiXDSHv4QDsiIrsiiRo6+K/T6aDRaJCbm8v5MHRH+1OzMOiLePh7qLD/X934PBgiIiur6M9vvguJHFqLOhqonRS4mq/H2SucB0NEZC8YYMihqZ2U8jyYeA4jERHZDQYYcnilt1NzIi8Rkf1ggCGHF1X35nuR+DwYIiK7wQBDDq9liPfNeTBFOHulwNrlEBFRBTDAkMNzcVaidSifB0NEZE8YYIhwy2sFUjiRl4jIHjDAEAGIiiiZB7Pn3DXOgyEisgMMMEQAWoV4Q+WkwJW8Ipy7ynkwRES2jgGGCKXzYLwBcB4MEZE9YIAhuinq5nuR9vKBdkRENo8BhuimWx9ox3kwRES2jQGG6KaHQkvmwVzOK0IK58EQEdk0Bhiim1yclXgoxBsAb6cmIrJ1DDBEt4jie5GIiOwCAwzRLdrxeTBERHaBAYboFq1DfaBSKpCpK8L5a4XWLoeIiO6AAYboFi7OSrS6OQ+Gw0hERLaLAYboNrcOIxERkW1igCG6zd/Pg8niPBgiIhvFAEN0m4dCfeCslJChu4G0LM6DISKyRQwwRLdxVXEeDBGRrWOAISrHrcNIRERkexhgiMpRGmD28nkwREQ2iQGGqBytb86DuZR7Axeyrlu7HCIiug0DDFE5XFVKtKzjDQBYe+gv6xZDRERlMMAQ3cFz7cIAAJ9uO40T6TorV0NERLdigCG6g36tgvFE00AYjAKx3x+Gvthk7ZKIiOgmBhiiO5AkCbMGRMLHzRkn0nX4dOtpa5dEREQ3McAQ3UUtTzXeHxAJAFi8/SwOX8ixbkFERASAAYbonnpFBuHJlsEwmgTeXH0YNwxGa5dEROTwGGCIKuDdfs1Qy1ONM5fz8eHGZGuXQ0Tk8BhgiCrA202FDwaWDCX9588U7EvhE3qJiKyJAYaogh5rHIhn2oZACGDi6sMoKCq2dklERA6LAYaoEqb1aYLa3q5IyyrE7N9OWLscIiKHxQBDVAmeLs6Y93QLAMC3e9Kw89QVK1dEROSYGGCIKql9fX+Mah8OAJj8wxHkXjdYtyAiIgdk8QAzffp0SJJktjRu3Fhef+PGDYwfPx5+fn7w8PDAwIEDkZmZabaPtLQ09O7dG25ubggICMCkSZNQXMz5BmQ7JvdojLr+7kjPvYF3fz5u7XKIiBxOlVyBadasGdLT0+Xlzz//lNe98cYb+Pnnn7F69Wrs2LEDly5dwlNPPSWvNxqN6N27N/R6PXbv3o0VK1Zg+fLlePvtt6uiVKL74qpSYv6gFlBIwA8HL2JjUoa1SyIicihVEmCcnJyg1Wrlxd/fHwCQm5uLr776CgsWLMBjjz2GNm3aYNmyZdi9ezf27NkDANi4cSOOHz+Ob7/9Fq1atULPnj0xc+ZMLF68GHq9virKJbovbcJ8Ma5TPQDAP9ceRVYB/34SEVWXKgkwp0+fRnBwMCIiIjBs2DCkpaUBABISEmAwGNCtWze5b+PGjREaGor4+HgAQHx8PCIjIxEYGCj3iYmJgU6nQ1JS0h2PWVRUBJ1OZ7YQVbU3nmiAhoEeuJqvx7R1RyGEsHZJREQOweIBJioqCsuXL8eGDRvw+eefIyUlBR07dkReXh4yMjKgUqng7e1ttk1gYCAyMkouwWdkZJiFl9L1pevuZPbs2dBoNPISEhJi2S9GVA61kxILBreCk0LCr0cz8PORdGuXRETkECweYHr27IlBgwahRYsWiImJwa+//oqcnBx8//33lj6UmalTpyI3N1deLly4UKXHIyrVvLYGrzzWAADwf+uO4bLuhpUrIiKq+ar8Nmpvb280bNgQZ86cgVarhV6vR05OjlmfzMxMaLVaAIBWqy1zV1Lp59I+5VGr1fDy8jJbiKrLy13rIbK2BrnXDZiyhkNJRERVrcoDTH5+Ps6ePYugoCC0adMGzs7O2LJli7w+OTkZaWlpiI6OBgBER0fj6NGjuHz5stxn06ZN8PLyQtOmTau6XKL74qxU4MPBLaFyUmDryctYfeCitUsiIqrRLB5gJk6ciB07diA1NRW7d+/GgAEDoFQqMWTIEGg0GowePRqxsbHYtm0bEhIS8PzzzyM6Ohrt2rUDAHTv3h1NmzbF8OHDcfjwYfz++++YNm0axo8fD7VabelyiSymYaAnJnZvCAB4d/1xXMwutHJFREQ1l8UDzMWLFzFkyBA0atQIgwcPhp+fH/bs2YNatWoBAD766CP06dMHAwcORKdOnaDVarFmzRp5e6VSifXr10OpVCI6OhrPPfccRowYgXfffdfSpRJZ3OhHI9A2zAf5RcV4639HYDJxKImIqCpIooYO1ut0Omg0GuTm5nI+DFWr1KsF6LnoD1w3GDHjyWYYefO1A0REdG8V/fnNdyERWVi4vzv+2avk9RmzfzuBlKsFVq6IiKjmYYAhqgLDosLwaH1/3DCY8Ob3iTByKImIyKIYYIiqgEIh4YOnW8BT7YSDaTn48o9z1i6JiKhGYYAhqiK1vV3xdt+SW/8XbDyF5Iw8K1dERFRzMMAQVaGn29RBtyYB0BtNiP0+EQajydolERHVCAwwRFVIkiTMeioS3m7OSLqkw6dbz1i7JCKiGoEBhqiKBXi64L3+zQEAn247g6MXc61cERGR/WOAIaoGfVoEo0+LIBhNArHfJ+KGwWjtkoiI7BoDDFE1mdmvOfw91Dh9OR8fbTpl7XKIiOwaAwxRNfFxV2HOU5EAgCV/nMOB1CwrV0REZL8YYIiqUbemgRjUpg6EAN5cfRiF+mJrl0REZJcYYIiq2f/1bYpgjQvOXyvEnN9OWrscIiK7xABDVM28XJwx9+mWAICv48/jz9NXrVwREZH9YYAhsoJHG/hjRHQYAOCt/x2G7obByhUREdkXBhgiK5nSszHC/NxwKfcGZv583NrlEBHZFQYYIitxUzlh/qCWkCRgdcJFbD6eae2SiIjsBgMMkRU9HO6LsR0jAABT1hxFdoHeyhUREdkHBhgiK4t9oiHqB3jgan4R/u/HY9Yuh4jILjDAEFmZi7MSCwa3hFIhYf2RdPx8+JK1SyIisnkMMEQ2oEUdb4zvWh8A8H8/HsPlvBtWroiIyLYxwBDZiAld66NZsBdyCg2Y+sNRCCGsXRIRkc1igCGyESonBT4c3BIqpQJbTl7G/xIuWrskIiKbxQBDZEMaa73wxhMNAQDv/nwcf+Vct3JFRES2iQGGyMaM6xSBh0K9kVdUjMn/OwKTiUNJRES3Y4AhsjFKhYQPB7WEi7MCf565iri9561dEhGRzWGAIbJBEbU8MKVHYwDArF9PIvVqgZUrIiKyLQwwRDZqRHQ4oiP8cN1gxMTVh2HkUBIRkYwBhshGKRQS5j7dAh5qJxw4n42v/jxn7ZKIiGwGAwyRDQvxdcP/9WkCAJj/+ymcysyzckVERLaBAYbIxg1uG4KujWpBbzThze8Pw2A0WbskIiKrY4AhsnGSJGHOwBbQuDrj6F+5+GzbWWuXRERkdQwwRHYg0MsF7/ZrBgD4ZOtpHPsr18oVERFZFwMMkZ14smUwekVqUWwSiP0+EUXFRmuXRERkNQwwRHZCkiTM7Ncc/h4qnMrMx0ebTlu7JCIiq2GAIbIjfh5qvD8gEgCwZOdZJJzPsnJFRETWwQBDZGdimmnxVOvaMAngze8Po1BfbO2SiIiqHQMMkR16p28zaL1ckHqtEHM3JFu7HCKiamfxADN79mw8/PDD8PT0REBAAPr374/kZPN/YLt06QJJksyWf/zjH2Z90tLS0Lt3b7i5uSEgIACTJk1CcTH/T5MIADSuzpj7dAsAwPLdqfhky2lO6iUih2LxALNjxw6MHz8ee/bswaZNm2AwGNC9e3cUFJi/jG7s2LFIT0+Xl7lz58rrjEYjevfuDb1ej927d2PFihVYvnw53n77bUuXS2S3OjWshec7hAMAPtx0Cr0W/YE9565ZtygiomoiCSGq9A1xV65cQUBAAHbs2IFOnToBKLkC06pVKyxcuLDcbX777Tf06dMHly5dQmBgIADgiy++wOTJk3HlyhWoVKp7Hlen00Gj0SA3NxdeXl4W+z5EtkQIgR8TL+G9X47jar4eADCwdR38s1dj+HmorVwdEVHlVfTnd5XPgcnNLXnglq+vr1l7XFwc/P390bx5c0ydOhWFhYXyuvj4eERGRsrhBQBiYmKg0+mQlJRU1SUT2Q1JktD/odrYEtsFw6JCIUnADwcv4rEPd2DlvjSY+AZrIqqhnKpy5yaTCa+//jo6dOiA5s2by+1Dhw5FWFgYgoODceTIEUyePBnJyclYs2YNACAjI8MsvACQP2dkZJR7rKKiIhQVFcmfdTqdpb8Okc3SuDnj/QGRGNimDv619hhOpOswZc1RrE64iPcHNEdjLa9CElHNUqUBZvz48Th27Bj+/PNPs/Zx48bJv4+MjERQUBAef/xxnD17FvXq1buvY82ePRszZsx4oHqJ7F3rUB/8PKEDlu9OxYJNp5BwPht9Pv4TozvWxWuPN4Cbqkr/kyciqjZVNoQ0YcIErF+/Htu2bUOdOnXu2jcqKgoAcObMGQCAVqtFZmamWZ/Sz1qtttx9TJ06Fbm5ufJy4cKFB/0KRHbJSanAmI4R2BzbGTHNAlFsEvj3jnN4YsFObD6eee8dEBHZAYsHGCEEJkyYgLVr12Lr1q2oW7fuPbdJTEwEAAQFBQEAoqOjcfToUVy+fFnus2nTJnh5eaFp06bl7kOtVsPLy8tsIXJkwd6u+PfwtvjPiLao7e2Kv3KuY8zXBzDu6wO4lHPd2uURET0Qi9+F9PLLL+O///0vfvzxRzRq1Ehu12g0cHV1xdmzZ/Hf//4XvXr1gp+fH44cOYI33ngDderUwY4dOwCU3EbdqlUrBAcHY+7cucjIyMDw4cMxZswYzJo1q0J18C4kor8V6ovx8ZYz+M8f51BsEnBTKRH7REOMah8OJyWfZ0lEtqOiP78tHmAkSSq3fdmyZRg1ahQuXLiA5557DseOHUNBQQFCQkIwYMAATJs2zazQ8+fP46WXXsL27dvh7u6OkSNHYs6cOXByqtgYPgMMUVknM3SYtvYYDpzPBgA0CfLC+wOao3Woj5UrIyIqYbUAYysYYIjKZzIJrE64gNm/nUROoQGSBAx5JBSTYxpD4+Zs7fKIyMHZzHNgiMi2KBQSnnk4FFtiO+PpNnUgBPDfvWl4fMF2rD10ETX0/2mIqIZhgCFyUH4easwf1BIrx7VD/QAPXM3X441VhzHsP3tx9kq+tcsjIrorBhgiB9cuwg+/vtoRk2IaQe2kwO6z19Bz4R9YsOkUbhj4gkgisk0MMEQElZMC47vWx6Y3OqNzw1rQG034eMtp9Fi4E3+cvmLt8oiIymCAISJZqJ8blj//MD4b1hqBXmqkXivE8K/24dXvDuFy3g1rl0dEJGOAISIzkiShV2QQNsd2xqj24VBIwE+HL+Hx+TvwTXwqjHxBJBHZAN5GTUR3dfRiLv617iiOXCx5s3zLOhq8PyASzWtrrFwZEdVEvI2aiCwiso4Ga1/ugHf7NYOn2gmHL+biyU//xIyfk5B3w2Dt8ojIQTHAENE9KRUSRkSHY/ObndGnRRBMAli2KxXdFuzAr0fT+ewYIqp2DDBEVGGBXi74dGhrrHjhEYT5uSFTV4SX4w7iheX7cSGr0NrlEZEDYYAhokrr3LAWfn+9E159rD6clRK2JV/BEx/twOJtZ6AvNlm7PCJyAAwwRHRfXJyViO3eCL+91gntInxxw2DCvN+T0evjP7D33DVrl0dENRwDDBE9kPoBHvhubDssGNwSfu4qnLmcj2eW7MGk1YeRVaC3dnlEVEMxwBDRA5MkCU+1roMtb3bGkEdCAQCrEy7isQ+34/v9F2Dis2OIyML4HBgisriE81n419pjOJmRBwBoHeqNXpFBaBPmg2bBGqic+P9ORFS+iv78ZoAhoiphMJqwbFcKPtp0GtdveSmkykmBlnU0aB3mgzahPmgd5gN/D7UVKyUiW8IAwwBDZBMu5VzH2kN/4VBaNhLOZyO7sOzD78L93EoCzc2lQYAnlArJCtUSkbUxwDDAENkcIQRSrhYg4Xw2Dt4MNKcy88v081Q7oVWoN1qHlgSaVqHe8HJxtkLFRFTdGGAYYIjsQm6hAYcuZOPg+WwkpGXjUFoOCvVGsz6SBDQK9JSHndqE+SDMzw2SxKs0RDUNAwwDDJFdKjaakJyZVxJoboaaC1nXy/Tzc1eZDTtF1tbAxVlphYqJyJIYYBhgiGqMy7ob8pBTwvlsHPtLB73R/Im/zkoJzYI1cqBpE+aDQC8XK1VMRPeLAYYBhqjGumEwIulSrhxoEs7n4Gp+UZl+tb1dzQJNY60nnJS8hZvIljHAMMAQOQwhBC5mX78l0GTjZIYOtz8/z9VZiVYh3nKgeSjUG95uKusUTUTlYoBhgCFyaPlFxTh8IUcONAfTspF3o7hMv/oBHmgd6o2HQn1Qr5YH6vq7w99DxQnCRFbCAMMAQ0S3MJkEzlzJ/zvQnM/GuasF5fb1UDuhrr87wv3dUdfPDXVruSPczx0R/h7QuPF2bqKqxADDAENE93AtvwiH0nKQkJaNY3/lIuVqAf7KuY67/avo4+Z8S7hxl8NNXX93uKudqq94ohqKAYYBhojuww2DEReyCnHuagFSrxYg9VoBzl0p+TVTV3ai8K0CPNUI93dHRGnAubmE+rrxFm+iCqroz2/+7wIR0S1cnJVoEOiJBoGeZdYVFBUj9VoBUm6Gm5SrhUi5mo/Ua4XIKtDjcl4RLucVYV9Kltl2kgQEa1zlQHNryKnj4wpn3hlFVGm8AkNEZAG5hQakXCtAytV8pFwtvBlwSoJOXlHZycOlnBQSQnzdEO7nhrr+HqjrX/JruL8bgjWuUPCdUORgOITEAENENkAIgav5+pIrN1cKkHKt4O9wc60ANwymO26rclIg3M+tZI5NLXeE+ZbcIeXnoYa/hwq+7ip4qJ14xxTVKBxCIiKyAZIkoZanGrU81Xg43NdsnckkkKG7gdSrBfKcm5SrJSHnQlYh9MUmnMrML/eFl6VUTgr4u5eEGl93Ffw8VPD3UMPPvSTg+Huo4efx9+85F4dqCgYYIiIrUSgkBHu7ItjbFe3r+5utKzaa8FfO9ZJAczPcXMi+jmv5RbhWoMfV/CLcMJigLzbhUu4NXMq9UaFjuquUctjx91DBz9084Pjd1sb5OWSrGGCIiGyQk1KBMD93hPm5o0uj8vsU6otxLV+PawX6kmBz6+8Lbm8vgsEoUKA3oiCrEGlZhRWqQ+PqfDPU/B1s/G5e4SkNO6XDWd5uKig5Z4eqCQMMEZGdclM5wc3XCSG+bvfsK4RAXtHNwFMacPLvFHb0yCoogkkAudcNyL1uwLkr5T/071YKCfB2U8FdrYS7ygluKiXc1Td/VTnBTW53KulTzjp3tbJk/c02XgGiO2GAISJyAJIkwcvFGV4uJQ/iuxeTSSDnugFZBUW4mq+Xr+KY//p3AMopNMAkgKwCPbLunXUqTKVUlA03cshRwk1989dy15cflFRKBSc+1wAMMEREVIZCIcH35kTg+gH37m8wmpBdqEd2gQEF+mIUFhlLftUXo6DIaP6r3ojComLk3/a5UG+Ut9UbS+7O0htN0BeakFNosNh3c1aWhDmNqzO8XEt+LV28XJ1u+2y+nnd92Q4GGCIiemDOSgUCPF0Q4Olikf3pi024fjPQFBT9HXIK9MY7hKKS3xfcFoRKQlRJe1FxSSgyGIU8bFZZSoUELxcns4Bze8gpb/FydYan2onP9bEgBhgiIrI5KicFVE4Ki748s9hoQqHBiPwbxfLcntJFd3O5vb1kKYbuugF6owlGk0B2oQHZ93FFSJIAT7UTNG7lB5xbP3u6OEOlVEDtrCj59eb5UDsp5XOjUirgrJQc9oqQTQeYxYsXY968ecjIyEDLli3xySef4JFHHrF2WUREZIeclAp4KRXwcnFGsLdrpbYVQuCGwVQSdm7cDDaFZcPO7SGotO8NgwlCALobxdDdKMYFXLfId5KkknlCJeHmZthxVsptcvvNdbeGILWT+XZyMLo1KN0MT2qn8tf7uqngqrLOs4VsNsCsWrUKsbGx+OKLLxAVFYWFCxciJiYGycnJCAiowIAsERGRhUiSBFeVEq4qJbSayg+TFRUbyw04uYUG6Mq5IpR3oxj64pK5QPpiE4qKS37VF5tQbPr7AfpCAEU31+dZ8gtX0MJnWqH/Q7WtcGQbfpVAVFQUHn74YXz66acAAJPJhJCQELzyyiuYMmXKPbfnqwSIiKgmMpoEDEYTigwmFBmNcrCRQ44ceoxl2osMf6+/tY/e+He/W8NSSfvfx7h1fZHRhEXPtELPyCCLfj+7fpWAXq9HQkICpk6dKrcpFAp069YN8fHx5W5TVFSEoqK/X3Wv0+mqvE4iIqLqplRIUCqUN18LYbk5QvbGJp8QdPXqVRiNRgQGBpq1BwYGIiMjo9xtZs+eDY1GIy8hISHVUSoRERFZgU0GmPsxdepU5ObmysuFCxesXRIRERFVEZscQvL394dSqURmZqZZe2ZmJrRabbnbqNVqqNXq6iiPiIiIrMwmr8CoVCq0adMGW7ZskdtMJhO2bNmC6OhoK1ZGREREtsAmr8AAQGxsLEaOHIm2bdvikUcewcKFC1FQUIDnn3/e2qURERGRldlsgHnmmWdw5coVvP3228jIyECrVq2wYcOGMhN7iYiIyPHY7HNgHhSfA0NERGR/Kvrz2ybnwBARERHdDQMMERER2R0GGCIiIrI7DDBERERkdxhgiIiIyO4wwBAREZHdYYAhIiIiu2OzD7J7UKWPt9HpdFauhIiIiCqq9Of2vR5TV2MDTF5eHgAgJCTEypUQERFRZeXl5UGj0dxxfY19Eq/JZMKlS5fg6ekJSZIstl+dToeQkBBcuHCBT/h9ADyPlsHzaBk8j5bB82gZjn4ehRDIy8tDcHAwFIo7z3SpsVdgFAoF6tSpU2X79/Lycsi/WJbG82gZPI+WwfNoGTyPluHI5/FuV15KcRIvERER2R0GGCIiIrI7DDCVpFar8c4770CtVlu7FLvG82gZPI+WwfNoGTyPlsHzWDE1dhIvERER1Vy8AkNERER2hwGGiIiI7A4DDBEREdkdBhgiIiKyOwww5Vi8eDHCw8Ph4uKCqKgo7Nu37679V69ejcaNG8PFxQWRkZH49ddfq6lS21aZ85iUlISBAwciPDwckiRh4cKF1VeojavMefzyyy/RsWNH+Pj4wMfHB926dbvn319HUZnzuGbNGrRt2xbe3t5wd3dHq1at8M0331Rjtbarsv8+llq5ciUkSUL//v2rtkA7UZnzuHz5ckiSZLa4uLhUY7U2SpCZlStXCpVKJZYuXSqSkpLE2LFjhbe3t8jMzCy3/65du4RSqRRz584Vx48fF9OmTRPOzs7i6NGj1Vy5bansedy3b5+YOHGi+O6774RWqxUfffRR9RZsoyp7HocOHSoWL14sDh06JE6cOCFGjRolNBqNuHjxYjVXblsqex63bdsm1qxZI44fPy7OnDkjFi5cKJRKpdiwYUM1V25bKnseS6WkpIjatWuLjh07in79+lVPsTassudx2bJlwsvLS6Snp8tLRkZGNVdtexhgbvPII4+I8ePHy5+NRqMIDg4Ws2fPLrf/4MGDRe/evc3aoqKixIsvvlilddq6yp7HW4WFhTHA3PQg51EIIYqLi4Wnp6dYsWJFVZVoFx70PAohxEMPPSSmTZtWFeXZjfs5j8XFxaJ9+/biP//5jxg5ciQDjKj8eVy2bJnQaDTVVJ394BDSLfR6PRISEtCtWze5TaFQoFu3boiPjy93m/j4eLP+ABATE3PH/o7gfs4jlWWJ81hYWAiDwQBfX9+qKtPmPeh5FEJgy5YtSE5ORqdOnaqyVJt2v+fx3XffRUBAAEaPHl0dZdq8+z2P+fn5CAsLQ0hICPr164ekpKTqKNemMcDc4urVqzAajQgMDDRrDwwMREZGRrnbZGRkVKq/I7if80hlWeI8Tp48GcHBwWVCtiO53/OYm5sLDw8PqFQq9O7dG5988gmeeOKJqi7XZt3Pefzzzz/x1Vdf4csvv6yOEu3C/ZzHRo0aYenSpfjxxx/x7bffwmQyoX379rh48WJ1lGyzauzbqIkc3Zw5c7By5Ups376dE/7ug6enJxITE5Gfn48tW7YgNjYWERER6NKli7VLswt5eXkYPnw4vvzyS/j7+1u7HLsWHR2N6Oho+XP79u3RpEkT/Pvf/8bMmTOtWJl1McDcwt/fH0qlEpmZmWbtmZmZ0Gq15W6j1Wor1d8R3M95pLIe5DzOnz8fc+bMwebNm9GiRYuqLNPm3e95VCgUqF+/PgCgVatWOHHiBGbPnu2wAaay5/Hs2bNITU1F37595TaTyQQAcHJyQnJyMurVq1e1RdsgS/z76OzsjIceeghnzpypihLtBoeQbqFSqdCmTRts2bJFbjOZTNiyZYtZ+r1VdHS0WX8A2LRp0x37O4L7OY9U1v2ex7lz52LmzJnYsGED2rZtWx2l2jRL/X00mUwoKiqqihLtQmXPY+PGjXH06FEkJibKy5NPPomuXbsiMTERISEh1Vm+zbDE30ej0YijR48iKCioqsq0D9aeRWxrVq5cKdRqtVi+fLk4fvy4GDdunPD29pZvWRs+fLiYMmWK3H/Xrl3CyclJzJ8/X5w4cUK88847vI1aVP48FhUViUOHDolDhw6JoKAgMXHiRHHo0CFx+vRpa30Fm1DZ8zhnzhyhUqnE//73P7NbLvPy8qz1FWxCZc/jrFmzxMaNG8XZs2fF8ePHxfz584WTk5P48ssvrfUVbEJlz+PteBdSicqexxkzZojff/9dnD17ViQkJIhnn31WuLi4iKSkJGt9BZvAAFOOTz75RISGhgqVSiUeeeQRsWfPHnld586dxciRI836f//996Jhw4ZCpVKJZs2aiV9++aWaK7ZNlTmPKSkpAkCZpXPnztVfuI2pzHkMCwsr9zy+88471V+4janMefzXv/4l6tevL1xcXISPj4+Ijo4WK1eutELVtqey/z7eigHmb5U5j6+//rrcNzAwUPTq1UscPHjQClXbFkkIIax19YeIiIjofnAODBEREdkdBhgiIiKyOwwwREREZHcYYIiIiMjuMMAQERGR3WGAISIiIrvDAENERER2hwGGqApt374dkiQhJyenwtuMGjUK/fv3r7KaarKqPHf3s+/ly5fD29vbonV06dIFr7/+us3sh8ha+DJHoirUvn17pKenQ6PRVHibRYsWoaY8X3L69OlYt24dEhMTrV1KjbFmzRo4OztXuP/27dvRtWtXZGdnm4Wpyu6HyNYwwBBVIZVKVek3cFcm7JDlGQwGm/7B7uvra1P7IbIWDiERVVCXLl3wyiuv4PXXX4ePjw8CAwPx5ZdfoqCgAM8//zw8PT1Rv359/Pbbb/I2tw8hlQ4p/P7772jSpAk8PDzQo0cPpKeny9vcPlRxP8ctb+hi3bp1kCRJ/jx9+nS0atUKS5cuRWhoKDw8PPDyyy/DaDRi7ty50Gq1CAgIwPvvv3/X87J9+3Y88sgjcHd3h7e3Nzp06IDz589j+fLlmDFjBg4fPgxJkiBJEpYvXw4AWLBgASIjI+Hu7o6QkBC8/PLLyM/PL1P/3c6T0WhEbGwsvL294efnh7feeqvMlasNGzbg0Ucflfv06dMHZ8+eldenpqZCkiSsWrUKnTt3houLC+Li4iq07/IsX74coaGhcHNzw4ABA3Dt2rUyfX788Ue0bt0aLi4uiIiIwIwZM1BcXAwAGDp0KJ555hmz/gaDAf7+/vj6668BlB36+eabb9C2bVt4enpCq9Vi6NChuHz5svz9unbtCgDw8fGBJEkYNWpUufvJzs7GiBEj4OPjAzc3N/Ts2ROnT5+u1J8JUXVigCGqhBUrVsDf3x/79u3DK6+8gpdeegmDBg1C+/btcfDgQXTv3h3Dhw9HYWHhHfdRWFiI+fPn45tvvsHOnTuRlpaGiRMnVvlxy3P27Fn89ttv2LBhA7777jt89dVX6N27Ny5evIgdO3bggw8+wLRp07B3795yty8uLkb//v3RuXNnHDlyBPHx8Rg3bhwkScIzzzyDN998E82aNUN6ejrS09PlH84KhQIff/wxkpKSsGLFCmzduhVvvfVWpc7Thx9+iOXLl2Pp0qX4888/kZWVhbVr15rto6CgALGxsThw4AC2bNkChUKBAQMGwGQymfWbMmUKXnvtNZw4cQIxMTEV2vft9u7di9GjR2PChAlITExE165d8d5775n1+eOPPzBixAi89tprOH78OP79739j+fLlckgcNmwYfv75Z7Mw9/vvv6OwsBADBgwo97gGgwEzZ87E4cOHsW7dOqSmpsohJSQkBD/88AMAIDk5Genp6Vi0aFG5+xk1ahQOHDiAn376CfHx8RBCoFevXjAYDHKf+/m7S1RlrPkmSSJ70rlzZ/Hoo4/Kn4uLi4W7u7sYPny43Jaeni4AiPj4eCGEENu2bRMARHZ2thBCiGXLlgkA4syZM/I2ixcvFoGBgfLn29/Yez/HXbZsmdBoNGb1r127Vtz6n/w777wj3NzchE6nk9tiYmJEeHi4MBqNclujRo3E7Nmzyz0n165dEwDE9u3by13/zjvviJYtW5a77larV68Wfn5+8ueKnKegoCAxd+5c+bPBYBB16tS569uOr1y5IgCIo0ePCiH+fgv6woULzfrdz76HDBkievXqZdb2zDPPmP05PP7442LWrFlmfb755hsRFBQkH8ff3198/fXXZvt95pln5M+dO3cWr7322h3r2L9/vwAg8vLyhBBl/w6Wt59Tp04JAGLXrl3y+qtXrwpXV1fx/fffCyEq9mdCVJ14BYaoElq0aCH/XqlUws/PD5GRkXJbYGAgAMiX8Mvj5uaGevXqyZ+DgoLu2t9Sxy1PeHg4PD09zfbTtGlTKBQKs7Y77dfX1xejRo1CTEwM+vbti0WLFlVoSGHz5s14/PHHUbt2bXh6emL48OG4du2a2RWku52n3NxcpKenIyoqSl7v5OSEtm3bmh3n9OnTGDJkCCIiIuDl5YXw8HAAQFpamlm/W7er6L5vd+LECbNtACA6Otrs8+HDh/Huu+/Cw8NDXsaOHYv09HQUFhbCyckJgwcPRlxcHICSK0g//vgjhg0bdsfjJiQkoG/fvggNDYWnpyc6d+5c7ne8V+1OTk5m9fv5+aFRo0Y4ceKE3HY/f3eJqgoDDFEl3D65U5Iks7bSOSa3D1Hcax/iHvMrKntchUJRZp+3DgVUdL+lbXf7PsuWLUN8fDzat2+PVatWoWHDhtizZ88d+6empqJPnz5o0aIFfvjhByQkJGDx4sUAAL1ef9fa7nWebte3b19kZWXhyy+/xN69e+WhsFuPAwDu7u6V2u/9ys/Px4wZM5CYmCgvR48exenTp+Hi4gKgZBhpy5YtuHz5MtatWwdXV1f06NGj3P0VFBQgJiYGXl5eiIuLw/79++Whrtu/oyVY4s+EyFIYYIhqoFq1aiEvLw8FBQVyW1XeyvzQQw9h6tSp2L17N5o3b47//ve/AEruwjIajWZ9ExISYDKZ8OGHH6Jdu3Zo2LAhLl26VKnjaTQaBAUFmc3NKS4uRkJCgvz52rVrSE5OxrRp0/D444+jSZMmyM7Otsi+y9OkSZMyc4VuD3KtW7dGcnIy6tevX2YpverVvn17hISEYNWqVYiLi8OgQYPueFfUyZMnce3aNcyZMwcdO3ZE48aNy1wRUalUAFDmz+H22ouLi83qLz1/TZs2vev3JrIW3kZNVANFRUXBzc0N//znP/Hqq69i79698h1AlpSSkoIlS5bgySefRHBwMJKTk3H69GmMGDECQMkQVUpKChITE1GnTh35jimDwYBPPvkEffv2xa5du/DFF19U+tivvfYa5syZgwYNGqBx48ZYsGCB2QMDfXx84OfnhyVLliAoKAhpaWmYMmWKRfZdnldffRUdOnTA/Pnz0a9fP/z+++/YsGGDWZ+3334bffr0QWhoKJ5++mkoFAocPnwYx44dM5vwO3ToUHzxxRc4deoUtm3bdsdjhoaGQqVS4ZNPPsE//vEPHDt2DDNnzjTrExYWBkmSsH79evTq1Quurq7w8PAw69OgQQP069cPY8eOxb///W94enpiypQpqF27Nvr161ehc0ZU3XgFhqgG8vX1xbfffotff/0VkZGR+O677zB9+nSLH8fNzQ0nT57EwIED0bBhQ4wbNw7jx4/Hiy++CAAYOHAgevToga5du6JWrVr47rvv0LJlSyxYsAAffPABmjdvjri4OMyePbvSx37zzTcxfPhwjBw5EtHR0fD09DS7U0ehUGDlypVISEhA8+bN8cYbb2DevHkW2Xd52rVrhy+//BKLFi1Cy5YtsXHjRkybNs2sT0xMDNavX4+NGzfi4YcfRrt27fDRRx8hLCzMrN+wYcNw/Phx1K5dGx06dLjjMWvVqoXly5dj9erVaNq0KebMmYP58+eb9alduzZmzJiBKVOmIDAwEBMmTCh3X8uWLUObNm3Qp08fREdHQwiBX3/91aafiUOOTRIcwCQiIiI7wyswREREZHcYYIiIiMjuMMAQERGR3WGAISIiIrvDAENERER2hwGGiIiI7A4DDBEREdkdBhgiIiKyOwwwREREZHcYYIiIiMjuMMAQERGR3WGAISIiIrvz/2YJ99Y35kpkAAAAAElFTkSuQmCC" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot([0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55], X_size)\n", "_ = plt.title(\"Amount of features\")\n", "_ = plt.xlabel(\"minimum standard deviation\")" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-05-01T10:40:17.704920700Z", "start_time": "2024-05-01T10:40:17.608291500Z" } }, "id": "6c47122fe8c7be5a", "execution_count": 38 }, { "cell_type": "code", "outputs": [ { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHHCAYAAACcHAM1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkyUlEQVR4nO3deVwU9f8H8NfuwrLcKKccgiCKJxgo4pFHFIb31ytvrUxN7bAyLfLq980O9auZpZmpoaalaGWKGR6pISqKmYiiKKByCCqnHLs7vz/QzQ1QF4HZZV/Px2MeD3b2MzPvmUxeznw+85EIgiCAiIiISI9JxS6AiIiI6FEYWIiIiEjvMbAQERGR3mNgISIiIr3HwEJERER6j4GFiIiI9B4DCxEREek9BhYiIiLSewwsREREpPcYWIioznh5eWHChAmazwcPHoREIsHBgwcfuW3Pnj3Rs2fPWq1n/vz5kEgktbpPIqofDCxET2j9+vWQSCSQSCQ4cuRIpe8FQYCHhwckEgn69esnQoXGpbi4GPPnz3+sUEREhoOBhaiWKBQKbN68udL6Q4cO4dq1azAzMxOhKv3y9NNP4+7du3j66afr7BjFxcVYsGBBlYElIiICd+/erbNjE1HdYWAhqiXh4eH48ccfoVQqtdZv3rwZgYGBcHFxEaky/SGVSqFQKCCVivNXj4mJCRQKhSjHFptSqURZWZnYZRDVGAMLUS0ZOXIkcnNzsW/fPs26srIybNu2DaNGjapyG7VajWXLlqFNmzZQKBRwdnbG5MmTcfv2ba12P/30E/r27QtXV1eYmZnBx8cHH374IVQqlVa7nj17om3btkhMTESvXr1gYWEBNzc3fPrpp4+sv23btujVq1eVNbq5uWHo0KGadYsXL0aXLl1gb28Pc3NzBAYGYtu2bY88RnV9WL7++mv4+PjA3NwcnTp1wuHDhyttW1ZWhrlz5yIwMBC2trawtLRE9+7dceDAAU2bq1evwtHREQCwYMECzaO6+fPnA6i6D4tSqcSHH34IHx8fmJmZwcvLC++99x5KS0u12nl5eaFfv344cuQIOnXqBIVCAW9vb3z33XePPG8A2LJlCwIDA2FtbQ0bGxu0a9cOy5cv12pz584dvPnmm/Dy8oKZmRnc3d0xbtw45OTkaNpkZ2fjpZdegrOzMxQKBfz9/bFhwwat/Vy9ehUSiQSLFy/GsmXLNOeWmJgIAEhKSsLQoUPRuHFjKBQKBAUF4eeff36s8yASCwMLUS3x8vJCSEgIvv/+e826PXv2IC8vDy+88EKV20yePBnvvPMOunbtiuXLl2PixInYtGkTwsLCUF5ermm3fv16WFlZYebMmVi+fDkCAwMxd+5czJ49u9I+b9++jT59+sDf3x9LliyBn58f3n33XezZs+eh9Y8YMQJ//PEHMjMztdYfOXIEN27c0DqH5cuXo0OHDli4cCE++ugjmJiYYNiwYfj1118f61o9aO3atZg8eTJcXFzw6aefomvXrhgwYADS09O12uXn5+Obb75Bz5498cknn2D+/Pm4efMmwsLCkJCQAABwdHTEV199BQAYPHgwIiMjERkZif/85z/VHv/ll1/G3Llz8dRTT+F///sfevTogUWLFlX53+zSpUsYOnQonn32WSxZsgSNGjXChAkTcO7cuYee4759+zBy5Eg0atQIn3zyCT7++GP07NkTR48e1bQpLCxE9+7dsWLFCjz33HNYvnw5pkyZgqSkJFy7dg0AcPfuXfTs2RORkZEYPXo0PvvsM9ja2mLChAmVwg8ArFu3DitWrMArr7yCJUuWoHHjxjh37hw6d+6M8+fPY/bs2ViyZAksLS0xaNAg7Nix46HnQSQqgYieyLp16wQAwokTJ4QvvvhCsLa2FoqLiwVBEIRhw4YJvXr1EgRBEDw9PYW+fftqtjt8+LAAQNi0aZPW/qKjoyutv7+/B02ePFmwsLAQSkpKNOt69OghABC+++47zbrS0lLBxcVFGDJkyEPP48KFCwIAYcWKFVrrX331VcHKykqrhn/XU1ZWJrRt21bo3bu31npPT09h/Pjxms8HDhwQAAgHDhzQbOfk5CQEBAQIpaWlmnZff/21AEDo0aOHZp1SqdRqIwiCcPv2bcHZ2Vl48cUXNetu3rwpABDmzZtX6RznzZsnPPjXXkJCggBAePnll7Xavf322wIAYf/+/VrnAkD4448/NOuys7MFMzMz4a233qp0rAe9/vrrgo2NjaBUKqttM3fuXAGAEBUVVek7tVotCIIgLFu2TAAgbNy4UfNdWVmZEBISIlhZWQn5+fmCIAjClStXBACCjY2NkJ2drbWvZ555RmjXrp3Wnxu1Wi106dJF8PX1feh5EImJd1iIatHw4cNx9+5d7Nq1CwUFBdi1a1e1j4N+/PFH2Nra4tlnn0VOTo5mCQwMhJWVldajDnNzc83PBQUFyMnJQffu3VFcXIykpCSt/VpZWWHMmDGaz3K5HJ06dUJKSspDa2/RogUCAgKwdetWzTqVSoVt27ahf//+WjU8+PPt27eRl5eH7t2749SpU4+4QtpOnjyJ7OxsTJkyBXK5XLN+woQJsLW11Work8k0bdRqNW7dugWlUomgoCCdj3vf7t27AQAzZ87UWv/WW28BQKU7Rq1bt0b37t01nx0dHdGyZctHXls7OzsUFRVpPS78t+3bt8Pf3x+DBw+u9N39x1i7d++Gi4sLRo4cqfnO1NQUr732GgoLC3Ho0CGt7YYMGaJ5RAYAt27dwv79+zF8+HDNn6OcnBzk5uYiLCwMycnJuH79+kPPhUgsJmIXQNSQODo6IjQ0FJs3b0ZxcTFUKpVW348HJScnIy8vD05OTlV+n52drfn53LlziIiIwP79+5Gfn6/VLi8vT+uzu7t7pX4ajRo1wl9//fXI+keMGIH33nsP169fh5ubGw4ePIjs7GyMGDFCq92uXbvwf//3f0hISNDq66HrO05SU1MBAL6+vlrrTU1N4e3tXan9hg0bsGTJEiQlJWk9MmvWrJlOx33w+FKpFM2bN9da7+LiAjs7O0199zVt2rTSPho1alSpz9G/vfrqq/jhhx/w/PPPw83NDc899xyGDx+OPn36aNpcvnwZQ4YMeWS9vr6+lTott2rVSvP9g/59XS5dugRBEPDBBx/ggw8+qPIY2dnZcHNze2gdRGJgYCGqZaNGjcKkSZOQmZmJ559/HnZ2dlW2U6vVcHJywqZNm6r8/v6/jO/cuYMePXrAxsYGCxcuhI+PDxQKBU6dOoV3330XarVaazuZTFbl/gRBeGTtI0aMwJw5c/Djjz/ijTfewA8//ABbW1utX6yHDx/GgAED8PTTT+PLL79EkyZNYGpqinXr1lU5rLu2bNy4ERMmTMCgQYPwzjvvwMnJCTKZDIsWLcLly5efaN+PG7Rqem2dnJyQkJCAvXv3Ys+ePdizZw/WrVuHcePGVeowW5sevBMGQPNn5e2330ZYWFiV2/w7vBHpCwYWolo2ePBgTJ48GceOHdN6vPJvPj4++P3339G1a9dKv1gedPDgQeTm5iIqKkrr/SVXrlyp1bqBin+Rd+rUCVu3bsX06dMRFRWFQYMGab1DZvv27VAoFNi7d6/W+nXr1ul8PE9PTwAVd5t69+6tWV9eXo4rV67A399fs27btm3w9vZGVFSUVsCYN2+e1j51ucvj6ekJtVqN5ORkzV0KAMjKysKdO3c09dUGuVyO/v37o3///lCr1Xj11VexevVqfPDBB2jevDl8fHzw999/P7Lev/76C2q1Wusuy/3Hgo+q9/5dK1NTU4SGhj7hGRHVL/ZhIaplVlZW+OqrrzB//nz079+/2nbDhw+HSqXChx9+WOk7pVKJO3fuAPjnX/UP/iu+rKwMX375Ze0Wfs+IESNw7NgxfPvtt8jJyan0OEgmk0EikWgNqb569Sp27typ87GCgoLg6OiIVatWab0jZP369Zrzf/C4gPZ1iIuLQ2xsrFY7CwsLAKi0fVXCw8MBAMuWLdNav3TpUgBA3759H+s8HiU3N1frs1QqRfv27QFA80htyJAhOHPmTJUjde6fc3h4ODIzM7WCsFKpxIoVK2BlZYUePXo8tA4nJyf07NkTq1evRkZGRqXvb968qduJEdUj3mEhqgPjx49/ZJsePXpg8uTJWLRoERISEvDcc8/B1NQUycnJ+PHHH7F8+XIMHToUXbp0QaNGjTB+/Hi89tprkEgkiIyMfKxHPDUxfPhwvP3223j77bfRuHHjSv8S79u3L5YuXYo+ffpg1KhRyM7OxsqVK9G8efPH6ifzIFNTU/zf//0fJk+ejN69e2PEiBG4cuUK1q1bV6kPS79+/RAVFYXBgwejb9++uHLlClatWoXWrVujsLBQ087c3BytW7fG1q1b0aJFCzRu3Bht27ZF27ZtKx3f398f48ePx9dff6159Hb8+HFs2LABgwYNqvK9NDXx8ssv49atW+jduzfc3d2RmpqKFStWICAgQHNn55133sG2bdswbNgwvPjiiwgMDMStW7fw888/Y9WqVfD398crr7yC1atXY8KECYiPj4eXlxe2bduGo0ePYtmyZbC2tn5kLStXrkS3bt3Qrl07TJo0Cd7e3sjKykJsbCyuXbuGM2fO1Mo5E9U6EUcoETUIDw5rfph/D2u+7+uvvxYCAwMFc3NzwdraWmjXrp0wa9Ys4caNG5o2R48eFTp37iyYm5sLrq6uwqxZs4S9e/dqDREWhIphzW3atKl0jPHjxwuenp6PfU5du3atcrjvfWvXrhV8fX0FMzMzwc/PT1i3bl2lIcP3z/lhw5rv+/LLL4VmzZoJZmZmQlBQkPDHH38IPXr00BrWrFarhY8++kjw9PQUzMzMhA4dOgi7du2q8tz+/PNPITAwUJDL5VpDnKuqsby8XFiwYIHQrFkzwdTUVPDw8BDmzJmjNez3/rlU9d/v33VWZdu2bcJzzz0nODk5CXK5XGjatKkwefJkISMjQ6tdbm6uMH36dMHNzU2Qy+WCu7u7MH78eCEnJ0fTJisrS5g4caLg4OAgyOVyoV27dsK6deu09nN/WPNnn31WZT2XL18Wxo0bJ7i4uAimpqaCm5ub0K9fP2Hbtm0PPQ8iMUkEoY7+mUZERERUS9iHhYiIiPQeAwsRERHpPQYWIiIi0nsMLERERKT3GFiIiIhI7zGwEBERkd5rMC+OU6vVuHHjBqytrXWegI2IiIjEIQgCCgoK4OrqWmlizwc1mMBy48YNeHh4iF0GERER1UB6ejrc3d2r/b7BBJb7r6ROT0+HjY2NyNUQERHR48jPz4eHh8cjp5ZoMIHl/mMgGxsbBhYiIiID86juHOx0S0RERHqPgYWIiIj0HgMLERER6T0GFiIiItJ7DCxERESk9xhYiIiISO8xsBAREZHeY2AhIiIivcfAQkRERHqPgYWIiIj0HgMLERER6T0GFiIiItJ7DCxEBkStFqBSC2KXQURU7xrMbM1EDdmd4jJExqZi/Z9XUVSmxKhOnpjcwxvONgqxSyMiqhcSQRAaxD/X8vPzYWtri7y8PNjY2IhdDlGtuHa7GGuPXMHWE+koLlNpfSc3kWJEkAem9PSBm525SBUSET2Zx/39zTssRHrofEY+vv4jBT+fuaF5BNS6iQ0m9/CGnYUcX+xPxomrtxF5LBVbTqRhaKA7Xu3ZHB6NLUSunIiobvAOC5GeEAQBsSm5WH0oBYcu3tSs79rcHlN6+KBbcwdIJBJN22Mpt7BifzL+vJwLAJBJJRgU4IZpvXzg7WglyjkQEenqcX9/M7AQiUylFrD3XCZWH7qMM9fyAABSCRDergkmP+2Ddu62D93+5NVb+Hz/JfxxL+RIJUB/f1dM79Ucvs7WdV4/EdGTYGAh0nMl5Spsi7+GNYdTkJpbDAAwM5FieJAHXu7eDJ72ljrtLyH9Dr7Yn4zfz2cDACQS4Pm2LpjeyxetXfn/BBHpJwYWIj11p7gMG49VjPjJKSwDANhZmGJciBfGh3jC3srsifZ/7kYevth/CXv+ztSse7a1M17r7fvIuzVERPWNgYVIz1y/cxdrD1/BlhNpmhE/bnbmeLl7MwwP8oClWe32gb+QWYAvDlzCrr9u4P7/5T1bOmJGb18Eejaq1WMREdUUAwuRnkjKzMfXhypG/Cjvjfhp1cQGU3p4I7xdE5jK6vb9jZdvFmLlgUv4KeGfEUddm9tjRm9fdPa2r9NjExE9CgMLkYgEQUDclVtYdegyDl74Z8RPFx97TO7hg6d9/xnxU19Sc4vw5YHL2H7qmiY4dWrWGK/19kXX5vb1Xg8REcDAInY5ZKRUagG/ncvEqj9ScCb9DoCKUTvPt22CyT280d7dTtT6gIqX0a06dBk/nLiGMpUaANChqR1e6+2Lni0dGVyIqF4xsBDVo5JyFaJOXceawym4klMEoGLEz7Agd7zczRteDrqN+KkPmXklWHXoMr4/noZSZUVwaedmixm9m+PZ1s4MLkRULxhYiOpBXnE5NsalYt3RK5oRP7bmphgX4onxXbzg8IQjfupDdkEJvjl8BZGxqbhbXtEZ2M/FGjN6++L5ti6QShlciKjuMLAQ1aEbd+5i7ZEr+P74PyN+XG0VeLm7N0Z0rP0RP/XhVlEZ1h5JwYY/U1FYqgQANHeywozezdGvvStkDC5EVAcYWIjqwIXMAqz+4zJ+TvhnxI+fizUm9/BGv/audT7ipz7cKS7DuqNXse7oFeSXVASXZg6WeLWnDwZ1cGsQ50hE+oOBhaiWCIKA41duYfUfKdiflK1ZH+Jtj8k9vNGjRcPsqJpfUo7I2FR8czgFt4vLAQDujczxas/mGBroDrkJgwsRPTkGFqInpFIL2JeYiVWHUpBwb8TP/dfdv/K0DwI87EStr74UlSqx8Vgq1hxO0fTTaWKrwNSePhge5AGFqUzkConIkDGwENVQSbkKO05fx5o/UpByb8SP3ESKoYHumNTdG830cMRPfbhbpsL3x9Ow+o/LyMovBQA4WZvhlae9MTrYE+ZyBhci0h0DC5GO7j8CWXf0KnIKK34h2yhMKub46eIFR2v9H/FTH0rKVfjxZDq+OngZN/JKAAD2lnK83N0bY0M8YWWAHY6JSDwMLEQ6KClXof+KI0jOLgRQ8cjjpW7N8EKnpvwFXI0ypRpRp67hy4OXkXarYrZpOwtTvNS1GcZ39YKNwlTkConIEDCwEOlg5YFL+GzvBdhbyvF+31bo798wRvzUB6VKjZ8SbmDlgUuaR2gOVmbYNiVEL1+YR0T65XF/f/NvZDJ61+/cxYr9yQCAuf1b4z9PuTOs6MBEJsWQQHfsm9kDy18IQDMHS+QUluKlDSeQd7dc7PKIqIHg38pk9D769TxKytXo5NUYA/xdxS7HYMmkEgwMcMPWVzqjia0Cl28WYfrmU1Dem6+IiOhJMLCQUTt6KQe/ns2AVAIsGNimQb5Ppb452SjwzfggmJvKcDg5Bx/uShS7JCJqABhYyGiVq9SY9/M5AMC4EC+0asK+T7Wljastlr0QAADYEJuKyNirotZDRIaPgYWM1oY/r+JSdiHsLeV489kWYpfT4IS1ccGsPi0BAPN/ScSR5ByRKyIiQ8bAQkYpO78Ey36v6Gj7bh8/2JpzCG5dmNrDB//p4AaVWsCrm+Jx+Wah2CURkYFiYCGj9PGeJBSWKuHvYYehge5il9NgSSQSLBrSDoGejZBfosTLG07iTnGZ2GURkQFiYCGjc+LqLUSdvg6JBFg4oA2kUna0rUtmJjKsHhsINztzXMkpwqubTqGcI4eISEcMLGRUVGoBc3+q6Gj7QkcP+BvJBIZic7Aywzfjg2Apl+HPy7mY9/M5NJB3VhJRPWFgIaOyOS4V5zPyYaMwwdvPtRS7HKPSqokNlr/QARIJsDkuDRv+vCp2SURkQGoUWFauXAkvLy8oFAoEBwfj+PHj1bYtLy/HwoUL4ePjA4VCAX9/f0RHR2u1UalU+OCDD9CsWTOYm5vDx8cHH374If8FRrUqt7AUn+29AAB4O6wl7K04mWF9C23tjDnP+wEAFu5KxMEL2SJXRESGQufAsnXrVsycORPz5s3DqVOn4O/vj7CwMGRnV/0XT0REBFavXo0VK1YgMTERU6ZMweDBg3H69GlNm08++QRfffUVvvjiC5w/fx6ffPIJPv30U6xYsaLmZ0b0L4t/u4D8EiVaNbHBqE5NxS7HaE3q7o3hQe5QC8CMzaeRnFUgdklEZAB0nvwwODgYHTt2xBdffAEAUKvV8PDwwIwZMzB79uxK7V1dXfH+++9j2rRpmnVDhgyBubk5Nm7cCADo168fnJ2dsXbt2mrbPAonP6SHOZN+B4O+PApBAH6cEoKOXo3FLsmolSnVGLM2Dsev3ELTxhbYOa0rGlvKxS6LiERQJ5MflpWVIT4+HqGhof/sQCpFaGgoYmNjq9ymtLQUCoVCa525uTmOHDmi+dylSxfExMTg4sWLAIAzZ87gyJEjeP7556utpbS0FPn5+VoLUVXUagFzfz4HQQAGd3BjWNEDchMpVo0JhEdjc6TdKsaUjfEoU3LkEBFVT6fAkpOTA5VKBWdnZ631zs7OyMzMrHKbsLAwLF26FMnJyVCr1di3bx+ioqKQkZGhaTN79my88MIL8PPzg6mpKTp06IA33ngDo0ePrraWRYsWwdbWVrN4eHjocipkRLaduoYz6XdgKZdp+k+Q+BpbyvHt+I6wNjPB8Su3ELHzLPutEVG16nyU0PLly+Hr6ws/Pz/I5XJMnz4dEydOhFT6z6F/+OEHbNq0CZs3b8apU6ewYcMGLF68GBs2bKh2v3PmzEFeXp5mSU9Pr+tTIQOUd7ccn+xJAgC8EdoCTjaKR2xB9cnX2Rqfj+oAqQT44eQ1rD1yReySiEhP6RRYHBwcIJPJkJWVpbU+KysLLi4uVW7j6OiInTt3oqioCKmpqUhKSoKVlRW8vb01bd555x3NXZZ27dph7NixePPNN7Fo0aJqazEzM4ONjY3WQvRv/9t3EblFZWjuZIUJXb3ELoeq0KulEyL6tgYA/Hf3ecScz3rEFkRkjHQKLHK5HIGBgYiJidGsU6vViImJQUhIyEO3VSgUcHNzg1KpxPbt2zFw4EDNd8XFxVp3XABAJpNBreYzbaq58xn5+O7eLMHz+7eBqYyvHdJXE7t6YWSnphAE4LXvT+NCJkcOEZE2nf8GnzlzJtasWYMNGzbg/PnzmDp1KoqKijBx4kQAwLhx4zBnzhxN+7i4OERFRSElJQWHDx9Gnz59oFarMWvWLE2b/v3747///S9+/fVXXL16FTt27MDSpUsxePDgWjhFMkaCIGDez+egFoDwdi7o5usgdkn0EBKJBAsHtkFn78YoKlPhpQ0nkFNYKnZZRKRHTHTdYMSIEbh58ybmzp2LzMxMBAQEIDo6WtMRNy0tTetuSUlJCSIiIpCSkgIrKyuEh4cjMjISdnZ2mjYrVqzABx98gFdffRXZ2dlwdXXF5MmTMXfu3Cc/QzJKP5+5geNXbkFhKsX79x43kH4zlVWMHBq08iiu5hZjSmQ8Nk0KhpmJTOzSiEgP6PweFn3F97DQfYWlSjyz5CCy8kvx9nMtML23r9glkQ4u3yzEoJVHUVCixH+ecsOSYf6QSDhBJVFDVSfvYSEyBCv2JyMrvxSe9hZ4ubv3ozcgveLjaIUvRz8FmVSCqFPXsepQitglEZEeYGChBuVSdiG+vTc0dl7/1lCY8nGCIeru64j5/Sse5X26Nwl7z1X9niciMh4MLNRgCIKABb+cQ7lKwDN+Tujt5/zojUhvjQ3xwrgQTwgC8ObWBJy7kSd2SUQkIgYWajD2nsvC4eQcyGVSzO3PjrYNwdx+rdGtuQOKy1SYtOEksgtKxC6JiETCwEINwt0yFT7clQgAmNzDG572liJXRLXBRCbFylFPwdvREjfySvDKd/EoKVeJXRYRiYCBhRqErw5dxvU7d+FmZ45XezYXuxyqRbYWplg7viNszU2RkH4H727/i3MOERkhBhYyeGm5xVh16DIAIKJvK5jL2dG2oWnmYImvxjwFE6kEPyXcwMoDl8QuiYjqGQMLGbyFuxJRplSjW3MH9Glb9ZxWZPi6+Dhg4cC2AIDFv13E7rMZj9iCiBoSBhYyaAeSsvH7+SyYSCWYP6A1XzDWwI0KbooXuzYDAMz8IQFnr3HkEJGxYGAhg1WqVGHBL+cAAC92a4bmTtYiV0T14b1wP/Rs6YiScjVe/u4EsvI5cojIGDCwkMH65vAVXM0thqO1GWb0ZkdbY2Eik+LzkR3g62SFrPxSTPruJO6WceQQUUPHwEIG6cadu/hif0XHy/fC/WCtMBW5IqpPNoqKkUONLEzx17U8vP3jGajVHDlE1JAxsJBB+u/u87hbrkJHr0YYFOAmdjkkgqb2Flg1JhCmMgl+PZuB5THJYpdERHWIgYUMzp+XcvDrXxmQSoD5A9qwo60RC/a2x38HtQMALI9Jxs9nbohcERHVFQYWMijlKjXm3+toO6azJ9q42opcEYlteEcPvPJ0xazc7/x4Bgnpd8QtiIjqBAMLGZTvYlNxMasQjS3lmPlsC7HLIT3xbh8/POPnhFKlGpO+O4mMvLtil0REtYyBhQxGdkEJlu27CACYFdYSdhZykSsifSGTSrB8ZAe0dLbGzYJSvLzhJIrLlGKXRUS1iIGFDMYney6goFQJf3dbDA/yELsc0jNWZib4ZnwQ7C3lOHcjH29uTeDIIaIGhIGFDEJ86i1sP3UNALBgYFtIpexoS5V5NLbA1+MCIZdJsfdcFpbsuyB2SURUSxhYSO+p1ALm/lTR0XZEkAcCPOzELYj0WqBnY3w8pGLk0MoDl7Hj9DWRKyKi2sDAQnrv++NpOHcjHzYKE8zq01LscsgA/Ocpd7za0wcA8O62s4hPvS1yRUT0pBhYSK/dLirD4t8qbuu/9VxL2FuZiVwRGYq3n2uJ51o7o0ylxuTIk7h2u1jskojoCTCwkF777LcLuFNcDj8Xa4wObip2OWRApFIJ/jciAK2b2CCnsAwvbziJwlKOHCIyVAwspLfOXsvD98fTAAALB7aFiYx/XEk3lvdGDjlYmSEpswBvbEmAiiOHiAwSfwOQXlKrBcz9+W8IAjAowBWdmjUWuyQyUK525lgzLhByEyl+P5+FT/cmiV0SEdUAAwvppe2nruF02h1YymWYE95K7HLIwHVo2gifDW0PAFh9KAU/nkwXuSIi0pWJ2AXQk7lbpsLi3y4gNbcIE7o0Q9fm9gY/GWDe3XJ8El3xr+DXQ33hbKMQuSJqCAYGuOFydiE+338J7+04iya25mjtagO1IFQsalT9syBALVR8VqkFCA/8rBYA4d8/P9Berf7n54p2/9qv1ufK2/g6WaObr4PYl45ILzCwGLDzGfmY8f1pXMouBAD8fj4b/h52mNbTB6GtnA325WrLfr+InMIy+DhaYkKXZmKXQw3IG6EtcPlmEX49m4Exa+PELueRJBJg7xtPo4WztdilEImOgcUACYKA72JT8d/d51GmVMPR2gzP+Dlhx+nrOJN+B69ExqOlszVe7eWDfu1dITOg4JKUmY/vYlMBAPMHtIHchE8tqfZIpRIsHuaPwlIlDl28+c96ScV8RBKJBFIJIJVIIJNIIJFUbFPxs0TTTnrvuwd/1tpGIrn3HSD5988SCaRS3NtOApnkgZ/vrZdKJDifmY+Um0XYeCwVCwe2FfGqEekHiSAIDaLLfH5+PmxtbZGXlwcbGxuxy6kzt4rKMGvbGfx+PhsA0NvPCZ8NbQ97KzPcLCjF2iNXsPFYqmb4ppe9Bab29MHgDu56/8tfEAS88PUxxF25hefbuuCrMYFil0QNmFKl1oQUfXT0Ug5GfxMHKzMTHHvvGViZ8d+X1DA97u9v/f4NRlr+vJSDPsv+wO/nsyGXSTGvf2usHR+keZmao7UZZj/vh6Pv9sbMZ1vAzsIUV3OL8e72s+j52QGsP3oFJeUqkc+ier/8lYG4K7egMJXi/b7saEt1y0Qm1duwAgBdfOzh7WiJwlIldp6+LnY5RKJjYDEA5So1Po1Owui1ccguKIWPoyV2TOuCiV2bVfkXrq2FKV57xhdH3+2N98NbwdHaDDfySjD/l0R0+2Q/vjx4CQUl5SKcSfWKSpX476+JAIBpPZvDvZGFyBURiUsikWB0sCcAYOOxVDSQm+FENcbAoufScosxbFUsvjx4GYIAjOzkgV9mdEMbV9tHbmtpZoJJT3vj8Kxe+HBQW7jZmSOnsAyfRl9A14/3Y+lvF3C7qKwezuLRVuy/hKz8UjRtbIFJT3uLXQ6RXhj6lDsUplIkZRZwPiQyegwseuynhOsI//wwEtLvwEZhgi9HP4VF/2kPC7luz7IVpjKM7eyJg+/0xOJh/vB2tER+iRKf77+Erp/sx39/TUR2fkkdncWjXb5ZiLVHUgAAc/u1hsJUJlotRPrE1sIUA/3dAACRx1JFroZIXAwseqiwVIm3fjiD17ckoLBUiSDPRtj9eneEt2vyRPs1lUkxNNAd+97sgS9HP4XWTWxQXKbCmsNX0O3TA4jYeRbpt+p3gjhBELDgl0SUqwT0aumIZ1o51evxifTd2JCKx0K7z2Ygp7BU5GqIxMPAomfOXstDv88PY/upa5BKgNef8cWWVzrXap8OmVSC8HZN8Otr3bBuQkcEejZCmVKNjcfS0HPxQbz1wxnNu13q2r7ELPxx8SbkMinm9m+j150gicTQ1s0WAR52KFcJ2HqCb+gl48XAoifUagFf/3EZ//nqKK7mFsPVVoEtr4TgzWdb1NmkfxKJBL38nLBtSgi+n9QZ3Zo7QKUWsP3UNTz7v0N4dVM8zt3Iq5NjA0BJuQoLd1V0tJ30dDM0c7Css2MRGbKxnSvusmyOS+PkjWS0GFj0QHZBCcavO46PdiehXCWgTxsX7H69e71N+CeRSBDiY4+NLwdj57SueLa1MwQB2H02E30/P4KJ644jPvVWrR931aHLuHb7LprYKjCtV/Na3z9RQ9G3fRPYWZji+p27OJCULXY5RKJgYBHZgQvZCF9+GIeTc6AwleKjwe3w1ZinYGchF6WeAA87rBkXhOg3umOAvyukEuDAhZsY8lUsXvg6FkeSc2pleGX6rWJ8dfAyACCib2udOxITGROFqQwjgjwAsPMtGS8GFpGUKlX4v12JmLjuBHIKy+DnYo1fpnfDqOCmetGPw8/FBp+P7ICYt3piRJAHTGUSHEu5hTFr4zDoyz+xLzEL6ie4Nf3hrkSUKtXo4mOP8HYutVg5UcM0KrgpAODQxZtIzS0SuRqi+sfAIoLLNwvxny//xDdHrgAAxod4Yue0rvDVwwnOmjlY4pOh7XHonV6Y0MULZiZSnEm/g0nfnUT454fx85kbOj9TP3ghG78lZsFEKsGCAexoS/Q4PO0t0aOFI4CKvixExqZGgWXlypXw8vKCQqFAcHAwjh8/Xm3b8vJyLFy4ED4+PlAoFPD390d0dLRWGy8vL0juTf714DJt2rSalKe3BEHADyfT0e/zIzh3Ix+NLEzxzbggLBjYVu/fPeJqZ475A9rg6OzemNrTB1ZmJkjKLMBr35/GM0sOYuuJNJQp1Y/cT6lShQW/VHS0ndDFSy9DGpG+ut/5duvJdL2eZoOoLugcWLZu3YqZM2di3rx5OHXqFPz9/REWFobs7Ko7gkVERGD16tVYsWIFEhMTMWXKFAwePBinT5/WtDlx4gQyMjI0y759+wAAw4YNq+Fp6Z/8knK8tiUBs7b9hbvlKoR422PP608jtLWz2KXpxMHKDO/2qfl8Rd8euYorOUVwsDLD66G+9Vg5keHr5ecENztz3Ckux69/ZYhdDlG90nm25uDgYHTs2BFffPEFAECtVsPDwwMzZszA7NmzK7V3dXXF+++/r3W3ZMiQITA3N8fGjRurPMYbb7yBXbt2ITk5+bEfF+jzbM3xqbfx+pbTuHb7LmRSCWY+2wJTevhAJjX8RyFFpUpsjkvD14dTcLOg4qVWDlZyvNTNG2M6N4W1wlTTNiPvLp5ZcgjFZSosHe6P/zzlLlbZRAZr5YFL+GzvBQR42GHntK5il0P0xOpktuaysjLEx8cjNDT0nx1IpQgNDUVsbGyV25SWlkKhUGitMzc3x5EjR6o9xsaNG/Hiiy8afN8GlVrAF/uTMXx1LK7dvguPxubYNiUE03o1bxBhBdCer+j/BrWFe6OK+Yo+iU6qmK9o30XNfEUf7U5CcZkKQZ6NMLiDm8iVExmmER0rOsEnpN/B2Wt1954kIn2jU2DJycmBSqWCs7P2YwxnZ2dkZmZWuU1YWBiWLl2K5ORkqNVq7Nu3D1FRUcjIqPp25s6dO3Hnzh1MmDDhobWUlpYiPz9fa9EnGXl3MfqbY1j820Wo1AIG+Lvi19e6o0PTRmKXVicUpjKM6eyJA2/3xJJh/vC5P19RTDK6frIfM7cm4JczNyCVAAsGsqMtUU05WJlppunYyCHOZETqfJTQ8uXL4evrCz8/P8jlckyfPh0TJ06EVFr1odeuXYvnn38erq6uD93vokWLYGtrq1k8PDzqovwa+e1cJp5ffhjHUm7BQi7D4mH+WP5CAGweeDzSUJnKpBgS6I7f/jVfUdTp6wCA0cGejzXTNBFVb8y9zrc/nbmOvOJykashqh86BRYHBwfIZDJkZWVprc/KyoKLS9Xv0nB0dMTOnTtRVFSE1NRUJCUlwcrKCt7e3pXapqam4vfff8fLL7/8yFrmzJmDvLw8zZKeLv4cGyXlKnyw82+8EhmPO8XlaOdmi19f646hge5Gd0fh3/MVdfZujA5N7fDWcy3ELo3I4AV5NoKfizVKytXYfuqa2OUQ1QudAotcLkdgYCBiYmI069RqNWJiYhASEvLQbRUKBdzc3KBUKrF9+3YMHDiwUpt169bByckJffv2fWQtZmZmsLGx0VrEdCGzAAO/OKp5C+UrT3tj+9QuRj8/zv35ira8EoIdr3YV7Q2+RA2JRCLR3GXZeCy1Vt4+TaTvdH4kNHPmTKxZswYbNmzA+fPnMXXqVBQVFWHixIkAgHHjxmHOnDma9nFxcYiKikJKSgoOHz6MPn36QK1WY9asWVr7VavVWLduHcaPHw8TE8N5TbsgCNh4LBUDvjiCC1kFcLAyw4YXO+G98FaQm/C9fERUNwZ1cIOVmQlScorw5+VcscshqnM6J4MRI0bg5s2bmDt3LjIzMxEQEIDo6GhNR9y0tDSt/iklJSWIiIhASkoKrKysEB4ejsjISNjZ2Wnt9/fff0daWhpefPHFJzujenSnuAyztv2F3xIrHpH1aOGIJcP94WBlJnJlRNTQWZmZ4D9PueG72FRExqaia3MHsUsiqlM6v4dFX9X3e1iOpeTiza0JyMgrgalMgnf7+OHFrs0gbSDDlYlI/13MKsBz//sDMqkER97thSa25mKXRKSzOnkPCwFKlRpLf7uAkWuOISOvBN4Oltjxale83N2bYYWI6lULZ2sEN2sMlVrA98fFH3hAVJcYWHSQfqsYI74+hs/3X4IgAMOD3PHLjG5o68ZhukQkjvudb7ccT0O56tHzeREZKsPp3SqyXX/dwJyosygoUcLazAQf/acd+vs//F0xRER1LayNCxyszJBdUIp9iVmal8oRNTS8w/IIxWVKvLvtL0zffBoFJUo81dQOu1/vzrBCRHpBbiLFyE4VL86MjOWbb6nhYmB5iOz8EvRbcQRbT6ZDIgFm9G6OHyaHwKOxhdilERFpjOzUFFIJEJuSi0vZBWKXQ1QnGFgewsHKDK625nCxUWDzy53x1nMtYSLjJSMi/eJqZ47QVhWvlth4LE3kaojqBn/7PoRUKsH/RgRgz+vdEeJjL3Y5RETVGhtS0fl2e/w1FJUqRa6GqPYxsDyCo7UZGlnydfJEpN+6+jigmYMlCkqV+CnhhtjlENU6BhYiogZAKpVgdHBTAMB3sVc5vxA1OAwsREQNxNBAd5iZSJGUWYBTabfFLoeoVjGwEBE1EHYWcgy498oFdr6lhoaBhYioAbnf+fbXvzKQW1gqcjVEtYeBhYioAWnvbgd/d1uUqdT44eQ1scshqjUMLEREDcz9+YU2xaVCpWbnW2oYGFiIiBqY/v6usDU3xbXbd3HoYrbY5RDVCgYWIqIGRmEqw/AgdwCcX4gaDgYWIqIGaFRwxWOhgxdvIv1WscjVED05BhYiogaomYMluvs6QBCATXEc4kyGj4GFiKiBGnuv8+0PJ9NRUq4SuRqiJ8PAQkTUQPX2c4KrrQK3isqw5+8MscsheiIMLEREDZSJTIpR9+YXYudbMnQMLEREDdjwjh4wlUlwKu0O/r6eJ3Y5RDXGwEJE1IA5WSvQp20TABUvkiMyVAwsREQN3Jh7j4V2nr6B/JJykashqhkGFiKiBq5Ts8Zo4WyFu+UqRMVzfiEyTAwsREQNnEQi0QxxjjyWCkHg/EJkeBhYiIiMwKAObrCUy3D5ZhFiU3LFLodIZwwsRERGwFphisFPuQEANh5j51syPAwsRERGYsy9x0J7z2UhK79E5GqIdMPAQkRkJPxcbNDJqzFUagHfH+f8QmRYGFiIiIzI6M4VQ5y/P56GcpVa5GqIHh8DCxGREenT1gUOVnJk5Zci5nyW2OUQPTYGFiIiI2JmIsOIjh4AKoY4ExkKBhYiIiMzslNTSCXA0Uu5uJRdKHY5RI+FgYWIyMi4N7JAbz9nAJxfiAwHAwsRkREaG1IxxHlb/DUUlylFrobo0RhYiIiMUPfmDvC0t0BBiRI/J9wQuxyiR2JgISIyQlKpBGOCK+6yfBfL+YVI/zGwEBEZqaGB7pCbSJGYkY/T6XfELofooRhYiIiMVCNLOfq3dwXA+YVI/zGwEBEZsfudb3f9lYFbRWUiV0NUvRoFlpUrV8LLywsKhQLBwcE4fvx4tW3Ly8uxcOFC+Pj4QKFQwN/fH9HR0ZXaXb9+HWPGjIG9vT3Mzc3Rrl07nDx5siblERHRY/J3t0U7N1uUKdX48WS62OUQVUvnwLJ161bMnDkT8+bNw6lTp+Dv74+wsDBkZ2dX2T4iIgKrV6/GihUrkJiYiClTpmDw4ME4ffq0ps3t27fRtWtXmJqaYs+ePUhMTMSSJUvQqFGjmp8ZERE9kkQiwdh7szhvjEuFWs3Ot6SfJIKOXcODg4PRsWNHfPHFFwAAtVoNDw8PzJgxA7Nnz67U3tXVFe+//z6mTZumWTdkyBCYm5tj48aNAIDZs2fj6NGjOHz4cI1PJD8/H7a2tsjLy4ONjU2N90NEZGzulqkQ/NHvyC9RYt3EjujV0knsksiIPO7vb53usJSVlSE+Ph6hoaH/7EAqRWhoKGJjY6vcprS0FAqFQmudubk5jhw5ovn8888/IygoCMOGDYOTkxM6dOiANWvW6FIaERHVkLlchmFBFfMLbYxl51vSTzoFlpycHKhUKjg7O2utd3Z2RmZmZpXbhIWFYenSpUhOToZarca+ffsQFRWFjIwMTZuUlBR89dVX8PX1xd69ezF16lS89tpr2LBhQ7W1lJaWIj8/X2shIqKaGR3cFACw/0I20m8Vi1wNUWV1Pkpo+fLl8PX1hZ+fH+RyOaZPn46JEydCKv3n0Gq1Gk899RQ++ugjdOjQAa+88gomTZqEVatWVbvfRYsWwdbWVrN4eHjU9akQETVY3o5W6NbcAYIAfH88TexyiCrRKbA4ODhAJpMhKytLa31WVhZcXFyq3MbR0RE7d+5EUVERUlNTkZSUBCsrK3h7e2vaNGnSBK1bt9barlWrVkhLq/5/mjlz5iAvL0+zpKezdzsR0ZMYc6/z7dYT6ShVqkSuhkibToFFLpcjMDAQMTExmnVqtRoxMTEICQl56LYKhQJubm5QKpXYvn07Bg4cqPmua9euuHDhglb7ixcvwtPTs9r9mZmZwcbGRmshIqKaC23lBBcbBXKLyhD9d9WP+YnEovMjoZkzZ2LNmjXYsGEDzp8/j6lTp6KoqAgTJ04EAIwbNw5z5szRtI+Li0NUVBRSUlJw+PBh9OnTB2q1GrNmzdK0efPNN3Hs2DF89NFHuHTpEjZv3oyvv/5aa2QRERHVLROZFKPu9WWJZOdb0jMmum4wYsQI3Lx5E3PnzkVmZiYCAgIQHR2t6Yiblpam1T+lpKQEERERSElJgZWVFcLDwxEZGQk7OztNm44dO2LHjh2YM2cOFi5ciGbNmmHZsmUYPXr0k58hERE9thc6euDzmGScTL2NxBv5aO3Ku9ekH3R+D4u+4ntYiIhqx7TNp/DrXxkYFdwUHw1uJ3Y51MDVyXtYiIio4RsTXNF/cOfp6ygoKRe5GqIKDCxERKSls3djNHeyQnGZCjtOXxe7HCIADCxERPQvD84vFBmbigbSc4AMHAMLERFVMvgpN1jIZUjOLkTclVtil0PEwEJERJXZKEwxqIMbACDyGIc4k/gYWIiIqEr3O9/u/TsT2fklIldDxo6BhYiIqtTa1QZBno2gVAvYcoLTn5C4GFiIiKha9+cX2hyXBqVKLXI1ZMwYWIiIqFrPt3NBY0s5MvNL8Pv5bLHLISPGwEJERNUyM5FhREcPAMCmOHa+JfEwsBAR0UON6tQUEglwODkHKTcLxS6HjBQDCxERPZRHYwv0bukEANgUlyZyNWSsGFiIiOiRxoRUdL798WQ67papRK6GjBEDCxERPVIPX0d4NDZHfokSv5y5IXY5ZIQYWIiI6JGkUonmRXLfHbvK+YWo3jGwEBHRYxkW5AG5iRR/X8/HmWt5YpdDRoaBhYiIHktjSzn6tWsCANjI+YWonjGwEBHRY7vf+faXMzdwu6hM5GrImDCwEBHRY+vgYYc2rjYoVaqxLf6a2OWQEWFgISKixyaRSDD23vxCG+NSoVaz8y3VDwYWIiLSyYAAV1grTJCaW4zDl3LELoeMhInYBRARkWGxkJtgaKA71h29iq8OXsLdMiVUakAtCP8s9z4LAqDSrAfU6mp+FoR7nyvaC9Vso1Lf/+6Bdup/jiHc21dFu4qfWzhb441QX0gkErEvHT0BBhYiItLZ6GBPrDt6FcdSbuFYyi2xy3moPX9nwsvBAoM7uItdCj0BBhYiItJZcycrzHy2BQ5eyIZMKoFEIoFUAsikEkglD3yWVPWd9s9SiQQyiQRSaUUfGdm99hKJ5F47aPYpkz7w87120nv7+qfdP/s/ez0P2+Kv4aPdSQht5QxrhanYl45qiIGFiIhq5LVnfPHaM75il/FQpUoVTl69hau5xfg8Jhnv920tdklUQ+x0S0REDZaZiQzz+rcBAKw7ehXJWQUiV0Q1xcBCREQNWi8/J4S2coJSLWD+L+c4D5KBYmAhIqIG74N+rSE3keLopVzs+TtT7HKoBhhYiIiowfO0t8SUp70BAP+3KxHFZUqRKyJdMbAQEZFRmNqzOdzszHEjrwRfHrgsdjmkIwYWIiIyCuZyGT7o1woA8PUfKbiaUyRyRaQLBhYiIjIaYW1c0N3XAWUqNRbuShS7HNIBAwsRERkNiUSCef3bwEQqwf6kbMSczxK7JHpMDCxERGRUmjtZ4aVuzQAAC35JREm5SuSK6HEwsBARkdGZ8YwvnKzNkHarGGv+SBG7HHoMDCxERGR0rMxM8H7fig64Kw9ewvU7d0WuiB6FgYWIiIzSAH9XdPJqjJJyNf77Kzvg6jsGFiIiMkoSiQQLBraBVALsPpuJI8k5YpdED8HAQkRERqtVExuMC/ECAMz7+W+UKdXiFkTVYmAhIiKj9uazLWBvKcflm0XY8OdVscuhajCwEBGRUbM1N8W7ffwAAMt+v4js/BKRK6Kq1CiwrFy5El5eXlAoFAgODsbx48erbVteXo6FCxfCx8cHCoUC/v7+iI6O1mozf/58SCQSrcXPz68mpREREelsaKA7/D3sUFSmwqI9SWKXQ1XQObBs3boVM2fOxLx583Dq1Cn4+/sjLCwM2dnZVbaPiIjA6tWrsWLFCiQmJmLKlCkYPHgwTp8+rdWuTZs2yMjI0CxHjhyp2RkRERHpSCqVYOGANpBIgB2nr+P4lVtil0T/onNgWbp0KSZNmoSJEyeidevWWLVqFSwsLPDtt99W2T4yMhLvvfcewsPD4e3tjalTpyI8PBxLlizRamdiYgIXFxfN4uDgULMzIiIiqgF/Dzu80NEDADD3p7+hVLEDrj7RKbCUlZUhPj4eoaGh/+xAKkVoaChiY2Or3Ka0tBQKhUJrnbm5eaU7KMnJyXB1dYW3tzdGjx6NtLQ0XUojIiJ6Yu+E+cHW3BRJmQXYfJy/h/SJToElJycHKpUKzs7OWuudnZ2RmZlZ5TZhYWFYunQpkpOToVarsW/fPkRFRSEjI0PTJjg4GOvXr0d0dDS++uorXLlyBd27d0dBQUG1tZSWliI/P19rISIiehKNLeV4+7kWAIDFey8gt7BU5IrovjofJbR8+XL4+vrCz88Pcrkc06dPx8SJEyGV/nPo559/HsOGDUP79u0RFhaG3bt3486dO/jhhx+q3e+iRYtga2urWTw8POr6VIiIyAiMCvZE6yY2yC9R4rO9F8Quh+7RKbA4ODhAJpMhK0t7Ou6srCy4uLhUuY2joyN27tyJoqIipKamIikpCVZWVvD29q72OHZ2dmjRogUuXbpUbZs5c+YgLy9Ps6Snp+tyKkRERFWSSSVYOLANAGDryXQkpN8RtyACoGNgkcvlCAwMRExMjGadWq1GTEwMQkJCHrqtQqGAm5sblEoltm/fjoEDB1bbtrCwEJcvX0aTJk2qbWNmZgYbGxuthYiIqDYEeTXGfzq4QRCAeT/9DbVaELsko6fzI6GZM2dizZo12LBhA86fP4+pU6eiqKgIEydOBACMGzcOc+bM0bSPi4tDVFQUUlJScPjwYfTp0wdqtRqzZs3StHn77bdx6NAhXL16FX/++ScGDx4MmUyGkSNH1sIpEhER6W72836wMjPBmWt5+DGed/HFZqLrBiNGjMDNmzcxd+5cZGZmIiAgANHR0ZqOuGlpaVr9U0pKShAREYGUlBRYWVkhPDwckZGRsLOz07S5du0aRo4cidzcXDg6OqJbt244duwYHB0dn/wMiYiIasDJRoE3Qn3xf7+exyfRF9CnTRPYWpiKXZbRkgiC0CDuc+Xn58PW1hZ5eXl8PERERLWiXKXG88sP41J2IcaHeGLBwLZil9TgPO7vb84lREREVA1TmRQLBlR0wI08lorEG3yFhlgYWIiIiB6ia3MH9G3XBGoBmPfz32ggDyYMDgMLERHRI7zXtxXMTWU4cfU2fkq4IXY5RomBhYiI6BHc7MwxvXdzAMB/d59HQUm5yBUZHwYWIiKix/By92bwsrfAzYJSrNhf/YtNqW4wsBARET0GMxMZ5vWv6ID77ZEruJRd/Xx3VPsYWIiIiB5TLz8nhLZyglItYP7PieyAW48YWIiIiHTwQb/WkJtIceRSDvaeyxS7HKPBwEJERKQDT3tLTHm6YgLfD3edx90ylcgVGQcGFiIiIh1N7dkcbnbmuH7nLr46yA649YGBhYiISEfmchki+rYCAKz6IwWpuUUiV9TwMbAQERHVQJ+2LujW3AFlSjU+3JUodjkNHgMLERFRDUgkEswf0BomUgl+P5+N/UlZYpfUoDGwEBER1VBzJ2u82K0ZAGDBL4koKWcH3LrCwEJERPQEZvRuDidrM6TmFmPtkStil9NgMbAQERE9AWuFKd4Lr+iAu2J/Mq7fuStyRQ0TAwsREdETGhjgio5ejVBSrsZHv54Xu5wGiYGFiIjoCUkkEiwY0BZSCfDr2QwcvZQjdkkNDgMLERFRLWjtaoOxnT0BAPN+PodylVrkihoWBhYiIqJaMvPZlmhsKcel7EJs+POq2OU0KAwsREREtcTWwhTv9mkJAFj2ezKy80tErqjhYGAhIiKqRcMCPeDvbovCUiU+3pMkdjkNBgMLERFRLZJKJVg4sC0kEiDq9HWcuHpL7JIaBAYWIiKiWubvYYcRQR4AgLk/nYNKLYhckeFjYCEiIqoD74S1hI3CBOcz8rE5LlXscgweAwsREVEdsLcyw9thFR1wP9t7AbmFpSJXZNgYWIiIiOrIqE5N0aqJDfJLlFj82wWxyzFoDCxERER1xEQmxcKBbQAAW06k40z6HXELMmAMLERERHWoo1djDO7gBkEA5v58Dmp2wK0RBhYiIqI6Nud5P1jKZTiTfgfb4q+JXY5BYmAhIiKqY042CrwR2gIA8El0EvLulotckeFhYCEiIqoHE7p6obmTFXKLyvC/fRfFLsfgMLAQERHVA1OZFPP7V3TA/S72Ks5n5ItckWFhYCEiIqon3XwdEN7OBWoBmPfzOQgCO+A+LgYWIiKievR+39ZQmEpx/Mot/HzmhtjlGAwGFiIionrkZmeO6b2aAwA+2n0ehaVKkSsyDAwsRERE9ezl7t7wtLdAVn4pVuxPFrscg8DAQkREVM8UpjLM698aAPDtkSu4lF0ockX6j4GFiIhIBL39nPGMnxPKVQIW/MIOuI/CwEJERCSSuf1bQy6T4nByDk5znqGHYmAhIiISiae9Jfr7uwIANh5LFbka/cbAQkREJKIxnZsCAHb9lYHbRWUiV6O/ahRYVq5cCS8vLygUCgQHB+P48ePVti0vL8fChQvh4+MDhUIBf39/REdHV9v+448/hkQiwRtvvFGT0oiIiAxKgIcd2rrZoEypxo/x6WKXo7d0Dixbt27FzJkzMW/ePJw6dQr+/v4ICwtDdnZ2le0jIiKwevVqrFixAomJiZgyZQoGDx6M06dPV2p74sQJrF69Gu3bt9f9TIiIiAyQRCLBmGBPAMCmuDSo1ex8WxWdA8vSpUsxadIkTJw4Ea1bt8aqVatgYWGBb7/9tsr2kZGReO+99xAeHg5vb29MnToV4eHhWLJkiVa7wsJCjB49GmvWrEGjRo1qdjZEREQGaECAK6wVJkjNLcbhSzlil6OXdAosZWVliI+PR2ho6D87kEoRGhqK2NjYKrcpLS2FQqHQWmdubo4jR45orZs2bRr69u2rte+HKS0tRX5+vtZCRERkiCzkJhjylDsAIDKWnW+rolNgycnJgUqlgrOzs9Z6Z2dnZGZmVrlNWFgYli5diuTkZKjVauzbtw9RUVHIyMjQtNmyZQtOnTqFRYsWPXYtixYtgq2trWbx8PDQ5VSIiIj0ypjOFY+F9idl4fqduyJXo3/qfJTQ8uXL4evrCz8/P8jlckyfPh0TJ06EVFpx6PT0dLz++uvYtGlTpTsxDzNnzhzk5eVplvR0dlQiIiLD1dzJCiHe9lALwPdxaWKXo3d0CiwODg6QyWTIysrSWp+VlQUXF5cqt3F0dMTOnTtRVFSE1NRUJCUlwcrKCt7e3gCA+Ph4ZGdn46mnnoKJiQlMTExw6NAhfP755zAxMYFKpapyv2ZmZrCxsdFaiIiIDNnYkIq7LFtOpKNMqRa5Gv2iU2CRy+UIDAxETEyMZp1arUZMTAxCQkIeuq1CoYCbmxuUSiW2b9+OgQMHAgCeeeYZnD17FgkJCZolKCgIo0ePRkJCAmQyWQ1Oi4iIyPA829oZTtZmyCksxd5zVXe1MFYmum4wc+ZMjB8/HkFBQejUqROWLVuGoqIiTJw4EQAwbtw4uLm5afqjxMXF4fr16wgICMD169cxf/58qNVqzJo1CwBgbW2Ntm3bah3D0tIS9vb2ldYTERE1ZKYyKV7o1BSfxyRj47FUzVtwqQaBZcSIEbh58ybmzp2LzMxMBAQEIDo6WtMRNy0tTdM/BQBKSkoQERGBlJQUWFlZITw8HJGRkbCzs6u1kyAiImooRnbywMoDlxB35RYuZhWghbO12CXpBYnQQKaHzM/Ph62tLfLy8tifhYiIDNor353Eb4lZGB/iiQUDG/bThsf9/c25hIiIiPTM/c63Uaeuo6hUKXI1+oGBhYiISM909XGAl70FCkqV+Cnhhtjl6AUGFiIiIj0jlUo0L5LbeCwVDaT3xhNhYCEiItJDQwPdYWYiRWJGPk6l3RG7HNExsBAREekhOwu5ZljzpmOcX4iBhYiISE/dfyy0668M3CoqE7kacTGwEBER6Sl/d1u0c7NFmUqNH08a95x5DCxERER6SiKRYEznpgCATXFpUKuNt/MtAwsREZEeG+DvBmuFCdJuFeOP5JtilyMaBhYiIiI9Zi6XYWigO4CKIc7GioGFiIhIz93vfLs/KRvXbheLXI04GFiIiIj0nI+jFbr42EMtAN8fTxO7HFEwsBARERmAsffusmw9kY4ypVrkauofAwsREZEBCG3tDCdrM+QUlmHvuUyxy6l3DCxEREQGwFQmxQudKoY4Rxph51sGFiIiIgMxspMHZFIJjl+5hYtZBWKXU68YWIiIiAxEE1tzhLZyAmB8Q5wZWIiIiAzI2M5eAICoU9dRVKoUt5h6xMBCRERkQLr42KOZgyUKS5XYmXBd7HLqDQMLERGRAZFKJRgdfK/zbWwqBME45hdiYCEiIjIwQwPdYWYiRVJmAU6l3Ra7nHrBwEJERGRg7CzkGODvCgDYeMw43nzLwEJERGSA7s8v9OtfGcgtLBW5mrrHwEJERGSA/D3s0N7dFmUqNX6MvyZ2OXWOgYWIiMhAjQmuuMuyKS4VanXD7nzLwEJERGSg+vu7wkZhgvRbd3Eo+abY5dQpBhYiIiIDZS6XYWigBwBgUwN/8y0DCxERkQEb3bninSwxSdm4drtY5GrqDgMLERGRAfNxtELX5vYQBOD74w13iDMDCxERkYG73/l264l0lCnVIldTNxhYiIiIDFxoa2c425ghp7AM0ecyxS6nTjCwEBERGThTmRQvdKzoy7IxtmF2vmVgISIiagBGdmoKmVSC41dv4UJmgdjl1DoGFiIiogbAxVaBZ1s5AwA2NsAhzgwsREREDcTYkIrOtztOX0dhqVLkamoXAwsREVED0cXHHt4OligsVWLn6etil1OrGFiIiIgaCIlEgtH3ZnHeeCwVgtBw5hdiYCEiImpAhj7lDoWpFEmZBTiVdlvscmoNAwsREVEDYmthigH+rgCAyAY0xJmBhYiIqIEZc++x0O6zmcgtLBW5mtrBwEJERNTAtHe3Q3t3W5Sp1Pjh5DWxy6kVNQosK1euhJeXFxQKBYKDg3H8+PFq25aXl2PhwoXw8fGBQqGAv78/oqOjtdp89dVXaN++PWxsbGBjY4OQkBDs2bOnJqURERER/rnLsvl4KlRqw+98q3Ng2bp1K2bOnIl58+bh1KlT8Pf3R1hYGLKzs6tsHxERgdWrV2PFihVITEzElClTMHjwYJw+fVrTxt3dHR9//DHi4+Nx8uRJ9O7dGwMHDsS5c+dqfmZERERGrH97V9goTJB+6y7+uHhT7HKemETQccxTcHAwOnbsiC+++AIAoFar4eHhgRkzZmD27NmV2ru6uuL999/HtGnTNOuGDBkCc3NzbNy4sdrjNG7cGJ999hleeumlx6orPz8ftra2yMvLg42NjS6nRERE1CB9uCsRa49cwTN+Tlg7oaPY5VTpcX9/63SHpaysDPHx8QgNDf1nB1IpQkNDERsbW+U2paWlUCgUWuvMzc1x5MiRKturVCps2bIFRUVFCAkJqbaW0tJS5Ofnay1ERET0j9HBFRMi7r+QjfRbxSJX82R0Ciw5OTlQqVRwdnbWWu/s7IzMzKqnsw4LC8PSpUuRnJwMtVqNffv2ISoqChkZGVrtzp49CysrK5iZmWHKlCnYsWMHWrduXW0tixYtgq2trWbx8PDQ5VSIiIgaPG9HK3Rr7gBBAL4/niZ2OU+kzkcJLV++HL6+vvDz84NcLsf06dMxceJESKXah27ZsiUSEhIQFxeHqVOnYvz48UhMTKx2v3PmzEFeXp5mSU9Pr+tTISIiMjhjOlfcZdl6Ih2lSpXI1dScToHFwcEBMpkMWVlZWuuzsrLg4uJS5TaOjo7YuXMnioqKkJqaiqSkJFhZWcHb21urnVwuR/PmzREYGIhFixbB398fy5cvr7YWMzMzzaii+wsRERFpC23lDGcbM+QWlSH676qfhhgCnQKLXC5HYGAgYmJiNOvUajViYmIe2t8EABQKBdzc3KBUKrF9+3YMHDjwoe3VajVKSxvGy26IiIjEYiKTYmSnirssG48Z7ptvTXTdYObMmRg/fjyCgoLQqVMnLFu2DEVFRZg4cSIAYNy4cXBzc8OiRYsAAHFxcbh+/ToCAgJw/fp1zJ8/H2q1GrNmzdLsc86cOXj++efRtGlTFBQUYPPmzTh48CD27t1bS6dJRERkvEZ2aooV+y/hxNXbSMrMh5+L4T2V0DmwjBgxAjdv3sTcuXORmZmJgIAAREdHazripqWlafVPKSkpQUREBFJSUmBlZYXw8HBERkbCzs5O0yY7Oxvjxo1DRkYGbG1t0b59e+zduxfPPvvsk58hERGRkXO2UeC51s7Y83cmNh1Lw4eD2opdks50fg+LvuJ7WIiIiKr356UcjPomDpZyGeLeD4WVmc73LOpEnbyHhYiIiAxTiI89vB0tUVSmws7T18UuR2cMLEREREZAIpFgTHDF/EIbj6XC0B6wMLAQEREZiSGB7lCYSpGUWYD41Ntil6MTBhYiIiIjYWtuigH+rgCASAMb4szAQkREZETGdvYCAOw5m4mcQsN53xkDCxERkRFp524Lf3dblKnU+OGk4Uxrw8BCRERkZMZ0ruh8uzkuDSq1YXS+ZWAhIiIyMv39XWFrboprt+/i0MVssct5LAwsRERERkZhKsOwQHcAwMZjaSJX83gYWIiIiIzQ6HuPhQ5cyEb6rWKRq3k0BhYiIiIj1MzBEt19HSAIwObj+n+XhYGFiIjISI2+9+bbH06ko1SpErmah2NgISIiMlKhrZzgYqNAblEZov/OFLuch2JgISIiMlImMilGdmoKoGJ+IX3GwEJERGTEXujkAROpBCeu3kZSZr7Y5VSLgYWIiMiIOdso8FwbZwD6fZeFgYWIiMjIjbnX+XbHqesoLFWKXE3VGFiIiIiMXIiPPbwdLVFUpsKO09fFLqdKDCxERERGTiKRaO6ybIxNhSDo3/xCDCxERESEIYHuUJhKcSGrACdTb4tdTiUMLERERARbc1MM9HcDAETG6l/nWwYWIiIiAgCMDal4LLTn7wzkFJaKXI02BhYiIiICALR1s4W/hx3KVQJ+OJkudjlaGFiIiIhIY+y9WZw3HUuDSq0/nW8ZWIiIiEijX/smsDU3xfU7d3HoYrbY5WgwsBAREZGGwlSG4UHuAPSr8y0DCxEREWkZde+dLAcv3kT6rWKRq6nAwEJERERamjlYoruvAwQB2BSXJnY5ABhYiIiIqApj7nW+/eFkOkqVKpGrYWAhIiKiKjzj54QmtgrcKirDnrOZYpfDwEJERESVmcikGNmpKQBg4zHxO98ysBAREVGVXujoAROpBCdTb+N8Rr6otTCwEBERUZWcbBQIa+MCQPy7LAwsREREVK3RnSseC+04fR0FJeWi1cHAQkRERNUK8baHj6MlHK3NkCbiO1lMRDsyERER6T2JRIKNLwfD2VoBqVQiWh0MLERERPRQTWzNxS6Bj4SIiIhI/zGwEBERkd5jYCEiIiK9x8BCREREeq9GgWXlypXw8vKCQqFAcHAwjh8/Xm3b8vJyLFy4ED4+PlAoFPD390d0dLRWm0WLFqFjx46wtraGk5MTBg0ahAsXLtSkNCIiImqAdA4sW7duxcyZMzFv3jycOnUK/v7+CAsLQ3Z2dpXtIyIisHr1aqxYsQKJiYmYMmUKBg8ejNOnT2vaHDp0CNOmTcOxY8ewb98+lJeX47nnnkNRUVHNz4yIiIgaDIkgCIIuGwQHB6Njx4744osvAABqtRoeHh6YMWMGZs+eXam9q6sr3n//fUybNk2zbsiQITA3N8fGjRurPMbNmzfh5OSEQ4cO4emnn36suvLz82Fra4u8vDzY2NjockpEREQkksf9/a3THZaysjLEx8cjNDT0nx1IpQgNDUVsbGyV25SWlkKhUGitMzc3x5EjR6o9Tl5eHgCgcePG1bYpLS1Ffn6+1kJEREQNk06BJScnByqVCs7OzlrrnZ2dkZmZWeU2YWFhWLp0KZKTk6FWq7Fv3z5ERUUhIyOjyvZqtRpvvPEGunbtirZt21Zby6JFi2Bra6tZPDw8dDkVIiIiMiB1Pkpo+fLl8PX1hZ+fH+RyOaZPn46JEydCKq360NOmTcPff/+NLVu2PHS/c+bMQV5enmZJT0+vi/KJiIhID+gUWBwcHCCTyZCVlaW1PisrCy4uLlVu4+joiJ07d6KoqAipqalISkqClZUVvL29K7WdPn06du3ahQMHDsDd3f2htZiZmcHGxkZrISIiooZJp8Ail8sRGBiImJgYzTq1Wo2YmBiEhIQ8dFuFQgE3NzcolUps374dAwcO1HwnCAKmT5+OHTt2YP/+/WjWrJmOp0FEREQNmc6TH86cORPjx49HUFAQOnXqhGXLlqGoqAgTJ04EAIwbNw5ubm5YtGgRACAuLg7Xr19HQEAArl+/jvnz50OtVmPWrFmafU6bNg2bN2/GTz/9BGtra01/GFtbW5ibiz/hEhEREYlL58AyYsQI3Lx5E3PnzkVmZiYCAgIQHR2t6Yiblpam1T+lpKQEERERSElJgZWVFcLDwxEZGQk7OztNm6+++goA0LNnT61jrVu3DhMmTHisuu6PzuZoISIiIsNx//f2o96yovN7WPTVtWvXOFKIiIjIQKWnpz+0/2qDCSxqtRo3btyAtbU1JBJJre03Pz8fHh4eSE9PZ8feJ8DrWDt4HWsHr2Pt4HWsHcZ+HQVBQEFBAVxdXasdQQzU4JGQvpJKpY8cWfQkOBKpdvA61g5ex9rB61g7eB1rhzFfR1tb20e24WzNREREpPcYWIiIiEjvMbA8gpmZGebNmwczMzOxSzFovI61g9exdvA61g5ex9rB6/h4GkynWyIiImq4eIeFiIiI9B4DCxEREek9BhYiIiLSewwsREREpPcYWACsXLkSXl5eUCgUCA4OxvHjxx/a/scff4Sfnx8UCgXatWuH3bt311Ol+k2X63ju3DkMGTIEXl5ekEgkWLZsWf0Vqud0uY5r1qxB9+7d0ahRIzRq1AihoaGP/PNrLHS5jlFRUQgKCoKdnR0sLS0REBCAyMjIeqxWf+n69+N9W7ZsgUQiwaBBg+q2QAOhy3Vcv349JBKJ1qJQKOqxWj0lGLktW7YIcrlc+Pbbb4Vz584JkyZNEuzs7ISsrKwq2x89elSQyWTCp59+KiQmJgoRERGCqampcPbs2XquXL/oeh2PHz8uvP3228L3338vuLi4CP/73//qt2A9pet1HDVqlLBy5Urh9OnTwvnz54UJEyYItra2wrVr1+q5cv2i63U8cOCAEBUVJSQmJgqXLl0Sli1bJshkMiE6OrqeK9cvul7H+65cuSK4ubkJ3bt3FwYOHFg/xeoxXa/junXrBBsbGyEjI0OzZGZm1nPV+sfoA0unTp2EadOmaT6rVCrB1dVVWLRoUZXthw8fLvTt21drXXBwsDB58uQ6rVPf6XodH+Tp6cnAcs+TXEdBEASlUilYW1sLGzZsqKsSDcKTXkdBEIQOHToIERERdVGewajJdVQqlUKXLl2Eb775Rhg/fjwDi6D7dVy3bp1ga2tbT9UZDqN+JFRWVob4+HiEhoZq1kmlUoSGhiI2NrbKbWJjY7XaA0BYWFi17Y1BTa4jVVYb17G4uBjl5eVo3LhxXZWp9570OgqCgJiYGFy4cAFPP/10XZaq12p6HRcuXAgnJye89NJL9VGm3qvpdSwsLISnpyc8PDwwcOBAnDt3rj7K1WtGHVhycnKgUqng7Oystd7Z2RmZmZlVbpOZmalTe2NQk+tIldXGdXz33Xfh6upaKVQbk5pex7y8PFhZWUEul6Nv375YsWIFnn322bouV2/V5DoeOXIEa9euxZo1a+qjRINQk+vYsmVLfPvtt/jpp5+wceNGqNVqdOnSBdeuXauPkvVWg5mtmcjYffzxx9iyZQsOHjzIDno1YG1tjYSEBBQWFiImJgYzZ86Et7c3evbsKXZpBqGgoABjx47FmjVr4ODgIHY5Bi0kJAQhISGaz126dEGrVq2wevVqfPjhhyJWJi6jDiwODg6QyWTIysrSWp+VlQUXF5cqt3FxcdGpvTGoyXWkyp7kOi5evBgff/wxfv/9d7Rv374uy9R7Nb2OUqkUzZs3BwAEBATg/PnzWLRokdEGFl2v4+XLl3H16lX0799fs06tVgMATExMcOHCBfj4+NRt0XqoNv5+NDU1RYcOHXDp0qW6KNFgGPUjIblcjsDAQMTExGjWqdVqxMTEaKXbB4WEhGi1B4B9+/ZV294Y1OQ6UmU1vY6ffvopPvzwQ0RHRyMoKKg+StVrtfXnUa1Wo7S0tC5KNAi6Xkc/Pz+cPXsWCQkJmmXAgAHo1asXEhIS4OHhUZ/l643a+POoUqlw9uxZNGnSpK7KNAxi9/oV25YtWwQzMzNh/fr1QmJiovDKK68IdnZ2miFkY8eOFWbPnq1pf/ToUcHExERYvHixcP78eWHevHkc1izofh1LS0uF06dPC6dPnxaaNGkivP3228Lp06eF5ORksU5BL+h6HT/++GNBLpcL27Zt0xoCWVBQINYp6AVdr+NHH30k/Pbbb8Lly5eFxMREYfHixYKJiYmwZs0asU5BL+h6Hf+No4Qq6HodFyxYIOzdu1e4fPmyEB8fL7zwwguCQqEQzp07J9Yp6AWjDyyCIAgrVqwQmjZtKsjlcqFTp07CsWPHNN/16NFDGD9+vFb7H374QWjRooUgl8uFNm3aCL/++ms9V6yfdLmOV65cEQBUWnr06FH/hesZXa6jp6dnlddx3rx59V+4ntHlOr7//vtC8+bNBYVCITRq1EgICQkRtmzZIkLV+kfXvx8fxMDyD12u4xtvvKFp6+zsLISHhwunTp0SoWr9IhEEQRDr7g4RERHR4zDqPixERERkGBhYiIiISO8xsBAREZHeY2AhIiIivcfAQkRERHqPgYWIiIj0HgMLERER6T0GFqJadPDgQUgkEty5c+ext5kwYQIGDRpUZzU1ZHV57Wqy7/Xr18POzq5W6+jZsyfeeOMNvdkPkViMevJDotrWpUsXZGRkwNbW9rG3Wb58ORrK+xvnz5+PnTt3IiEhQexSGoyoqCiYmpo+dvuDBw+iV69euH37tlZ40nU/RPqGgYWoFsnlcp1nqNYl3FDtKy8v1+tf5I0bN9ar/RCJhY+EiKrRs2dPzJgxA2+88QYaNWoEZ2dnrFmzBkVFRZg4cSKsra3RvHlz7NmzR7PNvx8J3X9EsHfvXrRq1QpWVlbo06cPMjIyNNv8+9FDTY5b1aOInTt3QiKRaD7Pnz8fAQEB+Pbbb9G0aVNYWVnh1VdfhUqlwqeffgoXFxc4OTnhv//970Ovy8GDB9GpUydYWlrCzs4OXbt2RWpqKtavX48FCxbgzJkzkEgkkEgkWL9+PQBg6dKlaNeuHSwtLeHh4YFXX30VhYWFlep/2HVSqVSYOXMm7OzsYG9vj1mzZlW6MxUdHY1u3bpp2vTr1w+XL1/WfH/16lVIJBJs3boVPXr0gEKhwKZNmx5r31VZv349mjZtCgsLCwwePBi5ubmV2vz000946qmnoFAo4O3tjQULFkCpVAIARo0ahREjRmi1Ly8vh4ODA7777jsAlR/lREZGIigoCNbW1nBxccGoUaOQnZ2tOb9evXoBABo1agSJRIIJEyZUuZ/bt29j3LhxaNSoESwsLPD8888jOTlZp/8mRPWJgYXoITZs2AAHBwccP34cM2bMwNSpUzFs2DB06dIFp06dwnPPPYexY8eiuLi42n0UFxdj8eLFiIyMxB9//IG0tDS8/fbbdX7cqly+fBl79uxBdHQ0vv/+e6xduxZ9+/bFtWvXcOjQIXzyySeIiIhAXFxcldsrlUoMGjQIPXr0wF9//YXY2Fi88sorkEgkGDFiBN566y20adMGGRkZyMjI0Pwylkql+Pzzz3Hu3Dls2LAB+/fvx6xZs3S6TkuWLMH69evx7bff4siRI7h16xZ27NihtY+ioiLMnDkTJ0+eRExMDKRSKQYPHgy1Wq3Vbvbs2Xj99ddx/vx5hIWFPda+/y0uLg4vvfQSpk+fjoSEBPTq1Qv/93//p9Xm8OHDGDduHF5//XUkJiZi9erVWL9+vSYUjh49Gr/88otWeNu7dy+Ki4sxePDgKo9bXl6ODz/8EGfOnMHOnTtx9epVTSjx8PDA9u3bAQAXLlxARkYGli9fXuV+JkyYgJMnT+Lnn39GbGwsBEFAeHg4ysvLNW1q8meXqM6IOfMikT7r0aOH0K1bN81npVIpWFpaCmPHjtWsy8jIEAAIsbGxgiAIwoEDBwQAwu3btwVBEIR169YJAIRLly5ptlm5cqXg7Oys+fzvGW1rctx169YJtra2WvXv2LFDePB/8Xnz5gkWFhZCfn6+Zl1YWJjg5eUlqFQqzbqWLVsKixYtqvKa5ObmCgCEgwcPVvn9vHnzBH9//yq/e9CPP/4o2Nvbaz4/znVq0qSJ8Omnn2o+l5eXC+7u7g+dDfjmzZsCAOHs2bOCIPwzS/iyZcu02tVk3yNHjhTCw8O11o0YMULrv8MzzzwjfPTRR1ptIiMjhSZNmmiO4+DgIHz33Xda+x0xYoTmc48ePYTXX3+92jpOnDghABAKCgoEQaj8Z7Cq/Vy8eFEAIBw9elTzfU5OjmBubi788MMPgiA83n8TovrEOyxED9G+fXvNzzKZDPb29mjXrp1mnbOzMwBobslXxcLCAj4+PprPTZo0eWj72jpuVby8vGBtba21n9atW0MqlWqtq26/jRs3xoQJExAWFob+/ftj+fLlj/WI4Pfff8czzzwDNzc3WFtbY+zYscjNzdW6Q/Sw65SXl4eMjAwEBwdrvjcxMUFQUJDWcZKTkzFy5Eh4e3vDxsYGXl5eAIC0tDStdg9u97j7/rfz589rbQMAISEhWp/PnDmDhQsXwsrKSrNMmjQJGRkZKC4uhomJCYYPH45NmzYBqLhD9NNPP2H06NHVHjc+Ph79+/dH06ZNYW1tjR49elR5jo+q3cTERKt+e3t7tGzZEufPn9esq8mfXaK6wsBC9BD/7owpkUi01t3vI/LvRw6P2ofwiP4Ruh5XKpVW2ueDt/Yfd7/31z3sfNatW4fY2Fh06dIFW7duRYsWLXDs2LFq21+9ehX9+vVD+/btsX37dsTHx2PlypUAgLKysofW9qjr9G/9+/fHrVu3sGbNGsTFxWkebT14HACwtLTUab81VVhYiAULFiAhIUGznD17FsnJyVAoFAAqHgvFxMQgOzsbO3fuhLm5Ofr06VPl/oqKihAWFgYbGxts2rQJJ06c0Dy6+vc51oba+G9CVFsYWIgaAEdHRxQUFKCoqEizri6HFnfo0AFz5szBn3/+ibZt22Lz5s0AKkZJqVQqrbbx8fFQq9VYsmQJOnfujBYtWuDGjRs6Hc/W1hZNmjTR6lujVCoRHx+v+Zybm4sLFy4gIiICzzzzDFq1aoXbt2/Xyr6r0qpVq0p9ff4d3J566ilcuHABzZs3r7Tcv6vVpUsXeHh4YOvWrdi0aROGDRtW7ailpKQk5Obm4uOPP0b37t3h5+dX6Y6HXC4HgEr/Hf5du1Kp1Kr//vVr3br1Q8+bSCwc1kzUAAQHB8PCwgLvvfceXnvtNcTFxWlG6NSmK1eu4Ouvv8aAAQPg6uqKCxcuIDk5GePGjQNQ8cjpypUrSEhIgLu7u2ZEU3l5OVasWIH+/fvj6NGjWLVqlc7Hfv311/Hxxx/D19cXfn5+WLp0qdYL+ho1agR7e3t8/fXXaNKkCdLS0jB79uxa2XdVXnvtNXTt2hWLFy/GwIEDsXfvXkRHR2u1mTt3Lvr164emTZti6NChkEqlOHPmDP7++2+tDrqjRo3CqlWrcPHiRRw4cKDaYzZt2hRyuRwrVqzAlClT8Pfff+PDDz/UauPp6QmJRIJdu3YhPDwc5ubmsLKy0mrj6+uLgQMHYtKkSVi9ejWsra0xe/ZsuLm5YeDAgY91zYjqG++wEDUAjRs3xsaNG7F79260a9cO33//PebPn1/rx7GwsEBSUhKGDBmCFi1a4JVXXsG0adMwefJkAMCQIUPQp08f9OrVC46Ojvj+++/h7++PpUuX4pNPPkHbtm2xadMmLFq0SOdjv/XWWxg7dizGjx+PkJAQWFtba42kkUql2LJlC+Lj49G2bVu8+eab+Oyzz2pl31Xp3Lkz1qxZg+XLl8Pf3x+//fYbIiIitNqEhYVh165d+O2339CxY0d07twZ//vf/+Dp6anVbvTo0UhMTISbmxu6du1a7TEdHR2xfv16/Pjjj2jdujU+/vhjLF68WKuNm5sbFixYgNmzZ8PZ2RnTp0+vcl/r1q1DYGAg+vXrh5CQEAiCgN27d+v1O2nIuEkEPpAkIiIiPcc7LERERKT3GFiIiIhI7zGwEBERkd5jYCEiIiK9x8BCREREeo+BhYiIiPQeAwsRERHpPQYWIiIi0nsMLERERKT3GFiIiIhI7zGwEBERkd5jYCEiIiK99/8GUj4saIU2PgAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot([0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55], results)\n", "_ = plt.title(\"Mean validation score\")\n", "_ = plt.xlabel(\"minimum standard deviation\")" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-05-01T10:40:19.171436400Z", "start_time": "2024-05-01T10:40:19.051636700Z" } }, "id": "b620fcf2b4b9f6f4", "execution_count": 39 }, { "cell_type": "code", "outputs": [], "source": [ "to_drop = X_train.std() > .2\n", "X_train_small = X_train.loc[:, to_drop]\n", "X_test_small = X_test.loc[:, to_drop]\n", "X_train_small_big = X_train * 0 + X_train_small\n", "X_train_small_big = X_train_small_big.iloc[:, :-9].fillna(0)" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-05-01T10:54:33.705592900Z", "start_time": "2024-05-01T10:54:33.631882900Z" } }, "id": "975356d69cc20c53", "execution_count": 58 }, { "cell_type": "code", "outputs": [ { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAGzCAYAAAAlqLNlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXwU19eHn1nfjbsRYkgIFtyKtFCkVKBKlVL3Unfq7a+lrlSpG22hQou7u5MQCCHuslnfnZn3j002WRK0FHk7z+dDu3vnzp0zs5uZ75577jmCLMsyCgoKCgoKCgoKAKhOtQEKCgoKCgoKCqcTijhSUFBQUFBQUGiGIo4UFBQUFBQUFJqhiCMFBQUFBQUFhWYo4khBQUFBQUFBoRmKOFJQUFBQUFBQaIYijhQUFBQUFBQUmqGIIwUFBQUFBQWFZijiSEFBQUFBQUGhGYo4UlBQOCN45plnEAThVJuhoKDwH0ARRwoKzWh8AFdWVra6vUuXLgwbNuzkGqWgcAby0ksvMWvWrFNthoLCcaGIIwUFBQWFE44ijhTOZBRxpKBwBuBwOJAk6VSbccZis9lOtQkKh8FqtZ5qExQU/FDEkYLCP2DJkiUIgsBPP/3Eiy++SJs2bTAYDAwfPpy9e/f69R02bBhdunRh48aNDBw4EKPRSEpKCtOmTWt1zB9++IEnn3yShIQETCYTZrMZgBkzZtCrVy+MRiORkZFcc801FBUVtbAtKyuLyy+/nKioKIxGIx07duSJJ57w61NUVMQNN9xATEwMer2ezp078/nnn7cY691336Vz586YTCbCwsLo3bs33333nW97fX09kydPJjk5Gb1eT3R0NOeeey6bNm3yG2ft2rWMHj2akJAQTCYTQ4cOZeXKlS2Ot2LFCvr06YPBYCAtLY2PPvroCJ9E69d5yJAhmEwmHn/8cQB+++03xo4dS3x8PHq9nrS0NJ5//nlEUWx1jG3btjF06FBMJhPt2rXj559/BmDp0qX069fPd10XLFjgt/+BAwe444476NixI0ajkYiICC677DLy8vL8+n3xxRcIgsDKlSu5//77iYqKIiAggPHjx1NRUXHEcy0tLWXSpEm0adMGvV5PXFwcF110kd9xkpOTOf/885k3bx6ZmZkYDAYyMjL49ddfW4xXW1vL5MmTSUxMRK/X065dO1555ZUWwlySJN5++226du2KwWAgKiqK0aNHs2HDBgAEQcBqtfLll18iCAKCIHD99dcDTVPXu3bt4qqrriIsLIyzzjoLgG3btnH99deTmpqKwWAgNjaWG264gaqqqiNeCwWFE4nmVBugoPD/gf/973+oVCoefPBB6urqePXVV7n66qtZu3atX7+amhrOO+88Lr/8cq688kp++uknbr/9dnQ6HTfccINf3+effx6dTseDDz6I0+lEp9PxxRdfMGnSJPr06cPLL79MWVkZb7/9NitXrmTz5s2EhoYC3ofM4MGD0Wq13HLLLSQnJ7Nv3z7++OMPXnzxRQDKysro378/giBw1113ERUVxd9//82NN96I2Wxm8uTJAHzyySfcc889XHrppdx77704HA62bdvG2rVrueqqqwC47bbb+Pnnn7nrrrvIyMigqqqKFStWsHv3bnr27AnAokWLGDNmDL169eLpp59GpVIxffp0zjnnHJYvX07fvn0B2L59OyNHjiQqKopnnnkGj8fD008/TUxMzFF/HlVVVYwZM4YJEyZwzTXX+Pb94osvCAwM5P777ycwMJBFixYxZcoUzGYzU6dObfFZnX/++UyYMIHLLruMDz/8kAkTJvDtt98yefJkbrvtNq666iqmTp3KpZdeSkFBAUFBQQCsX7+eVatWMWHCBNq0aUNeXh4ffvghw4YNY9euXZhMJr9j3X333YSFhfH000+Tl5fHW2+9xV133cWPP/542PO85JJL2LlzJ3fffTfJycmUl5czf/588vPzSU5O9vXLycnhiiuu4LbbbmPixIlMnz6dyy67jDlz5nDuuecCXu/a0KFDKSoq4tZbb6Vt27asWrWKxx57jJKSEt566y3feDfeeCNffPEFY8aM4aabbsLj8bB8+XLWrFlD7969+frrr7npppvo27cvt9xyCwBpaWl+tl922WW0b9+el156CVmWAZg/fz65ublMmjSJ2NhYdu7cyccff8zOnTtZs2aNEpCvcPKQFRQUfDz99NMyIFdUVLS6vXPnzvLQoUN97xcvXiwDcqdOnWSn0+lrf/vtt2VA3r59u69t6NChMiC//vrrvjan0ylnZmbK0dHRssvl8hszNTVVttlsvr4ul0uOjo6Wu3TpItvtdl/7n3/+KQPylClTfG1DhgyRg4KC5AMHDvjZL0mS7/WNN94ox8XFyZWVlX59JkyYIIeEhPiOfdFFF8mdO3c+9EWTZTkkJES+8847D7ldkiS5ffv28qhRo/xssNlsckpKinzuuef62saNGycbDAY/23ft2iWr1Wr5aG5Zjdd52rRpLbY1v56N3HrrrbLJZJIdDkeLMb777jtfW1ZWlgzIKpVKXrNmja997ty5MiBPnz79sMdZvXq1DMhfffWVr2369OkyII8YMcLvutx3332yWq2Wa2trD3meNTU1MiBPnTr1kH1kWZaTkpJkQP7ll198bXV1dXJcXJzco0cPX9vzzz8vBwQEyHv27PHb/9FHH5XVarWcn58vy7IsL1q0SAbke+65p8Wxmp9DQECAPHHixBZ9Gv/GrrzyyhbbWrtu33//vQzIy5YtO+x5KiicSJRpNQWFE8CkSZPQ6XS+94MHDwYgNzfXr59Go+HWW2/1vdfpdNx6662Ul5ezceNGv74TJ07EaDT63m/YsIHy8nLuuOMODAaDr33s2LGkp6cze/ZsACoqKli2bBk33HADbdu29Ruz8Ze3LMv88ssvXHDBBciyTGVlpe/fqFGjqKur802JhYaGUlhYyPr16w95/qGhoaxdu5bi4uJWt2/ZsoWcnByuuuoqqqqqfMeyWq0MHz6cZcuWIUkSoigyd+5cxo0b52d7p06dGDVq1CGPfzB6vZ5Jkya1aG9+Pevr66msrGTw4MHYbDaysrL8+gYGBjJhwgTf+44dOxIaGkqnTp3o16+fr73xdfPPuvlx3G43VVVVtGvXjtDQ0BZTjQC33HKLn1dk8ODBiKLIgQMHDnmORqMRnU7HkiVLqKmpOWQ/gPj4eMaPH+97HxwczHXXXcfmzZspLS0FvNO1gwcPJiwszO/7MGLECERRZNmyZQD88ssvCILA008/3eI4x+LZue2221o9p0YcDgeVlZX0798foNXrpqDwb6GIIwWFY6S1B8DBIiQsLAygxUMrPj6egIAAv7YOHToAtIhHSUlJ8Xvf+KDs2LFji+Onp6f7tjc+pLt06XLIc6ioqKC2tpaPP/6YqKgov3+NoqK8vByARx55hMDAQPr27Uv79u258847W8QJvfrqq+zYsYPExET69u3LM8884ycWcnJyAK/gO/h4n376KU6nk7q6OioqKrDb7bRv376Fza2d96FISEjwE6uN7Ny5k/HjxxMSEkJwcDBRUVFcc801ANTV1fn1bdOmTYvPOiQkhMTExBZt4P9Z2+12pkyZ4ovdiYyMJCoqitra2hbHgaP//jRHr9fzyiuv8PfffxMTE8OQIUN49dVXfWKnOe3atWtxLgd/73JycpgzZ06Lz2fEiBFA0/dh3759xMfHEx4efkjbjoaDv98A1dXV3HvvvcTExGA0GomKivL1a+26KSj8WygxRwoKzWj0yNjt9la322w2P69NI2q1utX+ckMsxfHQ/Ff0iaYxwPaaa65h4sSJrfbp1q0b4PXaZGdn8+effzJnzhx++eUXPvjgA6ZMmcKzzz4LwOWXX87gwYOZOXMm8+bNY+rUqbzyyiv8+uuvjBkzxne8qVOnkpmZ2erxAgMDcTqdJ+T8Wrt2tbW1DB06lODgYJ577jnS0tIwGAxs2rSJRx55pEXQ8aE+06P5rO+++26mT5/O5MmTGTBgACEhIQiCwIQJE1pddXi835/JkydzwQUXMGvWLObOnctTTz3Fyy+/zKJFi+jRo8dh9z0YSZI499xzefjhh1vd3iimThStfUaXX345q1at4qGHHiIzM5PAwEAkSWL06NHKak2Fk4oijhQUmpGUlARAdnZ2Cw+BzWajoKCAkSNHHvf4xcXFWK1WP+/Rnj17APwCaI9k2znnnOO3LTs727c9NTUVgB07dhxyrKioKIKCghBF0ecZOBwBAQFcccUVXHHFFbhcLi6++GJefPFFHnvsMZ9YjIuL44477uCOO+6gvLycnj178uKLLzJmzBhfMG5wcPBhj9e4sq7R03TwOf4TlixZQlVVFb/++itDhgzxte/fv/8fjdsaP//8MxMnTuT111/3tTkcDmpra0/4sdLS0njggQd44IEHyMnJITMzk9dff51vvvnG12fv3r3IsuznPTr4e5eWlobFYjni9yEtLY25c+dSXV19WO/RsQZP19TUsHDhQp599lmmTJnia2/tu6Cg8G+jTKspKDRj+PDh6HQ6Pvzwwxa/VD/++GM8Hg9jxow57vE9Ho/fsnSXy8VHH31EVFQUvXr1Ouy+vXv3Jjo6mmnTpvl5WP7++292797N2LFjAa/AGDJkCJ9//jn5+fl+YzR6ItRqNZdccgm//PJLqyKq+TLyg5dR63Q6MjIykGUZt9uNKIotpjyio6OJj4/32dmrVy/S0tJ47bXXsFgshzyeWq1m1KhRzJo1y8/23bt3M3fu3MNenyPR6J1p7o1xuVx88MEH/2jcQx3rYK/Pu+++2yJlwD/BZrPhcDj82tLS0ggKCmrhgSsuLmbmzJm+92azma+++orMzExiY2MBr9dm9erVrV7n2tpaPB4P4F0hJ8uyz2vYnObnHBAQcExisLXPB/BbJaegcLJQPEcKCs2Ijo5mypQpPPnkkwwZMoQLL7wQk8nEqlWr+P777xk5ciQXXHDBcY8fHx/PK6+8Ql5eHh06dODHH39ky5YtfPzxx2i12sPuq9VqeeWVV5g0aRJDhw7lyiuv9C3lT05O5r777vP1feeddzjrrLPo2bMnt9xyCykpKeTl5TF79my2bNkCeNMPLF68mH79+nHzzTeTkZFBdXU1mzZtYsGCBVRXVwMwcuRIYmNjGTRoEDExMezevZv33nuPsWPHEhQURG1tLW3atOHSSy+le/fuBAYGsmDBAtavX+/znKhUKj799FPGjBlD586dmTRpEgkJCRQVFbF48WKCg4P5448/AHj22WeZM2cOgwcP5o477sDj8fjyLG3btu24r/3AgQMJCwtj4sSJ3HPPPQiCwNdff/2Ppj4Pxfnnn8/XX39NSEgIGRkZrF69mgULFhAREXHCjrFnzx6GDx/O5ZdfTkZGBhqNhpkzZ1JWVuYXSA7eKbEbb7yR9evXExMTw+eff05ZWRnTp0/39XnooYf4/fffOf/887n++uvp1asXVquV7du38/PPP5OXl0dkZCRnn3021157Le+88w45OTm+Ka/ly5dz9tlnc9dddwFeQbxgwQLeeOMN4uPjSUlJ8QtkP5jg4GBf3JTb7SYhIYF58+b9K549BYUjciqWyCkonO588803cv/+/eWAgABZr9fL6enp8rPPPuu33FuWm5bdz5gxw699//79LZZ3Dx06VO7cubO8YcMGecCAAbLBYJCTkpLk995776jGbOTHH3+Ue/ToIev1ejk8PFy++uqr5cLCwhb9duzYIY8fP14ODQ2VDQaD3LFjR/mpp57y61NWVibfeeedcmJioqzVauXY2Fh5+PDh8scff+zr89FHH8lDhgyRIyIiZL1eL6elpckPPfSQXFdXJ8uyNx3BQw89JHfv3l0OCgqSAwIC5O7du8sffPBBC5s2b94sX3zxxb6xkpKS5Msvv1xeuHChX7+lS5fKvXr1knU6nZyamipPmzbNtwT8SDRe59ZYuXKl3L9/f9loNMrx8fHyww8/7FuKv3jx4iOOkZSUJI8dO7ZFO+CXyqCmpkaeNGmSHBkZKQcGBsqjRo2Ss7Ky5KSkJL/l7Y1L+devX+83XuN3oLlNB1NZWSnfeeedcnp6uhwQECCHhITI/fr1k3/66adWbZ47d67crVs33/e5te9XfX29/Nhjj8nt2rWTdTqdHBkZKQ8cOFB+7bXXfKkmZFmWPR6PPHXqVDk9PV3W6XRyVFSUPGbMGHnjxo2+PllZWfKQIUNko9EoA77zPly6jMLCQt93NiQkRL7sssvk4uJiGZCffvrpQ14LBYUTjSDL/8LPJgUFhRYMGzaMysrKw8YCKSicaJKTk+nSpQt//vnnqTZFQeGMQYk5UlBQUFBQUFBohiKOFBQUFBQUFBSaoYgjBQUFBQUFBYVmKDFHCgoKCgoKCgrNUDxHCgoKCgoKCgrNUMSRgoKCgoKCgkIz/tNJICVJori4mKCgoGNOda+goKCgoKBwapBlmfr6euLj41GpTryf5z8tjoqLi1vUz1JQUFBQUFA4MygoKKBNmzYnfNz/tDgKCgoCvBc3ODj4FFujoKCgoKCgcDSYzWYSExN9z/ETzX9aHDVOpQUHByviSEFBQUFB4Qzj3wqJUQKyFRQUFBQUFBSaoYgjBQUFBQUFBYVmKOJIQUFBQUFBQaEZijhSUFBQOAy2ygI2/3071fvWn2pTFBQUThL/6YBsBQUFhSOxae11OI352LL2MCht4ak2R0FB4SSgeI4UFBQUDoPTmA+Aw5h3ag1RUFA4aSjiSEFBQUFBQUGhGYo4UlBQUDgckvpUW6CgoHCSUcSRgoKCwmEQaEoyJ7qdp9ASBQWFk4UijhQUFBQOh9wkjtzWulNoiIKCwslCEUcKCgoKh0ASRUSVhz01qbhELW5bzak2SUFB4SSgLOVXUFBQOAQeRz1rSnrz2Y5r6RSeTb9U86k2SUFB4SSgeI4UFBQUDoHHXs+m8m4A7K7uiMuueI4UFP4LKOJIQUFB4RC4HWYsrkDfe6ddiTlSUPgvoIgjBYXTmPrlhdi2VZxqM/6zeBz1SHLTbbKmvvbUGaOgoHDSUGKOFBROU9zlNupm7wfA2DUSQRCOsIfCicbt9BdHFVYl5khB4b+A4jlSUDhNkd1S02u75xRa8t9FdNTjEPW+9zV2+ym0RkFB4WRxzOKoqKiIa665hoiICIxGI127dmXDhg2+7bIsM2XKFOLi4jAajYwYMYKcnBy/Maqrq7n66qsJDg4mNDSUG2+8EYvF4tdn27ZtDB48GIPBQGJiIq+++moLW2bMmEF6ejoGg4GuXbvy119/HevpKCicvjRzFIlm16mz4z+M223G4WkSR3VOxym0RkFB4WRxTOKopqaGQYMGodVq+fvvv9m1axevv/46YWFhvj6vvvoq77zzDtOmTWPt2rUEBAQwatQoHI6mm8rVV1/Nzp07mT9/Pn/++SfLli3jlltu8W03m82MHDmSpKQkNm7cyNSpU3nmmWf4+OOPfX1WrVrFlVdeyY033sjmzZsZN24c48aNY8eOHf/keigonD6Isu+lZFM8R6cCj8vfc1TnFk+hNQoKCicLQZZl+cjdvDz66KOsXLmS5cuXt7pdlmXi4+N54IEHePDBBwGoq6sjJiaGL774ggkTJrB7924yMjJYv349vXv3BmDOnDmcd955FBYWEh8fz4cffsgTTzxBaWkpOp3Od+xZs2aRlZUFwBVXXIHVauXPP//0Hb9///5kZmYybdq0Vu1zOp04nU3p/81mM4mJidTV1REcHHy0l0FB4aTg3F9HxUfbAIi4vjPG9PBTbNF/j90LX2Lsgi5Isre+2vWpy3nmlv+dYqsUFBTMZjMhISH/2vP7mDxHv//+O7179+ayyy4jOjqaHj168Mknn/i279+/n9LSUkaMGOFrCwkJoV+/fqxevRqA1atXExoa6hNGACNGjEClUrF27VpfnyFDhviEEcCoUaPIzs6mpqbG16f5cRr7NB6nNV5++WVCQkJ8/xITE4/l9BUUTiqy2CzmyKF4jk4FVqfVJ4wArIrjSEHhP8ExiaPc3Fw+/PBD2rdvz9y5c7n99tu55557+PLLLwEoLS0FICYmxm+/mJgY37bS0lKio6P9tms0GsLDw/36tDZG82Mcqk/j9tZ47LHHqKur8/0rKCg4ltNXUDipyJ5m02pO5al8KjC7bH7vbaKyhuX/E5IkHbmTwn+SY1rKL0kSvXv35qWXXgKgR48e7Nixg2nTpjFx4sR/xcATiV6vR6/XH7mjgsLpgKeZ50gRR6eEeo9/ALZDUsTR/xec5krWr7gYQdbR95yZaI1Bp9okhdOIY/pLj4uLIyMjw6+tU6dO5OfnAxAbGwtAWVmZX5+ysjLfttjYWMrLy/22ezweqqur/fq0NkbzYxyqT+N2BYUzHblZQHbzZf0KJw+rx3860y5pT5ElCieaom0/4zQU4TDup3zX/FNtzv9LzmTP3DGJo0GDBpGdne3XtmfPHpKSkgBISUkhNjaWhQsX+rabzWbWrl3LgAEDABgwYAC1tbVs3LjR12fRokVIkkS/fv18fZYtW4bb7fb1mT9/Ph07dvStjBswYIDfcRr7NB5HQeFMR27uOZKOet2EwgnEKrr93tslLaLHfYjepyeW8lyq960/1Wacdpjrm1Y219dlnUJLzhzq8ndQX5R95I4NbJlzM9vnPoituuhftOrf4Zim1e677z4GDhzISy+9xOWXX866dev4+OOPfUvsBUFg8uTJvPDCC7Rv356UlBSeeuop4uPjGTduHOD1NI0ePZqbb76ZadOm4Xa7ueuuu5gwYQLx8fEAXHXVVTz77LPceOONPPLII+zYsYO3336bN99802fLvffey9ChQ3n99dcZO3YsP/zwAxs2bPBb7q+gcCZjLTvQ9EYRR6eEeslDO1Q8h5EvcZHvMeAyV2AMjz/Vph0VkiSxacM1uA1l9NL8SmhS91Nt0mmDVWp6yNsc+06hJWcGdQU72Jh9KbLaTcfSV2nT6xJve/4OqgtWU1A3HUltw+hJxWLc6t3JAMgCba3XQ3jCKbP9eDgmcdSnTx9mzpzJY489xnPPPUdKSgpvvfUWV199ta/Pww8/jNVq5ZZbbqG2tpazzjqLOXPmYDAYfH2+/fZb7rrrLoYPH45KpeKSSy7hnXfe8W0PCQlh3rx53HnnnfTq1YvIyEimTJnilwtp4MCBfPfddzz55JM8/vjjtG/fnlmzZtGlS5d/cj0UFE4b3NZawAiA5FKSQJ5sJEnCKsuMR0db1DyFkWs8BpzmsjNGHJnzt+E2eMMPinNmKeKoAdFlx6Fv+vFhlw8cpvd/m7KdC9ib9xIO4wFoWLiZXfcwFX/NJSXjDjbmekUSDY94i3ar3/4hjgGEJJ55z+VjynP0/41/O0+CgsI/ofD7ObA1AABDrxAiL+t2ii36b2Epz+OF2c/RL/ta+jT8jrzEtJffLk4gtsvIU2zd0bFj3uOUaX4EINjehz5jfzjFFp0eVO1dy5b8q5oaJDVn9V2JPjjq1Bl1mrJy9jleYXQchNgH0XXIW+iDTnyOtn/7+a0UnlVQOE0RXXbUBDS8VspWnGzMxduxuk00X99qdxtw2SpOmU3HSo1nqe8ub9XsRpIkVCplxV1d6WYAAm1dcakqcRlKKN09h6R+155iy04PnPXVbFl6MxbTlkbnNQDJ2vsxBMRTXjqHasMCv306hrxCSFw3guI7IHrcqDVn9uIFRRwpKJym1FjsRDa8dioFT086VaVLsHlMfqtWPG4TdmvuKbPpWKgv2YvL0JT3TdRaqC/OIqRN04rjusJdGEPj0QWGngILTx3m+h2ghwBdBgbJRiV/YKnbfarNOi3wOKysXTEWt6lpVXmkcyzJXW7xTY/FusawY+FDVOq99UzTQ18joed4X/8zXRiBIo4UFE5bHK6mZeQVdXbankJb/ovUSmuxukcAEnrVJpxSZ/RoqbYUH3Y/0WWnau9qItoNQK0zHrbvv4Uketix8V4web0jEh5spt3UFKz1iaP8td+QY30anSOegSPmnTJbTwVm2btaOiyiN1bzXpDB6TlzPIInEltlIeay3QSEtmXv1jep1i0CfVNetQBbBl3HvIlK3ZQpXq0z0H3Mu9iqH0W0WwhK6HgqTP9XUcSRgsJpiqdZ+RC7SykfcjKpL87GZSjB5jaRpF5ClPYd7GIfjO77qXBUHnI/0WVn7fzx2I05hOWdQ8/zPjlk338LSZJY+/eF2EzZIKlJSrqNypKl2NhNXe1GYBIARZXfgRFchmIKN/1MUv//xpRSffEe3IZykNREpZ+De7sZbOCSyo+88xmM6Hai1jZNEpfumMuBAx81rSwrwxdU3Ui3Nl8S1eGsQ45pOsNWoB0LyuSzgsJpitgsCaRTSQJ5UinbOxeAWns4SerfADCq12NCoEayHHK/3NUfYzfmAFCjW4rLUvPvG3sQNbnrvcIISNbfR2zX0YRGeGtZ1kve3D5uez02wx7fPgdq3jvpdp4qagq9OZ+MzlR0AaEER3UGwGrcSV3hzlNp2r+CJElsnH0DS5ZnsH72VdTs38zG2dezs/yOJmHUCj1Tfj6sMPr/jiKOFBROUySxyY0tK9ropFJe/zcA1Y5QBJouvgkwy65WM/9Kokix7ZumBpVIefbCFv3+bWpLNgBgsnUkbfDtAESkeJPjOg2FuCw1mIt2giCD5P2OufWVOGr/f3tOGjHXbgcgQO2dCgpP64PBngSCTPWBVafStGNGElt6lF2WGoo2/orLUsPuBc+z/q+LqTUuBcBsXMum/ZdSa1zeYr8EbqRz1PsY7Kmk6B8mLKXHv27/6YwyraagcJoiN6vjJcjCKbTkv0VF9jLsxj04RS0W0YBK3fQ5hOHCImlxmisxhvoX0K7MXopHX43KYyLUM4hqw3xqqzbRhkuPeEx7bTm5698hOmn0P/61Xm/ZBXoI0ff2tRnD49E6onEbyqnKXYPT6g3UDnB0wqkuwaOvor4sC8NB5/T/EasrCzQQHNSUeydQ1QUHB7DbC49rzKq9a9iT9QJaIZTQoH60G3L3iTK3BZIksWfxy9TYV2Ez5ICqKT7IYE/FYfQuGMhah9f9YWp9HJ0jnjDNWUiSndQe9xAYkwpAbNfR/5rtZxKKOFJQOE2R5SbPkfCfzUb27yN63LjqqzCGxVJXsIMdB24HDRRX9AAEVDRd/EgsWFwBbFtxOzIe2sRdh0qtI7bbWIoP/AJ6CPUMIiioC9Xu+djd+494fEmS2LriRqymXZQWfs+AyGX/KJbDKnmny4LCvA//rxduJqu4hvHhnamjnIriuahURtCASZOCIKqxUIWlMouojkMAb1yO6HYQmvT/K7eW6HFj0+0FICQ209duMqWCCOWeP0gz39Ui39HB8Tqiyw4qDcgSOcteo0j43CdC6jyrObDoLQLtPYgMPpu4ThdhimxzTHZW7V1DfUUWyQOu9x1v78q3KZQ+9d4MBFoVPY3CqDWC7X1J6/Qg5XlzCY3pQ2znc4/Jpv8aijhSUDhdkZqLo/+u56gqZzUOSxlx3c5HpT7+W1ZVzipy97yLQyjAZSgBQO9IwKWtQFa5ifFcQpn2Z9CAxhVGkXM8akDA6RsjWqgn3xmCxbQC8GYKBiid8zu1Wm9bQvJlSKILKsAhHNkTUZWzEqtpl+/9+rXjGDrm+GqhiW4nTr23EHhofCYWm4On5ntX10V0Hkz3hMVUquegcYeBBgIC2qN2BGFhK9W1q0jhFlyWWtbvvBBQMSBkSQsP2ZlM/rovkTR21O5AQpObpo2iU0eQv+c9RF0dKzb0x2BPIT7sSgyB8WSVPIyktRErXkn7gQ+yf900CsXPUXsCkFUeJI2t1WNZjJuxuDeTt+0NOoY0lds4EiVb/2RX1b0AlP85G4thG7KqYfrsKG4DofbBBJo6IcsipsAk6mt3Ikp2uox+DZVaTXhqr6Oy47+OIo4UFE5ThOaeo6O5K/4/ojp3I1p9INqAMLbm3YCsdlE+9296nPfRcY+Zk/0KVtMOvzanoakgZpn2Z9/rzqnvcuvScvSAIDTlmIoTatjsaJntt8awCACtI5rI9LOxVeRBBbh0ZS28DgeTv/czv0R7Hn01TnMFotOONjAcrTHwqM+xrmAHssqDymMiILYdf69vqh+2piyUntFBiNp63OpyBFFPbNfzcdQWUVrwHXW6dTjNFaxbMQ7Z4C2uW7VvGW16+U8Lim4n+1a8jdNVTnLXWwiK73DU9p0qJEmicOOP7Le+DmqI1V6JSq3hpvf/YkeZk1mTh5NqfJRcx8sAOIz7yXW8BA6gIWVPqfp7KpbPRtSZQYX3/82Ido2jbcYkNuy9qMXxs+sepmbuWjqf+79Wk3DWHthKdeEadIYIsuse8bXXmza1ej6h9sEkJF1JSf5MElKuIKLdQJz1lbjM5X6iT+H4UcSRgsJpitDMc6T6D3mObNVFbNl3NbLa+4BurOdUrVuEs776uEoRVOWsaiGMANTuQESt/+ozo70d0za5cMgaIhBQ0SSOIoUaSuu6AhDlupCQsJ5UVM6lzrgagLiACSzaso/HZ+3gnLbncm7qfEp3ziUh88JW7cpdMc0XHNs+8HlyLE8BsGJDfwACbd3pd/6vR32e5XnzATC526NSqdiS15S7Z3e1THrCVHYXT0bSOGirv42AqCSMEYnocxJwGorYtHwiLmNT4sg91VOIto5AFxAKeEXGtgWTqdbPAy1U7vib/sYFGMPijtrGk4GlPBe3tQ59YAR7N75BvbjTO+WkBiQVSb2uZ2deCQsKZEDH90t3cO9FN2BfVECJ6puWA0oqUEktBBFAjOcKOp3zrC/x4fC2+3BZaina9isB4akU7/+ZKv3flGt/oXzJLwiilkjxPKxiFh6hHllw4dY3pIdwthgeQdQiCxI6VwyZ3T8lIDbN50GN7TLK188UnvD/emn9yUYRRwoKpyl+nqP/kDiqyFnUJIyao5Ioy5pL2z5XHvVYtXlbKN470/fAC7EPoPdY/4dffcle1u+4EJWoJ7PTFwQlZPDYi38COkx4EIQmW8KFeiodQZw9dI8vKV6idDXlO+eh1pmI6jiEK56cSbVHxy/7RjM8ZQE15atIwF8cVeduIHvXFN+Se6O9PW3PuQrH4kIK5CbvmMW0lVWzR9K97ycERCUd9lxFj5ti8UtQQ2SwN54kq8RM41xMvaSlzNiZPpl/YKvcT2T62dRZ7IQEGokLupI892vYjNl+Y8pqJzkrX6XzyJcAKN0+2yuMGpA0DrasvIm+o2cdV1Zkl82MRh/gl2DwWKnet569u6eiV8fikcz+K7EkNehEv/4hzn4Yw2L5a+EKX9vm/BpUKhUZI54lg2cB2Pr33VTq/0LjDKdP71/YtvZubPpsouVxhEX0BbWGyNSB6IMjORhdYCgpA28AIDp9GNvm3EeF7ncAZLWbiob0EK0hiDqSDPdgCIgjLLmPInhOEYo4UlA4TVE3E0eq/6dZNyRJImfpVDweM+lnP4Nao6Wmeg3NC5oZ7KloCMJi3Mre2mcxZrchquPg1scTRar2rsIQHEfulneo1M/2JSxReYxk9Hu5xT5Bce0YaFyCSqNDFxhKZa2FfLv3Qf/W6DawpKlvsGDBKmlwiRKGhge6SqXyrfDZvLeQao8OALesJa+uLarQGZQtmoHKY6JT/GtEpA1kZ9Z9uExNmbZ7D/0egHZD7ke3Phq3s4Z80Zt7yG7cx5rt59A3/W8CYlJbxF2JHjfO2lL2bngdWecCQBfbn4enL2B5qb+o/nvTPh69bDCB0an8sGQrj84pYFAMfH7LVeStftO38qlr7CcU5H1NrWEZpZofCds6AENgLLurJgMQ6bqAkNBM9tmex2bKIn/tdFIG3dLi2ooeN1mLnsbpKSfA2J5S5wyQBSS1nWB3b2qNy4mTriFjxLOtfp5Hw57dL2A17aC+tY0qf2EU6TyPdn0fBGD53ioaH4FZVa4Wu3YZ8Rr7ViYTnXEupqi29D//t+OuGZY+5FnEJXaqDfNbbAu1D0Yl6DAakolOHklwfCc0hoBjPobCiUURRwoKpynNxVHz1/+fKNsxl0L5Y1BD6bIf6NdpHrXCGgDSw98kIfNCdh8oo/DAbrSWhxAN1ezOfRBZfBmtMQxjWAL15XuIaDcQlUpF1uLnvF6iIvwEFpKKQQOXU+lQUVpcicmgIzY82FeItfkS9m+XbENGIETtIkbv/3A1CVZkBPYVV9I5ueVU0rT52/3e76lNIzXUW9Fc0tjYWX4HlOOXiTjN+BS6wDAAVGoNyf2vByDJMomsFc/6PA7rssZAlncJdrh2CBXSbPTuNthMDTXBvJoMwRnKhV/mUdMg0vSCh97RalaWCWwvrPMd9/fN+YCKlWXw9IwNXNfmakr4inDHuUSmDyMorhOrNnvTCuyumgxVDTvKAmnd7yYwLo36Odsp180i1/kK0gqRlAE34zRXUpW7kpLSn3FR6Z3O0kCNvNhnI0CtxuvhKVF9Q0fXY6h1B6VnPgKiy0HOijdanS5tJMDWhVDTAMqdv5Ge9CLRGecAkFdazfbapr+pCpeWKrOViOAmUaLW6ukw7AG/8Y63ZpjOFEyP86b5tUmSBLL8j7xmCv8eijhSUDgNET1u1LJAmOZtPHIsKmn8kXc6AykumOEXjLx290jfAzSq3RDqLHYunrYGu6xhQNRj3NTjIdz6SraX3uzt1LBSPjRnKBpVoNdT1Ixgex906hii4kbw7rxdvLuutoUNHYPc9E4MZmjnNlTX23l7TRWg4uyUAOrLDvj1NTbEH+0pqsIjynhEkV4dEgGwOVwsy3cBGmJ0LspcOgqreqOO39AiVkUQdaQFP47WEEps17EAWB0ujDqNL2BXFxhKt9FvsnOekVLNj759XYZiSvkB1GDT+hdLNdiT8CR8RI3Hu5z/vGQ1913QlwVbcllZVsn+2qYpwvw6D40X+7dsCy9c/RjxxeMJTuyCSqXCGBaHzhHrV7wWINXwMIFxaQDEtB1LeeksAA7Y36Zkzk84jfmNF+uoWba4D91SPyKi/UC/dkvJPrZvvAenphitGEb3np8QGJeGJElsnn+TL9Yr0nUB7Xs/gLl0F9GdRuC21aENCPVdy3Qe9Rt3xc4DyAiEa1x4ZAGzqGXx1lwuHdz16I3+h7QWmK1w+qCIIwWF0xDRaSWQYgI0Xje81jHqCHucebgstdTpVre6zVlzDpO/WcP8PBfuhtvU6go9N5svQg5uGa/RmAG4EaO9HfERV5J8zvW+tp9/nYmf66KB7Hot2bvsfLsrp6FFRZzexROXDqXkZ//VcfoGcXTfHweAA2gRuSR9D4M7xVNUbcEuazAJHsZ3jWTaRjMVjhiGjd4MQHnWEvL2vo9bqCWlzT3Ed7/AN+6X8zfx7MIi0gJF5j85zu+YnUe+RGrtZPatexOzewt2Y1PZD50jjkjdSDyiGa0mjORBN/PuAu/2FJOLD27zimqz1QHLKylzavB4RDySRImj6fZvlzUUVllIPiivUWaPLynfO59a8xpkJJLa3eI3pRmdcQ69TD+zOfs6JK2tSRg1I8jei7CAAVRY55HR5X+YolKwle/DUrUPS20WRcJ0JK2Nbbm30ds0g9qSreSXfYTDmOcdoCGfj4iZtbtHkrz3flQqrU8YBdg6kz50CvqgcEyRXqF6pKD9bfleN1hSsAoQ2FwNq/aUnlRxdKZhc7h4/891XNSvAx0SD53eoc5iR6USCDIZeO+PNXSID2dEj3ZnnBhUxJGCwmmI6LRhEqy+98GqIycTPNMo2vYLstrVUBV+PlsX3IlbqiYw5GKu2xxAlUfEt1Stgcrw6xnX8ykObPyKIvtXiLpawDvV5DJ4Y3jSQ6aScM7Fvn0Wb9nLC39sp8TpFUbdwzy0CdXTIymSL9cUUODwF0wdgtzMfGAsAQYdJfUlfts0zVauAbhR80OWg1nZe4g1SoCOYUl6UmNCADPVzqYEktHpw4hOH9bqtfhk5QEkdORYVMzbuIeRvfyXxxtDo+ky0hsvZavIJ3v9i0THjiahZ0uP4q4Sb46k1PCmecVuqfGo2IKIij1FFZTXWhFRoUPEoJYwi1o27ysmOdZfVATFtSMorh1we6t2A4Qm96BD1bNk1T0EQIRzNGFh/UnocSnVuWsIT+mLxhBAe+7z7aNL7kFocg8kSSJgU3v2mB9H0lpZl31ewwk3ja9xhWIU21Fv9JZFyXO/4dsW6bqA7ue/dUjbDkVWmRXQ0D7KO422udrJgWr74Xf6D+Nwubnzk/ksLoL3N6wn1eTihUt6MLBzMh6PyF/rs6mxOPhi9QH22w7+AVLFh5LEmD7pp8T240URRwoKpyGi046m2bpeg1B1mN5nJmXVv4MJ1Izhjd830CXpIcb0SWfKt4up8ngT66mQEIAgtYdaUcejfx3grM5JtB96L+2597Dj78wr4c6v1pBn09HoMRoQLfH9/U15aG4a3Zv9JVU88PVKNlWrubSDjhevGYle540t0Tj8C8ceLI4accga8hpyAd56bjfcoggUUO9R++KaDsVvq3ZS2Eyg3f/LLpakxRMZ2np+I1NU28Pme9pf4wJ0ZMSH+Nq0GjURWg8Vbh2/r8tB21ASJd4kolcLmOthZ0EVxzt5G9djHNZl+1GrDaSdc6evPbrT2YfdT6VSkdj7CoILu7BhT8t0BzGeK+gy2rtSrjZvMxtz/XMute048Zht9XhE9jSEXg3uFE9xtQWyKyi2iIff8T/Klr1FXPLpJsRmi0JybTru+G4z064RmPBl85ivlp5ZgHN7tP+XrTzxKOJIQeE0RHTb0eDwvdcL1afQmhOPpSwXq2kHbknDY6s7UO6ugw11vGJzsXRvLaBjdJKKt28cidsjMn/zXu774wASKka9vpg3L+3MiJ4tb7gWm4N3/lyH0y3y5XYbzW/WAjIvThjQYp+UuAh+fbj1PERa0ZsDSZSDUQtm1IKd3JfGMH3+JiKCjHy2bC9lNolKlwYJFakBLrqnxVNnsQMybtQs2rKvVVsb+XZ1LqAiTOPC4lFjkbR8t3Q791zU0tYj4fGIFNu83ra+7f0Dxke2D+HbXXambTQjIAMCKWE6tGoV2fUSOeVN+Z7e+2MNNRYnT1059KiOq1KpWgQvHwshbTrTR5hN4a7vCArNIKxNH19cUyOhyT3orfmD3G3vUKNdQpR0/nEVR122Yz8OWYMWkXN7tie3pIqXl1VQ6mwZlP1fpqLWQlZBOZO+3YHY4MHVIeJqeF0r6g4SRk2okYg3eCh1qHl5bAoazZkXdK6IIwWF05CDxZG62esznep968nf8wXoYfm+Cyh3N82hvDgvF7PoFTT3nNcDvU6LXqdl/KAuaNQq7pmVS72k5aaf9tDhr53ceU57hmemYbY7qTbbOP+jjbRWYyHJ6GL2Q2MINB3biiid5HUHiXI4asGMCjsqlYobR3mLuo4b2BmAvUUV/LhiN1cOzgAgJNBIl1CRHbUaflyd06o4Kq6sY8ybi6kTvV6qR89NY+HOIublS7yxupq3V//BqGQtl/ZvxzmZ7Y7K3q25xbhQo0aib8dEv23ndk/i211ZAMgN1ygjLgS1WmBefi37qr3L2QsranhtpddTOaBj67b/GwQnpJOR8Nxh+4S0yaBHm2mH7XMk5m/1BtmnBUkYdFoykmIJUbupE7X8vX4P1wz/72aYzi4oJ8ikZ09hJdd/n9XQ6v0+3d0/gjvP78fu/DKmL9rBzL3+uci6h3l48qIefLlsN09fPoioQ3g+zxQUcaSgcBoium2om02rqfCcQmtODCXb/ia34DVvoG1DOMz8Im+dpyitiwq3DnODUEgLcJGRFOu3/wX9M1AJAvfM3OuNnbFouff3PPg9r1kvf2E0KEZmyqV9iQkLOmZhBKCVvZ+BJHunqFRYkSUJ4aBpsnYJUTxxhX+x0mHtI9mxvpYlBR7ySqv94nnW7D7Q8Kvbe77ROhcXDegEwLz8AgBEVPyVJ/JXXjY/m/T07uAvdlrjzw37AIg3enxTg41kpsUDWb73/aMlbhjZg/IaC++s3UCRQ0teaTWTv1pO46PhUMIOoKzGjFpQHXL673Rle7EF0JCZEORry4hQs7oclmaV/OfEkSRJrNmdT43Fzj0zvUV5dYJEc3nw0eXpvu9Bt9R43kyNZ9Dy7Tz79z4EAb6/uZ8vtUWf9LYn/Rz+DRRxpKBwGuJyWAmg6ZeZcIaII0mSsJbk+JU4AO/KtKzSB5GMTR6w2toOlLuCEZB56ryO3PObN+i8a6iHT24Z3ur4Y/t1Iik6lKU7DrAku5z1lS3d9SMSBT68dRTaE+DK1zZ47OSGxESCIFFfX0tQyJFLmJzdtS3vra/BjZqRb68gziDSJzGQQR3jGla7NTHnwZEYdFrO69OBp+bk4Toor9Wln2/j48vsLQK1m1NcVcf0bd4g/rPbhbbYHhpo5O6+oSzLqWT67SMIb5g+iggO8InT8e8t9eVHAlhe6MbjEf2mRarMViZ+sICdtWp0gsjiB4cRHxHS4ninK/vrvUHyAzo0ie9B7aNYXV7F9rJW6nccAUmSeOb7pfy6sw4ZGJCgY9KwTgQa9HRPiz9RZv8jqs1Wnv9pJTef240Ag47EKG+ag+Xbc7n22+bpILyi3y57/69G4rMrMxjWPa3FmJcO7srFgzqfcavQjhZBlmX5yN3+f2I2mwkJCaGuro7g4OBTbY6Cgo+clb8Q/dciQrTeUhf1nvMIeuH7U2zVkdk5/wlK1T8Q7RpH19GvA+BxWFm5eBgefVPclNYez1Mb7uWA3Uii0cXyp8fz4o/LKK618erEcwgwtB7YeTB5pdW8/ecGFu23IcrwwLBEJo08cVXHa57pRxhZWKw9CDBtRxA8lFy3jrjUjke1/9uzVvHOmiq/YNaDeeP8JC4+q4vvvcXmQAaCTAbe/X01b6+qwIMaFRISKsI1Lib1jaVrUrTfQ2v8q7+xudorSBfd04/U+JZlLQ7Fh7PX8srySr82ARkZge5hHn57xBvELkkS5738O1n1TV6pLiEe/nysZbHV1vhp2TY25VZw30V9iAk7+ffc3QfKGPPhBgRkNj85nNBAo187wLVdTDw9YYhPEL73xxpeW1nF+HZa3rxppG+syloLb/6xjl921eOQW/czxOhcfHPrWbRPiGp1+4lg9a4D/LUpl4cvHoCxwVu4Pa+EHu3aIEkS3y/ZxhPzio4wShNaRAa30fD0Zf1Jijn2OoYni3/7+a2II0UcKZyGbF7wDWlLlhCsmQGAxTMS47M/oD6Ns+l6HFaWrmrKkxMnXUedYz1OTYlvyX2y7kEi2vRnxm4PLy4tB7wPo+evOfyqplOF9ZnOBFBIwbJw4gbY0Wjt7BvzB2n9hhz1GJ/N3cAbSwuxSv7TXDd0D2R0jxT6HmEaorLWwpjX51PhbikYwzQuukbpWFPSFCg7IlHg0zvPO2r7wOt1Gji1qdbYa2Pb8sfmfJY2VDj5+YZu9O6QyMd/r+elhs9NjdQg+mQW3N2PdocQAGU1Zt75YwN5VTZWlvlPe6qReHBwNLeP7XdM9h4PewrKuXTaKsyilkSDi+XPNK3NkySJ4S/85rcMvXnwcSND4sAlSpydHsPLyyr8tl2UpqG83sXq8oOFsMz/RicyYVj3f2T/lG8XU2VxMnXiOXyzeCtuj0jf9vFc9kVTVnaD4MEjC3g4tvtE42c5JA4+v3P0GRFArYijfxFFHCmcrqz84zO6rV1CkMZbOsIqno3m0W/RB5y+K2kavUaHIsp1EV1GvoZKpeLqN//0PSiX3jfgtPyFKksS4nPxaLCz768oEgbWYAj1sKv3NDLOP/rit42s2pnHG39tIzpIx+OX9KNNVNhR77vrQClXfrzGF7x9KKK1LtY8e9FxTXU88dUivt1lZ2CMxHf3XYDbI5L+5F8+r1ekxkVlw5Tb2Qkw/e6xdHrsN+yyhqHx8OU9Y1uM6fGIDH7+d1+OqUOxY8rw44oJaw1JknB7RF/M1YY9BWzaV+oTdQCPDYni1vP6+u2XV1rN2HeWtRCxR8OTw2K4aXRvJEliW24Jj/20nt1m/3G0iPx2e98WsXQHU1Bew5bcEmxOD3U2J/N3llBhExtSUpwY9IKHEcl6YoONPHrZWSdkCvpk828/v5WYIwWF0xCH04XQLCBbwEO9uf60FUceh5Vy2Zu5Ok66jnLxV0Rt09Lw9JCp2GIHc/Frf7C/TqKuYUXaE0OjT0thBFCcl00CdmQJ3BYNHrsaQj1IlQeOvHMrDOyczMDOyce1b0ZSLFtfHIfD5eZAWQ2XT1tFnailQ6CbcJMah0ciWK9hyqVnHXcMyIvXncNDFrtvqkmrUXNr7zA+2OBNCtQojARkHr6wDwCXdg7m6x02lhbDs98t4emrhgEwZ30Wb83Laph+a9qvQ5CHjBhTi5VON0+bz/f3X8Dx8tuqnewrq+WrDeXUNny3tIjoVRKWg8TO6CQVN4/u3WKM5Nhw1k05j4paC7d9tsw3dXhRmobkyCDeXlvTYp/eESKThrRnbD9vML1KpSKzXQKzH43jywWb2ZhXyZ+53nhBN2pu/2I1S58ez7u/r8bhEumRGuMLdC6uquPN39czI/vguCc1BydDPRwaRD/PUadgN32TQnjssrP4bfVudhdV8+Tlg88I79CpRBFHCgqnIQ6nC0FoLo7c2CzWw+xxajmw/gskjR3JHkNx7ASGdn2c3JWvYzAlENf1InSmYC565Te21jTdcgyCh0sGZZxCqw9PwZpfSADs1UZkScDj8IoOwdyyRMbJwqDT0jExmq0vjvtXxm8URo08fOlZnNerhAs+2oiMQKjaxTU9o+mUFAPA5Av7sjBnHsVOHd9uMxOgX8nyvZUNn3OTKLmvfxj3jmuqmzZi7W4q6+0s2FHM8lKBteVez9WUCYPR67S4PSJWh4sflm1n0e4y1lWoSDS6+O2+kb5AcvB6pp7+finf7mxMztnkXXGjxi01CYBgtZs3Lmk9P1YjAQYdAbHhzHliHIAvgackSUjyamxOD5cM7MjPq7K5aWTmIQPRVSoVk0b2YhKQ3hCzBHDAriP50Wb1/zbUwU97Wgia5ugQCdWKlLt1GAUPY9ubGN+vHZHBAbg9IqIk882yXfRMieKys7r4RI/T5aagotZvuvOKod1aPYZCS5RpNWVaTeE0ZOb01xiduwCj2ls/yiH24sAlb9Ex8/S7uYkuBysXDsWtr+T9dY+yqTae9CA3vz00Fq1GzWdzN7Isu4zlpf7xJhO7mnj26tMz1ghg6/9G0N2xnvJtUVTt0hLV3UxkJwt7DWfT7tFZp9q8k8rcDdkEmwwMyEhqsc3jEen/zO8+z9LBvD8+1edZORibw8XQF2f74ql6R4g8elEP7vpmA6WuluM1j0+zOlwMf2m2r59J8GA7KDC6S4iHqEANw9LjuGxwF0xHGeh/oimtNtP/1eVH7KcXPCQFyCB4y79c1DuFszonE3SCphz/P6FMqyko/AdxeUS/aTVwY7effrWfqnJWs33fXYj6Wjz2SDbVenOdZNVr6ThlHgEqd0MMR5MwGhIH53aJ58rT+Fes2+WkvX0bCGCt8HpAPHav58joqjzcrqcd+3etp77sAN3OvvTInQ/BqN6HXp2n0aj56uYBPPHjWips3oK2AWqRaVdlHnEa0WTQMfOeYUz6aCk5Fi0bqtRc+vk2Gj1ARsGDXiX5psq+3mGj58odqATBm+OqoV+4xsXaZy5EaLDndCM2PJjl9w/kie9XsavShc2jIlgrEW4U0KkF4oL1tIsO4qaRPQk5yHuncGpQxJGCwmmI2yOCZPGFGgiCC4f99MmSXZWzmj3ZL2Iz7fbNZOytu4ODkzA2D27tFyXx8AWZ9DqKZIanmpxNi8kQnIhyMI5Kb6kN0eH9MEyS+bD7OmwWKor30ya1c4tkkScbl9NB0E+XkkItm90Oeoy85l85TkZSLDMf9i7n93hEHC73UQdYt4kKY+7jFzL0ud/8igAPipH57M7zMOi0ZBeUM+6D1dhlTYscUelBbl6+os9pH1ScGB3GV/e2DFpXOD35/5m9SUHhDEcUZQSpKcZIwI3LfuwJ6k40kuhh77J32FJwjVcYNRAj38GHO7zxF8PbCLQLdPm2GQQP13U18e295x2XMKqrKmPdzHeoLj/6XC3/FNeytwBweHqA7BV8jZ4jA/WH3E+WJPa/OZLEb85izSeHL4x7Mti17FciqfW+2fLdSTmmRqM+5pVnKpWK5c+M587e3u/QuHZavr3vfAwNK846Jkaz+KGzMQr+yVAv7aBjzhPj6NGuzYkxXkGhAcVzpKBwGuKRvd6iRgTZicN1asVRfXE22zffi92Y42uLdo8nudttfL2xCotUiUnw8Pr1Iwk2eeuDHM3KKWduLfVLCwkc0gZDWqiv3eN2YbPWk/fpNfS1ryNnx5eEPbH+uL0xsiSRn7ONhNQMqsoKqMzPpn7rbySOmkxCalNMTHnRfjJt3lgvs30U4D1fj6Ox+Kal1RIiANuXzaSbeycAXYpn4HG/jkZ7auJcADzbfva9jrNlnzI7jpaHLj2Lhw4x+xcbHszsuwexbk8RM9Yf4PzuCSc04aeCQnMUcaSgcBoiiYKfOAI3Lpf7kP3/bQo3/kJ23cPQLBwiXppIp1FTcHtEPlq9HdAxItXQYsXT4ZBFiarvs5HqXbiKLMQ93g+nw0r11MHEy7kEA42p89qLe9mzZTkdeh5dpfiDWfPZ/Qwomg5ATMM/AL76gTXt76fXZY+iVmuonn4l0YBLisXlbFrp47aqkWUBteCivOQA0QkpLY7h2tTknQkS7GRtWkJ6v5Et+p0MNsz+hN71C33vY6mkuryI8OiEU2LPiSA1PpLU+Mh/nFCxkR3Lf8NWmU+fi+485VOgCqcXijhSUDgNkWQVquaeI1y4nCc/5shlM5O39iMK5KZK6G3Vd9O2xzXogyMprKjhrNdXATpv/ptxfQ89WCvYd1Uh1XvPU7K4ce6rZe+O3+ki57baX/r7ceTM5cf8ICsv2k+vwq8PDony0T/nDfL+NwOPoCNd9BZvrfXcDu6mIHhZEvC4AtHq6yn67i5KJBeJk77wiQ1JFEk1r/PuKwcQKlip3bsGToE4ctgspK73VrivkoOwCCaSKKNgx0rCz7ncZ++G399H9rjpe8l9/zlxUJqfQ5eF1wGwMyaNzgOPLau4wv9vFHGkoHAaIkpqBKF54Vk3dufJnVYr2vI7OWVP+SVz7JX6C6HJmSzYlMOHC1exsaopCDYzXDqmrM8Ajt1VhGg+Qa/ahVtKwrbvZQKy/vLrI8tq7NJATOrlpLt3sP6PafS56I6jGr+uuoKsb+6nX/XvIMA+dSo1Pe8gJCEd0eWgds9K+u99E4BkqcC3X4XQF5fUC4e8ym88t8OEVl9PD2tDqY0PMljX9Rkyz7+dXStmkYkZh6xFalBhmrJtR30tPG7XCZmCkyWJrdPvpR/ewPEbuz3PVWV/kVQ+D9v+dYBXHG387T36bpsCwJaweDJHHHvW7zOZA2tm0Zir2rxnGSjiSKEZ/+inwv/+9z8EQWDy5Mm+NofDwZ133klERASBgYFccskllJWV+e2Xn5/P2LFjMZlMREdH89BDD+Hx+AfaLVmyhJ49e6LX62nXrh1ffPFFi+O///77JCcnYzAY6NevH+vWrfsnp6OgcFogSRKyqEJQNf1NCIILu9NzmL1OvA15RW/5hJHR3p5E1R2EJmfyxsyV3PTTHj9hFK11MeXinsd8HGfOTII0v6FT5RCgWYB1y3QSHUsBsKiGIcsa3HIiVs9w3z59Nj9GVVlhq+PlbFnOureuZMPsT7A+HUPIO+28wqgB25Cn6D3yWtp37U96nxH0v+YZ5Ck1rM14go2BwyglijUxV6J29QDAJeX5jW+tbJnNu+/2Z9j32tkkLX8IAA0ewgXvdYuq392if2us+eopNC9GsWbaHciSdFT7HIrda+fSr8IbazQr8FzWhPdgc7A32WZg+QZfP0P2LN/rwNVT/9Exz0R0eYt8r41lm0+hJQqnI8ftOVq/fj0fffQR3br55yq57777mD17NjNmzCAkJIS77rqLiy++mJUrVwIgiiJjx44lNjaWVatWUVJSwnXXXYdWq+Wll14CYP/+/YwdO5bbbruNb7/9loULF3LTTTcRFxfHqFGjAPjxxx+5//77mTZtGv369eOtt95i1KhRZGdnEx0dfbynpaBwynGZK1GJKgS/KSARp+efPTSPhMdpx1FdzL4tb1Opn+2LLxqQuQxTeAL1NgfnPD+TXGuTdyNA5ebus+K57bxjm04DqKsoJ8r1kd9UV6LjAxBAko0YxB0IggedkIdOtY9S50fE6m8FIOLDzmzX9yTIXUmIVEN29HkQFEv/fW97B1r/V4sptM3tbicz/xtYPKmpMbIDwuAH6XfZQyA8DEDslu8omuGdwtR4/JeN2yqNVLe9G1H7LfvDBpJcs4poqunk3gWAS1ajE0Rf/zZSERZzDYHBh/ao2Sx1dNn3CQjQv/Rb1r5vpd/dXx7TtWxO3R6vV6ucMGa29cZnLQ/zCteOju1YzDUYTUGkOHb7rlE7cR92az3GgKDjPu6ZhOjx0M62xfe+rX3XIYPsFY6N+qpK6spKMQYHk79zG3qjidRefTEEBJ5q046J4xJHFouFq6++mk8++YQXXnjB115XV8dnn33Gd999xznnnAPA9OnT6dSpE2vWrKF///7MmzePXbt2sWDBAmJiYsjMzOT555/nkUce4ZlnnkGn0zFt2jRSUlJ4/fXXAejUqRMrVqzgzTff9ImjN954g5tvvplJk7w3umnTpjF79mw+//xzHn300X90URQUTiWO2mI0on+bSiXidv17niOXpYa1yy7EZSgGfVN7qH0opvAEJEnivumL/ITR+aka3rvl+PO27J/9CZlCDS4pHnPHkUTmfOHbZhHPI1jzC7LGhCjZ0AT8CfWDcYjdMKi9U1VdnZt8/fuX/wjlBx8BKgnlQGAmuh6X03XzJ9TUDEZFEiARrPkeVeUemHkLzLoNrp0Ju/9EXvcZbulXNECAswALsDMihXa1hRjdDmziKGL76onqfR6i5x5y6yHy53EEY8MqGLg083+sC+nG3uWjCZTs7F0/l8zhEw55Hbb/9TH9hKbYpn5Vs/6RUNFXeK/PbiGRBZHekh17jW3JM8ST7Chm5+rfCY7vSJpgxyIYEVERIlsp2ruNdt0HHdcxzzTydm8gDRtOQYtalgjHTFHebhJSO59q005rti+ax7yP36XzkHMYcfNdaLRar6dTENixeD6b5/xBxYH9Lfa78Z1P/xvi6M4772Ts2LGMGDHCTxxt3LgRt9vNiBEjfG3p6em0bduW1atX079/f1avXk3Xrl2JifGtFWHUqFHcfvvt7Ny5kx49erB69Wq/MRr7NE7fuVwuNm7cyGOPPebbrlKpGDFiBKtXrz6k3U6nE2ezuA2z+fDJ3BQUTgV2cwn6VqZWJPHEe45clhp2LnuMasN8OCg1jcptIq3z3Xy9cDPPzC/0VWef3D+Myc3qZB0vEfl/e22QMojM+YJ690WIRGARLyRC+xLF+hAqYtVUJpkw2Tx0XfcNla7nUblrIHAZIe7fCBC8NatcsgZdsxw4q9veQo8rnyFSbyCyej/MfZyq6pHYpcG+PhbxUnRCFoGaWZjUK+CrhiSGchs0sga7CoJdNXzV7nw+7XIBF+9dyt0V8wEQN/6BZvNrqIHUDuex76LvyJ3zEgcCg7l4f3smSDYWhQ3iwqoFOPYshkOIo+wNi+i3y3sPXS13ZYCwHYAtM14kLGM4yV0GYDAd20Ml1pIFwLtdr0cU1HQ3Z1GhC2dOxCBuK5oBW3+goqw3acDasG4Eemz0M2+nNn8H/EfEUeWuJaQBq0O7E+Kx0KM+i7LsdYo4aoWy3L1UFxcSHt+GeR+9A8DOpQvZuXQhQRFR1FdVHHb/hPQMQqJjDtvndOSYxdEPP/zApk2bWL9+fYttpaWl6HQ6QkND/dpjYmIoLS319WkujBq3N247XB+z2YzdbqempgZRFFvtk5WVdUjbX375ZZ599tmjO1EFhVOEw1JCQIM4kkUQGrNk/4NYFEdtOflbvkaW3VTY5qKWjTi0hUhaq58oCrR3p23izcR0GQWyzIs/reCzrRYawxNHJ6m458L+x21HI1nr5pMubfdrC9T8gUgEodrPEVWwp3cEolpgNQNZbDqX2zO+Zdi2jTikvmC5mBouxiyUYry4L3a9mRprIeExaQQ6guifGgqlm2D2/UjlB3BIfbFLLe12yelUux9FI9yNTrUfq6AnS/sIMS4oDHDSyS3waRdvtfhf2w3lziJv0VCLkIiehrxBe/4izW1FdG/lT/1nXF/kFWm7IrsBC2hTvsTPEyRLEvnZm6n+c0pTYDeQwV42ie3oqd7LgLwPIe9Dqv8KZnPbCXS55DGCQlrGOx1MXXUF8Q0utO2BHQC4vnAFefqufBt3PrcVzaCbdTXqXG+g+cLw/nS07qefeTuegg2Ad9pyy4LvcdVX0PvCO1GpT+/M08eDunANAGtDupFkL6ZHfRbO0qOLD/sv4bTZ+Om5x3AdonRRa8IoLC4BndFIt+Gj6Tp8FIJwiCWipznHJI4KCgq49957mT9/PgbDmVcI77HHHuP+++/3vTebzSQmnv6lDBT+WzhsRRhlNQggulVo1F5RpJaOr0a0JEnkrH2Vcu1Mb0MraYhC7INI7/McgdHJvrZHv1jID1ne2JswjYspY9ozflCX47KhOUW5u7Et+8D3XqMqoCpUQ0StBw3em+36NilsULenA1m8JzwAwBvRRs4NuY0AS0+q3N5VVqIci+WXfADajk3HNXcHtQdCG3NCA6/5HdtuqOWjsxaxzXwNj+220r7ee+Mud71LhPYJvkq8hAtyvfmL6gLXILlVGN0O7Frv/U5yez+DAm1fPktIxCg5mFj8O8H7l7IyNJN4WyTgFUeRNu84beRSSqdmsmfIi7TrM5rdH99A7/qFNC/h+lvwEO7IfJrLSuYi5vxFVzkbg+AmHDMD8j9mw2f76X3/zxyJvC0L6Q7kGeKp0wZxW8EPDC4ZzGBPPDsCDKwN7EI/yw4AXIKGP6KGUqELY2LJ78RVrESWJPKyNtJt+e2oBJl1QN/x9xzxuGcSsiSRZNkCwAZTBq6Gx6Cq6vRPknmycNpsLP7iYwp2bfMTRnEd0hl9+31sXzSXDX/86tc+8ua7iGybfAqs/Xc4JnG0ceNGysvL6dmzaVWKKIosW7aM9957j7lz5+JyuaitrfXzHpWVlREb6100GRsb22JVWeNqtuZ9Dl7hVlZWRnBwMEajEbVajVqtbrVP4xitodfr0ev1h9yuoHA6YHPlEtDw6PR4VKglCUEFelHCZalFFxh62P0lScJjq8NVX03Jnt/J97wP2iZhZbAnocKARzDj0dQSq7qcTmOn+LZv3VfM1Z+tw9JQF61DkJu/HrnwHxf0rCw+wL6fn6Rf9e80piGscd+MHD6dLd1C6bDXQnyJhm3JRq5OfBer4B9zkyu059de3Tl/3Q7iVNdR574em3SOb3vt7ELg0NdmaUId7yTHc0A9EcLgygFBvLzVwbllXjFT5X6RCxrSK62MVDPcMgO7W0AtN3nsXG4BI6BxDuLjhAAsWoEXU2/jx20P8FXchdyQ1RQsFmpPZm1UV/qZtxNLJbHLboVl0LuZTfWykYrgDB7r8gCioOGH+LG41DqmdsukMjyd/d8/SJ+6OfQ2z2f1x3fT6eInCI1s/R5nMdeQssz7429heD+e2fseXeJWgMcbFza22M0tXZ7ls21vEuPM4Yc259HBeoA1wV2xq3QkSUVsWzaT4GVPoxK835fgXd/D/zNxVJy3mwS5BpegwW0VqcMEQKJ1x38uKLuuvIzfX38Jt8tJu979OLBtCzUlRbgPyqkWHBVDcvcetO3ZmYDwMAZfNZFOZw0jIDQMp81KeHxT+Za6mkr0egMGUyClBXuJiktGrTnzsgYdk8XDhw9n+3Z/V/ikSZNIT0/nkUceITExEa1Wy8KFC7nkkksAyM7OJj8/nwEDBgAwYMAAXnzxRcrLy32ryubPn09wcDAZGRm+Pn/95Z/rZP78+b4xdDodvXr1YuHChYwbNw7wPhAWLlzIXXfddYyXQEHh9MImHcBIPAB5pjjaCmWYcKGVBWyVeegCM/36S6JIZc5yDuz7GK0qDJuUi924p6lDg1db7Q5k0JAVaI2tB/q+/NMyft5WRZ1HjQevMNIhMvuRC45aGJXm51D57U0AJN0xk6CQcDxuF1v+/pzkTS/Tr5lPxyUlo6KWtXHtWEQv3O0WYjPWMzNhWAth1Mg3quvpnPY0kbuqCde9QajwHm6SqLI/jeQTRhJG1XLccntEwYMkxbM8WsUDXfzrb0XY6vikXZBPHDWyJVSNRVpAhDuPA64Iv21m2YhOZSbUHcySRRYuOSuAAwEqruj2OoFumWdtTTmhdLLAw2kv82nxB0SVLSOUpm0uWY351s1E7P2VWbs3Uq0N9W37NeZcnpk5nujoFCKv/YjNn1voYVvBgOKv4L2vEGWBTT28cUopfS8gMt4rpPd8fB098dbj+zzhYh4teh88cU3n6xIp00fydp97kRz1LDSk8Xjux1jUJr6LHcuNxTPptuQGv/NNd+9ix4rf6XLWhb62uuoKdv35DobSDbgC4ul1y4entETKsVK0eQEJwOagToz1rKNAH4ND0BEvV5K7ewOpnY995eXpjiSK7F2/mvgOnRA9HmpKi/E4nfz2WlPM8PrfW6bHiE1rT1pmOkF7vyGpcDaBRXZq/ggiO2o04QOuITo5lYDQMPbvWk/ZljkYC5bT3b4WgA3B59LbPJ8CIR7X+M9I6/bP4xRPJsckjoKCgujSxd+tHhAQQEREhK/9xhtv5P777yc8PJzg4GDuvvtuBgwYQP/+3vn+kSNHkpGRwbXXXsurr75KaWkpTz75JHfeeafPq3Pbbbfx3nvv8fDDD3PDDTewaNEifvrpJ2bPnu077v3338/EiRPp3bs3ffv25a233sJqtfpWrykonImILjuVqjrS8CaAtKPHiQ4TLnSSRF3pdkKTM339izbNIqvWO+3U2nRZI3Hi1bTtcT2C1vsr2epwEWDwPtAqay1c+s588mw6oOkhF6V1MWVsx6Oudi5LEuXf3U435xYA1nz3OJ2ueJ6902+md/1iXz+H2AO71A+bOAJ78EvcFfsKZiGUjXJfHk54geUM856Oy4FdZ0ArSdyQU8PHHcLZKXTjs6irCW7/OR33WlHJLlSavUTq7kaFAQk1uXEaZqcmME8TxErVUPSijLPBGdA7bxepFSWE2eoRgIioKB5PCaAgIYokcwBFxiD09l28d0CNADjtGmyaJm9zvc5EG9VXIHl/hH23ysz/MgKYHa9hUEWDyBKsqKlBlNsQ5jJSplfR/pki6qrKKMhah61wFx26DyRS68C57DW+6P4WABnOLHbp0wHoNnAms7bcTb/3etMlrD1rjePpV+WdFlULMn22POE9VuP/gUZ//rSEy9hnakuSZh92a5OfKtlqB4KYTzQYohFkiVFVKyjWR/F+4lXcWDzT13dO8CiMzjqGOtegW/I88sDzEVQqJFGk+MOLGNBQPw4brPszk77j7z7q74gkSexePZt2vUdgMAYc1X4nEmGvt6TK2pBunF2zDiG4K0vDezOqahVlc94mtfO3J92mE433OosIgoqa0mJmPPc41tqao94/Nq093UaMoes5I9n50mA6u7b5fmSFUU//ihnw+ww2LRxMrG0PKXIZBxfT6W32Ll4Ik2oQEzucoDM7eZxwX9ebb76JSqXikksuwel0MmrUKD74oCm+QK1W8+eff3L77bczYMAAAgICmDhxIs8995yvT0pKCrNnz+a+++7j7bffpk2bNnz66ae+ZfwAV1xxBRUVFUyZMoXS0lIyMzOZM2dOiyBtBYUzier966lyBtO5URzJOlyC989UL8uUV80hiWsBqMha2iSMGjDZMtAIQcREX4BabUCtDySq/WDUOgMf/bWO15btwI1X7CQZXagE2H+QKLqlZxD3jxvgq4h+tGxd/BOZjqaFGv3Lvod3vqexNGgFl+F0XAno0KgKCNW+xzWZd2AWQgHYLmRyLU1xNd9HRxJrCEH+8U3ayl/R23YnN/cYw2/CpfyWcCndY7dwt/U9dgR1IMZeTbu6Ij6NncBcwT+9gFPtvasP2buJW1OT6HvJBZjQI9ndaKJN2Gw2PvroI9RqNeOSkkjp1JXwPT8hy2BxmZBUTeLQrAtA515Obfp9BGS70Utqnt7hoL3DSoJVBRgJVP2NR26LKLch3i6xVBXLWT9eQ4gxnJCBd8PaRxF3/4/vYkfzXo9p5JoS0UtOHnC/SpajC1NDvFNj4zLfJcRdzxVlf/NkmyDqe+5n/4eX083RcjFMI39EXsQz7e6ivfUAsslJQE7TPTPAoyfKWUuF3nu9L6pYTHhNBcPF5XyRMJ5Xkybx8IHprAjsyW3dHiDEbWb12qvp4NnD6k/uJeOyKWQt/JJ+jcKogcjtnyIfoTaZw25ly6y36JT9PiFY6QLQUPZtbafH6HfFyUm/IksSbRzemKtsUxJ3FXxHtTaEb+LOZ1TVKjrVLGL1jO9AJWAIDCIqMZnq4kJcDjs9Rl9wyOmh3WvnEjLnboq630tK/wsJj4r/VwPZ3U4HgkqNpbqKXcsWkb1qGdEpadSWlWAKCSV349EnRO59wcX0GH0+O5csJCwunvRBTbULd63+2yuMGnAJGnRyk6e1p3V5q2OuCumOTZDoY87i9Ziu9LUUcH5Y5HGc6alDkGX5+KI8/x9gNpsJCQmhrq6O4ODgU22OggJ7Fr/KzJK1XJEdT7LwFQvFHnQQCklUVfCb+3EMZ39KrGcsiR2uYWvODd7VZkCs5wradp5IUEJHv/HqLHZW7z7Az+tyWVBw+D/1tAAXP959LpGhx56PRBJFil7oQqJcTL1nPAbVOrSqIt/2UtX5eGy3eW3V3YRGVcrWwPaM6vUpgiyRaZXZHOh9mAiyzIVFbp7a6UDAToLBW+7CI8Vwds9PyQk5tr9VlSwytGAd1xna0KumLa48/xQeho5haJOCCBrcBkGtwrzkAAHLB4Ddwaq5Hblu1FO+vk+v+ZyLuizHcPsuBJVA1Zfe5I+SICILImpJR6T2CexSf6ziBXybJPBmeiAv5bxJR2seXS05/BJzLo+1v883plr28ELVC8QG5aDT2qko7cTk+Bf9bIx1VrC09ANCLvsUyRDKhlnvYoxKIW7RPURSi0dWkTViOrdaDezTx/Lo/k9IM2wjY8sE9KqmRL0lka/yS2xPAkQ7dxZ8T1GlEbUgce/ZL7E9qAM6yYVL1SSUn93zHreWzGhxTRe2f4BVXcbz0MxzMOBiTfv76X/10y36yZLEhlnv0mHbK4Q0TPm1hvvxcrS6fz8edM13z9N/z2vYVAamJl3P0/un4RI09O33PUvXTyJEtDC3uD1F9mBqXKbmZ0JU2xSufP41tM0WI8mSRPaGhbSdfTUmwb+8z+aB79Nj5DXHZafLbsNpsxEYHgGyjMftYvfyJaz7bQZ15WVH3L81Unv2QWswUl9VyeAJ1xHXweulVKlU5GdvJiY5HYMxgJqKEko/voROB4ngJ9Lu5vvQeIy1PxKjbs+iPf7fiwFJbbAKAmGSRPVBwvCzMT/RN7rTcdl9KP7t5/eZFyWloPD/mFrrBirt4WhlNwjgQIuzIf7HiIs6VzAawx9U5v0BWlB5TPTvMw9jWFyLsXYfKOOqT1ZR4/GPB+kW6iEjNpB6p5tdZXYCdSqeGteDvultj9vu9TNepZ9cjCQHYPZcST0Xo1dvpCq0kIh6Ex6HNwYxVPMBGpU3ZccP7by/UAfWVfHWWgO/tdWwObiYYcVOxpnnEmSY5XcMjaqMDxwyb5nqqXCUsC7I66rXSm5EQYXUkPMgyZFPcL2d9MJ8zu/cjZycHLp16EL77XpMNS9j0gh45HjUQhWSHEB99uU4smuQbSKugno0hT+j0dqoq9dj0Zr8bDDrAtDYBKp+mItan0bQiLbYNpRBrRNkNQL16FU7cMveSYYOFgsQyOPNxNDBfJr3ILrkAnbsuICktquIit3Ntzl3kU8aT7a7G1HQUKqPYmzU9bz34RhS7YX07XwBVOcg3/Y3DocFV10hK/bvZV/ICMLcdVxVOYv5SVeiF/wfGt3M1fSxvOV7v9ERhdHk4u3slzmn93SfMHoydxoftJnAM+3vIBgdFxT/SmBDosoyVTh3Rw2lulokos0l3FH4Pf1z3mDb/5YTMv41SjbNRnbWYyjfSg/bKvoc4rwrCSWyIQZt24Jv6HXejYe8RkfCYbdSV1VKTJu0VoOqK0vzyf3hEfrXemNZP0m4hLOr9lDifhNV4DzGVizny/iLuKfgW0bF5wBQbAtCQqDOZSAlsIZa11Z+uHUHocFaHCEdSeqZScDuL+js3t5qQeMeq+6kZNUz6O9Y6itOfCRkSWL1L9+z+ufvmxoFAY7Bh6HR6/E05POLSW1PxpBzyBg8jOK8XSR2yESr07N2xmuU5Cyj/aCLCX2vI0mAVTZQKgQSSyXN87nv1YczJSqGzaq1BFR7/3YrpLUMS0xgiN2ORpb5NSgQsWHJ/sHCCDjhwuhkoIgjBYXThPqibOqNm8ivvxatlAsqqJdNWATvL1UTDsrrxoNhOgAh9gFEtLufG6ZvoMzqocIucE6Kkd6p0Tw1v7hhVH9h9NTZMdw4qjcnEofNQs/dU0EAqzgcARdqoQK7OAJTFdgBAStBmp8JUP+FhIpdCVH8EuwN8h1dXoQq+ifGF17LdeeeRX3RVII0s1o9VnrWRF6/dBmhXQbzW3EFO3Zn0dlagzEyip219SQKEmdl9kEURSIjL8JgMDBy5Ehqft6DruZJAjXzWowZov2GEudnWFZAoPo3QrWfAJDnMlKv9Q/kqteZ8DhVGHTzEGxdsCzoijqqabogQPsngiCiUnl/3afaWs8PA14B0idkLpZkFXZ7EJdd+iAL171KkDAb2pWQZi1l29bZvBZ1B9MTLmavKYnRvT727R/sqSd0Ux75xnggFUJSAbim5A/qjaCZXwSR3sSWGqEYjxyPxR2LXu+dVipzBFAWaSClXR0ZeQWMKF/JguhBnFW6lrsKvidAtPNY+/u4r8MtBAy+ndh5LxFoz+HhTpOp1oYA8FzqrYS765hQ9pd3uu/7oX4pCgA8sordhkzk/neSkNGfiBhvYHwksPrT+xhQ+Dm91t3PmqoD9Lv6mWNeLVa4dwfidxNIkgooEOJJlL3f/bWRFyPpQ4gtWUyKlEfjp7QmuCtvtL2Ojcu+wiG2R6xrzzWqyYzsPY2zajfRs6EeXrypHoA2Jq+n0aRxc21KYw22dbDtaz87rLKeEkcQIYKNKIMNgDgq4IMMtjvTEEa9jM4YSPu+AxEEgZqSIizVVYTGxVNdVEje1k2U7t1D4e4d/ifoE0YyQsN/A8MjGHDpVSR1zUSSRCry9hPZNpnweK8IK96fxYH5H2BI7gXU4XgtndRmCwL6Nb7Y3JRIOUBwEEDTKrW/guL4NUBinUGHLFjRePw9f1UaNTODWnqZ1YIao8aIxe093ri0cS36nAko02rKtJrCaYC9upj1ay/BrS/n8eVP8bdzNuG6eXzsGUuGkMdZ6p1s9NzIX50v4r5zEpFFD0HxHbhk6u9+BWAPJlLr4p0JPchMi8flEQkNPEzU9nGw4c+Pidj0PikNBVqLHd8QqJlJgHoh1e77cUo9EbARrXsQQVVAeaSeovBgJse+yD6hA6n2EuZtm0igw4lLbaLC+hXRpuvRSt4b674kE3ajmuB6N22LvDfuOvd1aC56AlOPKAStGneZFXeJFWPXKNzlNixLC1AF6/FU2HDm1iE7RUzqBYRr3/LZbTGpCbSJB5+Oj6owLasWR1Fe15nn+zUt8rgiewEPqmYQ1dX74BTlYCpdU3DL6YCHOP0NeHQ1VAS1g+I3kVU2Ng58kqXmcfQx78CqNjI/YiA3F/2IJn0fklpAFDWYbfcztv2llMll7Cy8HIO2SVQNXFtFuRDDXelPsj6k6xE/k2UbryZr77n0DPV66xBqMag34vAMJ9c8nzamrxCAv2vT6NPLht5UTrf9ldhVOr5SD+dC60ridGacgpb0QX9iV3vFebhWTbXbe806WPfTwXaAP6OGoZE8fL77dUZW/tXClkIhlrzBL1DT5VwS9Fqm5nk9Dwl6HRMTInA7bIR9eA4pkreG3ZqYK+l90ztkrZ2Do6YEw47viHQWocFNgSmD5EmfExbV5CVd9/ZV9K2Z3eK4h2KJqQc39XiRbuZsPtuUjVU8H4Ao3f1c0uNedgWlcnb1egRDOLdmf0Yf62ZmRw5mX0A77jjwJRr8E7F6JBXzxW7cMnQqbq0OtceNqNFiFB08kP0pd1U0TT3Vugz8VpiBFNEeWRaoKy9FElv/DmpVHgwqkWCtg+S2Bso0nejuWUCyqohSogiXq9EJImva30/4/j/p4PGuTj2gSkRC7ft7PBaWG00MtntF3bMR4fwc7C98ko0xnF+UTUeVkc9Te7K5ehcgE6ANYlzaBTyccgmqyDRQqb2CLncxzLgezn0euk8AzYmdNv23n9+KOFLEkcIpYt/y9ymwfYwseJA03ge/pT6Je1c/wDbVBwTrVvCa+zI6q/IYo17PLvFq7tWPZP6T4wC4/7P5/JrjOuT4E9IN/O/64YfcfrzUVZVRV1VC7Lfn+BVZtXjOpdZzL1G629CpChEENR4xGkFwoRKqeKPHhbwTdAdOoUmgbdxwLQnWfN97u5CKUc7FoxZYNiAcWeV11TurdZy3w+sRcBNBmeNT4EgB4y5UOIjQvYBetcvXunhQBJLaO1XRa2sdoWb/pfwWk5o1qSHEPK1nYUJf3up5hW/beftXMcX6NbG96/z2qXQ+RoD+J4zsIz/ORJ02jLA97wFa9g98HIO5BFlQEeR04goQKQ8zoNJ4b73FznEM3NuGgOJIBJyU949hh+ptogOaalT121BDgE1kr7Et+cY4Pk24hLUhXYlw1RHnquDKqqXUySpinZW0tW4lvPIJNCrvtGNV2pfElupxWydQK65gbr63CHj//nsYVOf1cNUGaQitb1m775eo4byWeD37g/ynXNdvmIhTFcFZPd/wtX1mqiZ8yy8EV23HoQ9n1wWv8q0ZttTbDvspXaGzcN2a1+jVbEXjoTigSiThsU1otDrMtVUEv5Xaaj8XarSyiAzs0yZQGBjPi0k3sSM0HY3oZu7mW4ipuRaH5J30C9F8xrrIYq7u/qr/QLJMYwXoAZY9PJb9BSVxfalB4KfAduSYkqjXHDpGr0/ddt7c9iLtpBJfW71bx4LSdnQJ8V77EnsQdlFLqM5ORCgEqu3ENpTF+TcwqwRmBwRQoNXQxemiVKPmvbBQ3IKAIMtEiSLlDYHnCYFtiDVE8Lm6Lao175NLIkYcxFGB1Pd2GP0SKkctfDAALKUtjrWfNkRQQ/CNsyDxxKZIUGKOFBT+H1K89Q/y3G/4Pd9VHiPb67xLxNWyVyxpCcAje+Ne9NjJsWgZ9txMrumb6BNGCXoXy5++CJVKxR9rdlFndXLN8B7/it0Fe7cT8s1I2mLzi7OwyB2pF6+gWl/NTWc9wEP5n3NWwW70qhJqdDqe63w33wdf6jfWTUVrSbDmIwMlMXriy5wYZW8WxspwnU8Y2aarabcefhoby8WhZWjFKtoYxlPvGYtdPIcgzQwcUg9s4nBM6gUEa75FkkPQqlrmbVnVJ8wrjAAEgQ3dQ4iocdN1dz0aUaYyXMu2TsEUL9WRIArUBIX57V+vNVHv0BEQoKYiQkdqvtfDE6l/2ddn7Z5gorZLRHZYhhg4HFN1BrVtiwGRejSABhVeYVRmTyEzcDgBxbV4ZG+2/tg1W+ny/Dy+mncLbQxewbAqI45BG8tpb8+nvT2f4dVrW/183GqBeeZORKu9wsiR/AiVaWWEVA9BY4XgQBMdLt6PLEPHsmrfftVhWowOCb3b6xlZF5hCeFkdl7CQYUWruCf+AYgJRBBkBlZtItGaB+QxNetVHkp/GIAbbeHces7jfFRYQahGTW3R4UVRIz+6Asm49CM8vz9Mv6pZftvWRF9OYPcLMWcvY2D+xyRJBfBiFJtNA+lhW+XrtyK0B1d0e41etTvZFNIZj0pDT/NO6tUB5AQk+/oJssTkfV/T2ZpLsdC0stkhdeKc2pksXHED0Wld+bvDRH5RJbK2rmkqaXVgBy7s9VKr59BJ42baujvZ0ud+dsUN5ofSKuo8EutDunLW4B/oYM3j9813EipaCNK6GJ/YJNbbBx+/ELIIKgIbkpT+EugVPAkekQhR5K2wUGI9HoIliXqVimy9DqMkUag99I8KWRCo0YdyR7ebuLnLRDS1BTDtLCSXhQUMYgVegXMW6xiy7hN06z5s2heoJ4DNdGYXHSgjyrftJiGeNgcf7DRH8RwpniOFfxnR5X2ACho91tIccra8Rp16rW+lGUCArQvpXZ7lgi/3U23XsUH1PEbdbqpd96NV5RCk+YMi6TwGuVqufvnr9l5kJB06M/yJQBJF1n39FB3zviKMel/7xsBhpF/6CTXTvKUXXumkZ0ZbHYIscUXdLM4tW8+fab2YqfEKo1h3Gc8bAzk7uiP1Mx8gzjGLmiA9a7pEMWJ9EVqPjEsjsLJXJFUl4DqgoseP3mlDa6CM8d56Ou+ztDTwCNSEaMlNMlEb2vqDwVtYXPbVgRJf0pNYKPPmsJuYF5qOSWPD5jGRWbmHl7dOo/gVr5dFJcr031CD0el9QBUF6KmaHoFWAl1kCPqzpmKNqGZzxhtEGZvEWp12Muf2nkigLpDSZ99DdPmL2eAJqegyIthbvJvc7IkEaK3U1cbg2ZbEhSzAQOsew6UxbQjYnUCs6SkQ6skecRdFm+NJ2h9CauAjqDSFZA1/CmSZwStrcLuGoxbKcYXsJLeticxdZorCAsjqakRwQN9VdQRq3BTbg/i9oBNdw8sYFOmdAqt369DpZJ5rczOfpV7Rqj0Acc5yopzVhHvqmLrtf1QEx/Bl/EWk2Ar5IXwkeaHeKKXpXZLpWJZNZc5aDGEJdB48jlpR5tYd+1lRZ+XJPR9zV0nLHERPp97BR4mHPn4j46V8Xlh9F26Plhi5knzXz6hl75ShRZNPuuYOtpBOJg31OXvfgHvgPWhXvUt2RSHXpT3MAbHJnyAA50cGc1vlXHotPSgVgS6I6jFv8nbgQD4tqkCUvasmX98zlStL/z6snd9E9MYp2JlQvY8/wrszNVRLsn0vFWo1NSqVz5N1vMiCHp0uGtldiValom1wWz4a8SERxmYJT0u2QvYcPEteYRU9WUNPbJhajJXKAUqIxo4BARmZ1uPFnnrqKdQnOLWB4jlSUDiDKd3+N7vKJiOrmk1ZNKwE1jgj6D9oNvpg7y+szXsLKbAX0RYBFd5f3bvUtcTiIQjQ4+DRIVG8tbwEh6xBi8hb49ufFGG089UR9Hdu8rWt6fAgyWdNoJfGQt2vvwLeauY/J3rFhyyo+CH0Yn4Ivdi3Tx9PLt/3PRddPZS/v4WACG+OlH1hUei0Dpb0jCOizkGJSU3kVBWxxf430wCLQLZswJGuo2N+3SFjhkQV7O4QhDlIAzI4DSqkBi+UpVxAbZBJz3iYkLBUdm57ClGowBsD3DCFZ4XkIgkQKAv2ZiqPMlVywNyWeoMJ6gXcLtDqQFILbO8URNoBG6JKYM3mWDIkb44qd20dOlnCVB3CFSMXs71wE5t3f0LH1AkMTz8bgNIvVqL1uBEBt7AGrexNlqv++S7qBk2h84huWJ3vYim6gZDQMhhSxgJnHNKeBCpq2uBETya7MBNIQaQR+/pazgvzPihEfSlOSyidv67C5KzC03cLuvh0PB4twQ4HbvdQajz3Ah6izbdQHS6y1ZRCRRdvgkzZAKUmIylOD/HGem7r0JQ7Z3l5MvstoVyetJ0XCz4gcH8pP2RehsYgUGyKIchl5ext8zm/cCFthEp6hDVMuQiQWF9Nz2xv0PM9Bd8yJHM6e0NSmLQjj87GIHpnjGdBeTVFy/yrMbzQ/maSbAcYVrORAMGBSpC5qPs7rA3tDsCz857DGhmG1RSBXu9kvymRTNterrTv4IDdQWfLXswEEiCb2acJx+BsWpIvSFFUqVQYJBdu1GgRYcPnaDd8jgRsDgrkg8qryb50Dn0NEllFWyksn8cFs35EK8MdMZFsMBiwq1Qgy2iAbmsfx60PZGa/p1gh6Xl7fy6Pp92NVvIwsmoVwaKVb2LHMD2yG+W6UNyqANyeA5jqvHFKbwVFAyUgwh7dkTOQe7RtUbsLQJ+GQbbwSM9bKHNY2V+zi07hHbip201NnZtNFyLLsG8hrP0IcpeCKQJHfSVzGcJmmkrHqFQq+nZOpaKkgH2V3tVwuc3C7+WGv5+wsDCioqLYs2cP3dhNtyEXoEYCzqwCxoo4UlD4l6jau4Zdpfcjq1vGcgTb+9F96Ae+OmllNWYe/mEDoKWrUULl8oqjHHU9Niy0AzQ4ue28vlx2lpWiyjo6tolCf4yJGo8Fp8PGlllvE7PnO7pK3rigbYY+BF/0P/pHhyFt/o2qRQ7s0mAAXsjQIQsCL9rWskUoYaZhLB5BiyBLXB5g43lnH2r/twUAMWwGYVbvdEJumQrWB6Lub0WVqEL+DYKLW7+Rhn2pofpRD2ujw5BlGZ2kQ2ez03GfheI4A+YgDXaD2jcl15yK1Wq6f+0d12Z4E7sbYkSBnZekEzl8PyJOZBlcv4YiyDa0gR6sahPIEG1sEEf6QECgfr+G4CQJjUGiPkjLlq4hmIv1JG1ocsTLHpAsxaiD2lD29ia6PtCLbim9kT0SdXPzqF9cQLD6U8zSRADWluTQO9KAQZOJSDQxa4exevatJI2/hvnOobQxLAXAqLdC1z0E4A3CtUlQuTkS8/IoQEtgdBgewG0qJ2/hQFKcDdkWq1Ygx/cgdcezoF6HXWxcXq7BJfXCZF9NZe96v1XppV21pG30n1yod+vIiE8gJq0bmizv53mf8Dvxv+dR6fTPeN0mpqpJGDVQYA0hMcAbs6VC5vM9TzOkz1cA7LS72GlvOc3UZ8tydnTsyc2Z3vxP4e5arGojTpWeMebtTN98F+iB+oZ/B9EVsGBklXYIvaQ5vBCRzgtWsKrsBEhGAiQjd0Qn82RVKXdqxhMRVU6n2k2kuN28HR5OdsPf2YA55/KK0YDUICzeb9vKZJEg4AE2GQ2AhxvXe/M/BQMebQKPRSXySOw1hJkX4xR2gnUnWL0z7If7a04IbEOdy84FKaO4q+ed1LhcOIVAjNZ9JATGIxpC0aoEcJhh3yJIOhsM3lWF5K+Bd3uB2w7mpvxjZFwEu37HjQoBmMdgDPVO8hhEfsNEmBY3E4zLSVaVot7ujZOqjx3AZ6WdqCUELW7SInUMjaxBF9eZ8P2/IZTnw8ALYdVcWDYHOnWDuG6cSSjiSEHhX6B0+xx2VtwJalC7QgmWMomMHI7FnENU4jlEdRyMJEnc/fFctpXYOGDX0XhrHJUSiSrHK44cDeVDwCuOACKCA4gI/vfLLux87wr6WZY1nRORpNz+E0FaML/2MmZbU72tJTH1/NYmjgSpkJErOjA6qit9Os/FpItgcN9JaP/Ox7wxDxAJ1PxKqP1LAPaqQun8tRuVJOBcraHgKTdtNnhd89GZdXgcapBBpZGp3BlEdJGKzXM1xJznQRAE3Go37iANmzJDD3suDgtk/Nr02Nc6ml53/iUX0xoH27v3xLjlAB2LvdOdgal23A26oMLkXSFVr/EGkyd/qqMsIJC89AiEYAsR6bXUzQkl3VWGSiehNYk4a7UY6r/EHfQEnko7xc+uRpccjDOrBg1bCNMuotZ9C6DF7imlxF7GXnMwXcIzMXuuQSscoGfYF8z9fhmRaRdTndCJ2sI5GAQr+hAXHruG2twg7JVNAe56lRu9OhKPCPVqkbDKZpXm672vg2r3EyAWUied13R9pB4EWFdgDfA+EqyGR6H+XQiwUhqtJ668KcGhQ6/j78wQEkwzqDSGM2BLNQa1h4mpm5hxoAvtg6qINlqINzaplB210QRpnehVHkwaNz8d6EK80Uzn0Ao6cIClS67kOc1VFMe0xRwYSlFcEr22rSLdlktVQASTi79libM3/+s3GcBXi+7c0hV8mv0kpUSijUilvqoIKyYqjGl0tq/DgJUXYgfQSYwnryKcm9w/8FhsBEa311trEA7gEeLRyMHYhGiuauMBvB6yPyPCW3yPVpsOvdozSJSoVx8+DYHGXYTG7RUnzkPMjmlVGp7oeR9LSzdwRdxZDKrIoySsLXFlu8FRB5pYeH8gwXUFfvupItqB5IGaPP8BI9pB1V4kBGRgK53R4kGDhy27JOxcRiGxSK14dgRk7olcSVDlVv9zLV3NZFYjpQ1HtW8hVOL9l9Ws06p3G07aCDH+ZcfOBBRxpKBwgslb8xX7bM8CoHIHMGDgHN/UWXPenLWaP3I9NM9FdEP3QIYkxKDa5xVHVow48S6B1cgOZLkpLubfQJYk1s14lY6736VnQ16U1W1vIeXcW4mNT8I960WqNmqxS43CyMYXKQW818GbO+nusvUI8gjkcpFzyr1JHt1z1+MG5PDpJNp+aXYsqF+gxyB5z0fvEGj3hPdaCCqZ7VHnUejuRKT0I5YqLZ3xBhD3nAf7+0noIg79IJIlEKQQYoLSEXO2of3EiWD1768xingcKpAFbEUG0oqagmSDk2zk9mqLrVoAAfYEZqCjBrugRxRUBFo9BFprSawxszkxhrz8BDqWe+0LjHUgqMFZq0Vt345KtRmn1APZIeLMKsKo+hO7dDk17kyvrXIVc4t+IrbvPurqaxBt56FWaalyP4GKakbGvcaqA9+TtSUeMGI+VBE9QabL4Aw8hd6pwAqriq5Z+dAQB+Kpt6NFxCjloFdng9j0vXNJXdCVd8ATWYjddgF9l3emqM0YzCk/szypHRcV5KDXuyg1BbA5M4gEjVdA2INVVERoia7yTiVelnRQjh5AkqFzSLlfqMzlB/XrKBTzrfgaO3ZFU2oPJlpfT7vQakSVjsXO/qgDTLR1WHlxz9s80eFeAO7O+5pLDiziCdVt5IZup69VYmNoByoM1ZQZdgKBIAQCufxFLgTCLw1xM5fbvIH2gXIZbrR4CCbKHU6eoZjWUMmyz1sE0K2qG4XB+YiqaiaY67mivp5IUcIhCIh4S/38HBRIlFvgs5CuqCmiWOem4qDyI7Ei3KVvy0VBaTgK1mAXVISV74Z9d3MJIPEVFozEYcODGjcaqvkLAZkqOhKIFSsm5jCMlKp8UslHpjNryUREjRYPKVUF5NGHYo5t+n1EnJmzSj7zip4G3E49gkpCbRAQRJdXGB0Bd2Q/tMeYu+p0QBFHCgonCNFlZ9uCyVQbFvja2kU82aow+uivdby7rtb33iB4uKVvJPePH0TxD0sIFWQ8sgarEIC14WGoFqqR3RKC7sTP3a+f9T5xW9+ljVzSlCAOb56aATdMBYcZ+esJlGfdiEyQb/vws6Op03lX/Vwgz6R7fTmWjvegLb8OfU1TsklLm+9Iq/3V914SYL0UT3AlgExkl3oqdzQFVQZ0dLCpvASZUspVUQSlWSjDQMxOB7JLRcfX1TgfvpYK517EPAkiKtFlWCjfJyPNlsjYVgfYMYSvxVGtAzSotBK6AU62WOMosgfjCgsgv1snHpz3DfX7moJNwzPqWRN/B3LCGsw13geiHNQ04WEOCiTM7E0MqHNL9MstoSrYQLDdGyQdkOCmqLYDKsqorTGQpPmIWs/NOKVegAm7dLnftV9SOpfwsN1kfiJSGVzJ3hvfJmz/WKLphEQ4le6XGBT9MOkhW/k+rzvNlwkaQ0IYdu1NpPTojcqqwvnuvVilOEAifMtPqG0qUMkgCXjsatSevbhV6WjwTmvZDLkEOOKRCCa2ykBCxDIsCxcQob2B6HwPq+JkIoxl/DbwCs4XOjOXRbTRbKLGGYlNakuCcRM7ksM5u6rMZ5XsZyE0znB6RBVWIQOPaOOAIZ7OrrXo1W6/a9EltBx9qIkkqtB5Jwe5sKEIW1eymVEygvyS4QiCTJ4Qwu0xyZSZvHmOdoc0H+nQPyAEWWa46O2sVpUjS3o8chpjtIGIdgfjLFaG2ezMCArkw7AQxtVbeKqqhgXGQP4IDOTu2irS3IWozJLvKGYCsMkSJUIC7eS9AFxZ7/1xMcKxii+4lL3EURe2hMfrsvg/9t47TK+q3Pv/7Pr0Or2XZCZt0ntC6E2aIqKICthF0QN4VFQ8drCLHY8icFSKYkEMPRCSkN4nySSTZHpvT2+7/v54JjMZEjCeo+/reX/5XhcXmf2svfbaa++91nfd63vfd0K0qTeM8Qm4C42tHGQmOgoDXMI+ZuMmQ4q8hThMBBOJGK8vPG5mFs2cGom6nzfON1oQ8PC2VdN5ftshRsfGWFTpYlXuFdT+/aeUVRzjFsTXyP0sU0SUrFPKAygD68msvR/XlR95w3b8q+Gst9pZb7Wz+AfAMk2an/83Rhx5T5Rg5hwWXv4rHnh+N/+5uYd3LCimbThBx1gWy4bDifxkW6RobPrCVSiyhDi+uuq+75dURT/JkF3MT4V3ESbKJ3gQy1axbu9CDv3PAjnqWg5JkkklY+QyKfoeupl52V2nLdtRcz21yT0YIxEi+r+Rs/K53/9zmspva1VScn56uMb+Azf3HWZRz4u4shZZVaR9zm0UjF5PLPcoFbH7cWfzg+dzi6uRPWkyj0hM2yThrcqwuaKCC2KdZEZUCpsSPMN0+g0fgmhTsnCEcGOckYNB5uxLoO4EM3sqQRQVC0t/nRWqYHO4KUSHdylu33lYloUkeVhy1Rye8GnMffDDBMQs3z3vg8wZqmVJYhuad5iv9V+IG5vr6wp5rivCgGnxFWUDNxr/iaUJDO71k+ydfB6CZGFePpvRIT9FO7YjhQ1aZhdwVcVhRnPng3AFopDERuS4PESPfytieRezvjJJvjZf7GDezfW4ti4m2HsuAE5xO4XqV8iYYVLGtfRkluKd46Zo3iKEpI2jLsDQ2t9TOfJZerK/w9r9GdLd+W2ttkvT1G5wImZFQuefjxm8FlXehJUrxmz5Nopfxqj5BgXKN4not1KofhlJyJOnnmATR+blNUMJzYdbTiGJFuVlj7N936tEvT+lyW2wcEeccOZUDzo9q6DPeD/K6uuRq2YSswyGc8M0hBvQDI1v/eoK3j68mwbdnEJnumWJUsNEAY4qCg8HfDw5Ho3ZaTgJ6076nNE34kC8JZGkV5bZ4ZoUXldrOteFbS4+9BHE1BLc4joEcqSsK4hX/oXy7MMEk5NbiDFRwGe9ng8WmIgMUEYFvaf8ZpgSsjTJIh7jao4wDRuBIjnJsOGlhm6yuBiciN/9P4eIRQFjDFNIWEqTNGXeJr5Ao9XKiHs6UtUS/F4PRrQXteNlBDP3+pVJDrS0A9URP+3PWsaJ6sqe9rcTyKaDOO49jiD9Y20xZ4NA/hNxlhydxT8Kh178Mv1iXlTqTc9j4YUPkzQkVt77Ijn79IOCgM1TH15MU93UvGj9X/oMZdxPizWXx8WLkTG4m/z+/djb9xKeXfd3t6/5lT8y9+V8pGfDFpGFU1d5R+UGRkMLUKefx4KLb2S4dQvFT7yDtLaMqH4r9rgF675GB7+pm9ySucn+JZdazzF7fznl8b0Tx3OqiCELeMa9yhKqg5fm1eB1j6HGTcq+qqCnZKwmk2elRuYF+6l0x9iZKKfsHb0IpzGQ7XugkfPUDgIHDPTE3x5slQqdsaSbnoCP9lABjvANeApjOEJd5KIVpIdmcWKGrZxfSHo4xVhfhurzv82rzW/nMbOYj8oqNxpOIthcTYL3eI9ymf0KAwEXbxtbS//2ANG2/ArfU55lz2VXU1j0V8LfciDIFr3fM9EzIqLTwsxK+IUcmktEln0Y6DQ/HuaS9ZMiZE2Gwe9rlBRdTPpoP1W7PgXolDluRhKmTlKmHSJhvA0BnYDyELpVxVD3BcS35K2Xe1fo3HO+k/sfzRHulPHOL0Koy4uapaOfInowT4IqLi2AQAi/tAEbOCCej46XRr2NbXOWQPFk9OunI5U8n5yMkTTfZbDGY1N3IMaqTJqnvR5+ESxkUIH5RfPpjBzEsjR8Eui2zaBxKtV4SzzJilSGsOXmWR/88Qw1dYptEzRNPhrJewYOyTLviyWmkBkL6JQl6gyTnCKwaWUBM1/6ErZRi0PciSz0kzKvJhfaxLGGFOfqLhzN354I0nkCJzt4AWhZD6rz9ZPpQj5ExMk7Shkc7GQeh2hggCIEwBpvrYRBAVFWezqYldrKKCHcDpl2ZxORWIJG5xi2ZaLoCbKCC09JHZotUzy6FVnPE+FMyRJcgzvPqO/eCGbFGozjzShKFHH8O0yJi3F//nnMu0uRHfrrnjsedglBBD3rgPc9jdL4j01ZBGdd+c/iLP6l0L3zdwwPvcCcNd/E4QvTue3X9A//jpQ7r1cp0q5m3lX3caC9n6t+vpvXfmJVLo3BjIQk2Lxw57lUFk0NMmhbNh6jG2QYs4sBMJBJ2l68QpJo77EzIke2ZXFk98tkXvoOFenDzGVyMjsdMdp37i+Yf+HbaTjpmHfDc/SmfssJF9yDfpFvznZyKJD/+2b7l1zKMygD11HX/DMKvO8EoKWgjFmj/Tg0C4eW32bpDgfYPz2M1zmGO1tK7pkMeiqDKFscK6sgHFpES+9u9veVEWowT0uMAAI1fjZ0ng+1nfgzOaSAhWaLLKeXcDSDlRZxzNAYdbjZZ1SxbtZbWezwYGzPECpNU3XuVxHlqRaOgV3vIta+mp59I9i2hbe8GUewm5ZMKagWdeoA7635FasTC2DoYgbMMAciN2D2FvGgeA0vfsDD9//0EfQhmXjjDJxNGxkZnE9YbME2RHq2FFG5ZgivVEJWHAK1GEVSyGkD7NQWcPHW/LtTuiTKwM4gqgGPH3wT0rwQbynYQJGvE2eihn7je5TKn0E+KXqyJEQmcsEBxJiONZLfDhmdqfHj1aV8sXwQZ6MFnTLmaC9ynQ7IZPvHJp5trq+DF0qXYTt3c1xYzvsG84lyHyj6McuOlPKqUkGXneDllAEnvUsA+zIy+zJA6cnWjzyx2Du8d/xvgZiV///p8Ge/lz+/Jl3F30K9pvN43wDOk9b3pi4ijhvhtKyK6tQQgeq0TWb+p1lf5Ea1fgRGCZLQR0j+KZbtJ2VejpINI1j7cL3jMezrP0vmiW/iOvQNjJyMYflwuiJTrn8yMcpmwiif3EDupYcRfIVY3QfwDPya10ptXORYww7WsGPi2DGhnnAoQHhsPG/beLVlDEEOFuTGdVAnG2hsoL/jlD45Y2I04wpsXUNoexFL8mKkdBAVBFlGE8rw9G5EmjS4kVJX4/lcniBLX+4h/eR90PwXnNYhbFsgW/lOpLrFOC9//5Qn/M/zpf3n4yw5OouzOEMk+lppjX8WnLBrww0oFBJ3beNEbDRveh5NV3yPA+39vOuX2zgxNMwO6BgWfPKyWVy2ZMYbXsNMaDjEfJToE+QIIEYYL0kyXQeBSyaOnyBBkf3PMq3rCfpdDSjn3Ul68y9YEn/xtdWzteSdlJ7/AcY6mpEcHtJdu5GDVSy94Hpo3wg9O8gdXIvc30o09wAnJs/HqhV+0uBAlWJ8yv4xC9iDlg1T0/w1nJFKRP/vcGgaOVmkedTL0YK5FHpS5HwmOb+BouRItWQp+LWTYHRyclVm5XBf20U1v0VPB2h75tMUzp4M9Gfb0LPxExhZP+XLf0XtxTvp2/p+oh3XkgllscwRBNHLRp+IWR9D0U2saD1kUyB4WXQQkNJUrn4Ef9VOBPFUYli6+LeULv4teiYAtoDijjJw+BJalHzZF0MbyNoGfwyvQx26iGjWh7d8H3pqiPTgHFY+b/PCtLuoKOxkqDbDyPO3YucCFFR9i4LOTqr2J4it8ZAy43gkC90c5TfmLazjUv7t0S/gzubF4eK0DMGIQvS4h3+/fx2RIvjOO6/l7TOfYdXuWxDNUgbMhxkt3IQhP8Xi6MGJezjoa2TEhmkjn8RM5KOsp3013CmWkdlzKcd1m7k8jjYsgfw8Dm02yejkzJ3sc1A+z8/HC8Lc3XPBxPGi7Eo+VPsAJ+UsnYBkixSaGiOyhPlGGh9sbAQaHCZ1Dov9aYWB8egW810GkgC70ydNRbaNRN4qlBVFyk2FBzslSoXW8fpgn0OlUdMniFF29Q9xXnLzFH+rkyMDSYALGHr6/czMBrBx4RF/S7IjgTM8htvzCmltHlJgH72jPVQUVOJ6+2exUh9F9gSgr43MD6/A5ZxMA5JL+5HkFDm5Eeen/wTBYtw33D15G5lvkP7mFXiY9PSybQFBmGqRmm63vZZvTsCSPNi6gVA6Gzs4DSF6FHFoH7a7AGHOtbD/95CLnfZc212CEVoIVcvRt/0BLA1RjyCYWRxHnp54YqKZRHUC496wCtGJOlLO8xEa1uC57t8njgmqE/f1d8H1d2EOdWPn0niq3nhc+9+Is+ToLM7iDJAa7mTPvvcw7jhGxnWcDMcB8KbnUl76TspWXcUzO47wsT+1cfKa6T8/cN4pFqLXQ/R4BwVC3uW6i3oYDwY5RDkVdKEOTYokDV1j188/wvKRSQ+w4sw2eHZqtGDTFtjnOxeteD4rbvoqALUzFuXt/fb1sPMBrB8twRzJkLLOI27ehWhPLhuvPNfDmFPn3fyCC3kBO1NASftNeAeXIOt+DCVG0PE4aNCX9HFVvJO+qJftFYUU18SRLRhYW8iitXE4KXGnIFuMvGmynYo7xozrPg+Aliwk3rkcEBgZbKJLtshs+DdmXfE5ylc8QHDaK3St/xSSWJs/OQ1yOoxlW0hqBttScRcdwF+9nUDt1jPqe8WVn2RsG7a0XYwmQ9iRBF3kotGL6PB20CJlSGa8+OY9yqBtUTCwCGN4FqmhRprtUvbpzzM35yclWPT6V1JAJ5UdGT6W+TERdzEr7U3sYyGe9Ai/+dktFOdfIYJzEry1uoxvpKJ4x4+FhuHrP/wTW+fbPHSpzXuPfhgBkYKRc4g7G7i77Pcc8LbgyRWQEDN8oPt9gI0WywIirkoVLdDPwI73I5oa8DhmTmLM8SKtdivzrUlCk40oNGY0QoafZYlJt+ulyTkU6iFGlLzVxGPZ3D4W4bKx60iZ1+ORnkGWnuPeOS5Sygg7UjJzXQZXBXXcImgWDOfmcePlv6drqB1RkqgtzudDS2aS/OWlayhxdXKhM8xR3xpGh1q5p0vEOW0VrmvvnPJ8Mo9/HVdLPvfZgtyk9S/lWIPnkpsn/86mcKmuCQ3fCWxuWUelcz2BnukA5Dp2M7IrhCBZ1Fz1FGnhfBB1Du87j+OhH3DO/CsQPXnhtlxej/yNvJ+6beXfYcd4/TLwh4334c7ez5C2mFkNH2Za2RwKfAV4vrQBc6AD43vn4HAnJoiRaUgIFfMQoh0gCphSAXakF5EckmJiGZC1a3HTkXc2HNqT/49xT8z0KOz45SnvcMp7OZ7kswAI6UGU9LPQ+2x+NBKYyhjfAHrGgX3Do3gWXoRlWRztbeFo705yY98nbi/l+gu/j9vhRiquOrMK/xfirOborOboLMZhGjqCKE0ZVLVkhFjPfg50fRRLzqLkinGaVWjiAB5mUlZzPcWzLkIURR5+YTdfXDe5svz+1TVctXwWinzm3mWHf/k9ZvZ8mbGMn58678QYF8Yu5hhX8xQRu57gF3chiCJbf/pBVgz97rT1DBGmY/4dlDWdR0n1DEZ3HCT74gtIwjBFxn4sPKTdPgqyL5A0ryJu3Hzaeu6fppKe9ihX8hQAjqGlVB58DyCgu4ewF0QpOPI1CqI6ugl9GwtIDzhwF+U41higWw8yzYxQuGtS9OkszxEJOInUqXBV4pTVtKm5OfLsl4lpfkQbnvHodMsWszWJDy/+Cd6yQ1PaaGT8jBy6mvTQDArnPIW/egeng57xkh6ci8+RQfT3kEoWYhkOnCUHGbVNShUb24aWYyv5Xeu76FYszqtppmR0DLeRNw9usqvIpspw1dzPgL8dRbC5xK9TZLl4IeLhvH138FfVQ59scV7S4K51nwE7T0L659u8OqOB2qNtrDqeQ4vnCbS7OMdjbzP5TcCPy7L4yr4E9eudU0TnT15hsmXGNH7S/rnXfXcAxOxhYs9+DwSbge9oDB5/MwePXElSsLll812o6TRV542ixWUG9wQQpuvYvRJkREounEY89G/IppNBXzcyKQoSM8kor1Ij3UtcCBO2UmjWTEb0r09cs0T9CMPcxsvLtlPk3IQ0bp3rySznitXfp8BfhCiKZId3k5MLiEUTFOXKcE4LsrtzG4Pt78ch5cnOaLaEhfMfoKFiFoZp8PT2h0ilewgFGlk07Xz831iN05U3s2gZJ3rV1Thu/ja/23Yf5DZR5OxEFGwGMtMwxOmo1iEETIpcky76s7ZejBV/B+aWD5AezK92KlaPkSz6BcdX3oPmGwbAO7QQKV1FpPJ5pLGLWXnFPbheo4WyLIsnt9yPP/fdKcezhoOoeC3vuODLyJKMnUmS+epq3GrHGz6//xPIZMuQGcGwQ1juSqR0O1zwBaT6+YiFVdjZJHL5tInyv37+U5TLf5xSR0LzIwc/zlUr3gfAy/uexBq9k7TuJqZX4lP6cElpEnqQpD2bm694+B9+H2cF2f9EnCVHZ3ECo8e2sq/jZpy5Gpac9ziZSC/7mj+I7hyaKOPM1NA0/8cEKmefcv7G5jbe/8gBNFtCxeTR9y1kcePfv6rq+Np11Bovsm+okaeKr8cYtxx5hQyfNH+BIJrsda8k5yxi+dhfAGj2vYWiNZ8j0Z/CNauAktoykqkUXZ2dRPb3UtmRxJkuP/O+UAUerlOJqgI9JS18RszHbCo+dBPB8S2XSNMdlI11UjimT5jnD7SWIO2eSgQlpzllkpcWWrzo+QyWPMiMtz6MkfMztPd6sqPT8FbupmTBY3QffAtf7r+A0+FTDNFw/veQ1DNLanoCtiVw9KXPsDtZQ5kpotoQsvIk2MZif9krhGc/ydhYDY17b+OnfgNLgA8teZLo4eAEOdojBmlLTucjcTdHirbT5z9Ka9EObMGmPDadaUdv5WlPXqzqteCukR+yeHsHnEaEDOAMa/zh7Qah6iJqgxFipsBv+gqw4wU80rqdjhfyYSCkoM7XbpIYkiv5cfvncNqnNwFkhu7F2NyOHDbo/IrNzrXf5BeqE1OAz7a8zLlH1iKqFpJsoadlUlfoOA8LSG0yJUt10hUPIDFKgesjCJiMZb+HbtdQ5rgJSYhh2Q76cn+Ycs2A/CtMwYEx/ePI15Xjd+etLXbSQI8OMfzUc1gjEQx1H9W5V1DGwwj0iB/FseZNRKtCdHRei3gSQU7pHjzKVLFzLBdibtND1MRi2PER1EWXsLN7Nx1H/52wc/iM3gPBcDJvw1sxjQoiT30f28w/l4JZCcRZd5LyDXBs+R9Oe64Rb2DpxY8QdAfZePBpegd3YmW3UOY+Ntn/hguXnDnpbyeNc35PY0V+zNBatiP9+jIk9fRu769FWqtBueVXCC4fUmEF2b/8AHvf4whmGkWMIjt0chkPplIBlo5oxjEdxRCsg2AFQqAUwelDbliM4A5gJUZRZ604o2sDrN32EM7UV8+4/OuhZuZappfP/B/XczLOkqN/Is6So7MAGDu+gz2dN0z8XSl8iOH0s+RcXRPHnJkall34JLrgoGc4SmNVXg80Fk+xpaWLLzx1mDFDJSxrbLz7SjzOM7RfvwapLzbiEQb5a/v57KlbjjmeYFSXTO7of4WComaEkwTVcWsece3rnBC6WpikBA3JtnEiIL5ewMDT4A+VCttK93Fd+s+0VoZ5kct4H//Jkl3vwjOa32qJlq4H4WGaIlMno2f6GqltjcGARLbAxpG0EXJTCcGBFUsYct6MICUoanqO8IwX6N76Pnb0L8UCZugSBTVbeXFgEa+4Tj95VBoi7w0coGbV/WeUf9O2ITVaz9DmW/mz6OagOulaHTAFludkGnQJtz1Z2TaHzgaXAQ6JTy57jK49RXiMvMWgVZXYHF/EB+IOfJaAjEBKibGp/nfMSNexKXIO/Sd5OV2iNhN1/JrP/97EkZ3a4OHLNA6WleJxLqJi3tPoqTCSM44oGbQ9+yUajYNMl54m8XQO2xRR3AZly6IcmFbLfnEJzxTN40jxciQb5kdM5sf/yrv+8iDRNg/ZxSpbgt9gnSqwy5G/5/lpg288PzVB6qEr3kT4eA+lR5oJNSaRm26jUL2HXExGkGwS/uVk0p8D5wF8jq9AbgWJbH67a0AZolQvRmKQAtcniec+iuY+F+dMP9mBY8j9R3EL23FKu5GF1ycvA8ItdLz5SlJjt/7N5zmSLeO6y9YjSzLbWzeQ6Ml7YFq2QH92IbbgQlZrMHOHqHDtBWAoU4UqZKkeuJzS1vk4xV7E5B6Gnt88Ua+nNEtg9eVoikDKdQ0tTV9CdZ0Z4dJMhTGu49K576SweDZjiSGe2fY9yuRJkjWaLWH27J/QVJtPMGxn0+gtW7CGu7G1NPLMVSjTF+Tr27seqWoGgsuL6Pad7pL/NGS1LLIks/XwSxzvfJRK52SE/GNj9ZR6B+lPFVMf6JywEL4eEpqHaC6AkfNz+aqvUVm58A3L/704S47+iThLjs5CS0bY8crbybraTvt7KHshAhINiz+N7SvngnufYURX8Us6GVNEP0kCKmHx9MeWM6Oq+LR1/S3se+l3zN/wQWxb5GeH38HI7AosOz+x6ZLBjYf2U1D7DmTHA6TFARKetxIYvpC8vsng9SSEO8ISR30iKUlgU5GMIYJqD+PXTRoTNh72M1N9hcKiY5ivcS9ROhfg3Xsdhc4KjhQ8Qe3AWhr8k95Spi2wtncmrrhO5f40YNO8+hr6hTpq+x+mcCxBrLGcNscnEFWLcMMGwjOfQVJymDkPDz1/L5vHdVyKDTcnHDzu1UiINlZQxaj3IaQNxKiGNJBfka/MylweaKVkyX9h2yLEKxELjiE7klimzOhYJTkbYoevxB5pQDY89Eomj3k1rDcgVKszMgOyxfFxIba/Jsd7Kl8msseHauXJbpc3x0sj50ycM00XuSalIiMwIFn82pffPpQVEUO3uMzK0DDjt4Rj1+K5dhV/Huig7pU/UN22Cpx+/DXbKVn4GKOHL2N4/9sAqLv8bhz+fA6r0ZbLsTaWMvfAbxGNycZXrBrDX53NbwN665mdaiM1qNK9IYxtiuydfyu94Tn83J9FHz/NbcEv2r9BuDkf8jiyKMQe/9coGdzOnJaHUX0G9VcMET3uZmBnEEG2qL9ymJj0ZXLWAlKhQyjZQtRMMV26TrMZ4RKPG9X0EpR/hFd+DgDNmo4qTlpTTiBLiG7fKnJEaUq8OnHctkW6xM9SePOl/PHIrylX/oxpifRr5zHHdy0N1lxG1++gY8UXsZUMcfVO6suXMdIxuaCp7v4hIbEOR7UPYzSLmcgRum46VtZm9DfNGAP55+IRnyBtXYFz8G6GtkyqzCWHSeXVVejUkjTejq7oHF24H09hI1Uxm3SHTd+ML2PJU2P6RHIFlLiugNyv0UUVW9RAyJPygehiCv37UMZzKyY0Hxeftwmv6+/zyvtHIafncCj5j80a101ZtsVLe//IUP8DmEKAAuXQFMvXCbSO1bMiOpuiY28jUbyT1sZHSdoipZ5hdFOmLVZDha8P9/i5U1IbWrCk5msEGt75D72fs+Ton4iz5Ogsdq29hahrI4LpoKnqp3Qe/zlx13YEU2Ga7/PUrHgPAIZh8p4fPs2WodNvj9S6NT57xey/6Y32Wmi5LKMDnQw99nHmZ7YBkDEX8JNjS0nN9HHi89RFg7ceep6S2u+eUkevbz+P1UXZ5l/CB9tS+HST/6qupTFhc9wrsqVIxmnmuKvtEa7uyxIv7MYMH0FTFBx6goFS55T6BFPFPTYLc6SIXZsHkO0s07yjLAr3UuTMb2dFNScvDkynJ+tn1owBZm6Mku5xYs2Evo/aDO17K5FjFyII+f5yl+ym+ryfTbnOwN638rWB88mcrktlgez5ZSAJiGYOS5dxvpIPRqja8OaUSq1xqpbLxiYpgNuGYclmt8OgRTEnSJHlk7EKnNguCak/gxDTEE4zAhrVHt7hew6vC4QDjonjff4Ezw9deEr5czMyQ5LNYdXELHXhEk20Po0FOYmPXv5JhvZdT6ztHJyhTmxbxF10lJKFjwOQ6J1Px6sfo1e2KDdE/AVt1F70jYm6MyP1jG1YRuX+v1A2dGoSY2AiCjZApsLF5unf5GmPySHVxKtKpDUTC/i0ZxcL5F+TKXLRPHAjv4/OZ0Xa4r0bPotk6BTNjTPcPDkWFsxOIC4sIJv6EZNu+B0kS75HY7yNHv1SROMTOMQdFKlfPm3TWgJzGJo1DaHozSQSrfjlDvpC51EbEZn38idwmXnraNR8K7mK9yOKfvTBNFZqaiyd0bqnGGk4dcurqPn9FPQvRSCDRYipMbpNXOIWNKsRRWwnID/IkPYd5MMfYuywl2SThOegiWBD3dUZMuo7CCn3E9XfT9K8BhBRhFZMu5BkcJRE6TZGnF4G5U6a3FGyQhe6FcQ9PI+61kaSSiUj9S+DYGHKaY54u9CNMmqDeyfa26tdzpqFd1BXMv20/WWYBl1DbQiiiKZnaevfy8UL3048kyCnZykP5xMGW5ZFS/c+GivmoMgqfWO9WJZJf6SLwdFWbGxkycG08kXs3PsJSlztU66TM9UJrdfroTVST6MtUXfwA6iZqZG2hxofI1L77JRjaqqM4pZ340xUYhS2oNs6XmsGFXe89R+e9ugsOfon4iw5+v8vLMuia9vDHM98DYCmkp9TMudiAGJdB3AVVqO6/WQ1nS2HOvnE7w6QsKaaVWb7dRqKXNxywRwWTj9Ndu6/gV1PP0Djts/jEyZXarpVxn7pKzzTthejXpkQ8xqizlv3PsuBNd/jwsFJNjHgNLh5RYBRx+vnLrqt5zBX95qkGn5DJtT6uuVCB9+G2NlELDNGb6qNSO4wC8N9LA734hiP9JsxZdYWziI4p49UrgBPW4BVLfvofCkf42b48xr6eLJ3PVVAemQainsMd1HekmBbArYtko3UsvmVT/GoT0MUBbJzQ6j78kJbWxYw5/iY2/efmHYbV7XMYMPy89g0bR7qjmHE6OSkWWGIaIKNAVQZIscVk9TrdIXtEHHPUwmmummvWpA/aNlInUnkrry+xQrkrVU12QFuy/2CfcISPMcntw/6/RE2Rs8nrb3+tmlgARQPD3K0t4QqQ+TfF/wcb3kzACOHrkRxjxGo3QJALlZO1/o7+aPkpFW1KDME3pV0UH/ZF3EE+qfUG++cT3pdD4t2nibt/DjGKlU6L34Ta/sv4FVXnkh9Gxe/JMcRLK41k1z1ps9hWwI/evb77JPznfWd/WuZ0/byaeusvnCEoZJzkNO3AT2Uu+7Azllkx1QEwUYr+CBJ6xLcoTsoSLdzODAdQ3GTUBysazyPRdajOITTR2FWcyartkeQxmehwdx96PYkaRCJ4Jd/iyhkyFHP/uWvYrgn/d4Lj1xFRXcNAeUHKEJ04rhu1aDbFbilya0zgJR5IVlzGcmNvyA97ODQjHdR1bMOX2qAynPGyBXdTqHjG5wOY/q/kTbzYTR0NYLhGsESdTyRBsLKt3FLmzHsArLmCrzyWnSrjDb3J+hb+DOOxMppKDzVmjZg3UjAW8/o6AtIdgS/0otpS/jVqcE+hzJV+JRhXHKW4UwFspgl5Bg9pb7/LgaSxSSzIcLeAQJqgs54FZW+Xlymi+nr8wFobfU4qu83pFxOxKFbkTU/Of9RDFlBNWqRsiKiZgE6AjksPCRLdiJpfkJvuZaiGQX/sPbC2SCQZ3EW/3Bkxvpo3fYNRhz5nEyBzGqKZl3I5oMdhLwuZtU08eLuo3zgdxtPOktBwuJDi4P825tX0NI1eMaESMtlURQV4SQvuL3rHmPetk+hCJMamITxZmLGTWyrOUSy14kDA+Gk+DEaHr4904doR6nMdfFkaSN/qvSSlQUWjRlUZXTGVIHjXpMLh2KcI2xjoHIbZUIP3dMt+rcVYWrVpPrz+hnJYVI8f5TssIdIu4egspOUsR/dlvDKOW6q34tPya8sk5bKQU8VA3NEEopK+cFyLhptpn9HkM72PDFKVzrQK/LlbUtE8YwS8EwO4LYtkB2rAwHa9ryTR33jq9YiiaU9W9lVvxgha6I3+rmw+QXmtQp4c9WM1Fczp68d0bLYsHAeSktsYoutV54kLpGTUjVMXFMSsJ0S2DbiLA/Ldt3DtB4bT+4JdNHi2ZU5dEUiO/M2ekuqqRrchmvkCJf0OSlZfhS9azknhx8QTYM7ZjzHLxIX01tRhSnLKIciSMP5yd8MO5gZ70SyUhylhBHRItq2bIIcFc5ee1J/QNfGD3PQ8tDqyhO+ftnmZaeO8NxXACiofpWiFQ8B4K/Zh/990P1uN5kRk0SLibfZQbzWjVoQxkz0UbDIycE9CyeIUVWlj5U9ApswOIJFjx5ASwXJRasYQuJEsMYn6y+fQo6GPqsTfFRC7RAZOeijrvgl0oGNKJpBz0th0kMnrGk2tZc/QNa1gKj2afau+Q8QojAeK2el3Q4ClAxlCcYMTEnAn9AZCav0lTopG8zRPMvHgkN5wlfk+CSGVYNIimGHlyK9HXm8/928QtOWW+mcFscWLIqOvo0S+XM41IdOee6K2IlC5ynHszTiYAfDY/mFTtxfT9J3HF9qgGxEQSzWiDmDBLLRU84NyveTNZcgYKDoMZxmPuCiW/0hitgDgCyM4pXXjrehnxnZz+J7+SGCtVvZLYIgmtQEJy04peIjkIbKvyENLHZ1T/y7yHVqqpIzRVu0BsOW8CpJslkPmijhlHLU+Lop9Y47n9gCTaYHz/G3Eu64AkE5QFj9AS6zPx+gMgXDRdsYCFZC7CrC6eO4HeuxPBqiKRNIZBFtm8FCFSmg4MqY9FtVFHHZf7vd/zdwlhydxf/TMA2dvr1/QnH4UVwhEsOHaE98B8sxqR0onXM353/1SboyKmBzbpnAtoFTNTzPfXwF0yvy3kNnSox2PPlT5u3+D+KCyoBcRdAYJiN6WGB1gQBRczVJ/U4EdGy83NeoUGceIKFOw2GftIViC8SlACklx78vDANhACrSOnce+D3e0DoycQEh56HYXcGA3kraEDE2BzgWrT193+Qk+rfn9VFFjiTvrtuDbkl0poI0nqQrWle6EGPaAB5jjILWeubvaUfusTk+Vow+Hrwv4xBJXZcm0TePWMcKRCWDKBmo3mFC018mFy9mrOUq4t3L6JVMdjoMGPfYqaGH+X3ttE6fSyRYyGWbnqZWz5KtqCcLFBe3UVXdTPj4Erxb+3h6zRVYhQ7ko3FsUUDM5EmRLQlg2Zg1XmxVBAHMCg8oeVL6jud+TVVuJnJAJ+X1oTscXNyXQRnuIWvfz2iFQk23ii058C0zEWUNMzeVcAm2jeBOMa/5RzT0SOS8i+mpXkWPrwAsm3BRhqtyv8df0c/m/nvIiNA5sIzkizYVc/6AuzBOeriaruYrITEb0VLZ5ptqVdnrMFmWs/HaAqNdqzEGF+Jb/l28pXkHAUlN4y0HV5GT3LwyygvaEMRhjIwfhCzNRgAkE0pdXGnmsCSbRnJgigxJNsfXfoucmmTQNblp0OKS6bmmnrINx4m9w8Cosom8z6DkP1TSgw7iXU58VVniXc6TiBGAQLJboWzuBxlJf45wx5sYq8tHUrZskeDQdGYeLMInPznlHkMxg4b2/BZtRvHxyooQs5pNilNx1PEgqGV6XneVckoI2LizFgH595S0/gSQCMo/wyEemahzOOgCDEZ9XkYcQdKaj4p4jNJshP5ai7g7QMWOFTjij2ObLnTZRThYgkdaAwPbyMVkCqTN7KtdTFFmC9M68+2LSUECZhRRyFHufM9pvyWAreEmcorItHg/lZlJMXeZ40OoXZ8l1Pdx+ub/hMGsl6FkOYXeIYLOKCndjSwYdMeqkEQL05JAsKgLdnBsrB5F1gg5o4SceWvS0UgdDimHaUsIgo1XSSEKFqOZ/Jhg2hKyYGDaEg2h41i2iISFJzKL2XIWzT2Iki0A1UJNFeNIVlKw7TQeaeIwjvBdFGQOIL5m3VE0qlE02gb88DUnTVp1S0Y0SkbyC6CxxBsnv/1XxFlydBb/z0HPJBk9tpGj3fegOftOLTD+1nsz8ymb9wPe+/CucWIEILCh/6RC43hrgzpBjM4UBzY+yYLdd6MIJg50AkY+iBzWKJYtkDQvIWncCijYOHi5JMlv6sr4r+3t7FKbEJjcbhMQiKoFfKz9uzxYeRejDonzhtMsP/xNBg5ZwGR+th7iQOlp26SIBq7KLNmIircsRXLAg5KGm+rzAeYckjmFGL1Q14SzoIsl27N4EhkiR1sZOTjpQWOIsH7JeUx7yz5kV5K+pz6CPb79WNywjrbCHVTrMLr+3zE0H1ucOtuck6RPDAqsSQzS4J3Fe159DrH3KGZJBZ46Ha93FEk0qa7JW11m1O0nsruCTz78HdYvqufokkuJe33IRpaKwV4KEmk6yioZCwQIRtuYdfxVrIH9zOgKEE4ImFXTSQZUTk5hYThdGFX5pCmVXUcRFZVkSTmN5fkEwpZhwEmZukRTJOkymDVahyYKSN2drNp9mD3zV6KaOlXRDOXLjgJQXdhL10gFB1WTc8dW0rtx5UQ9eZuNzUsunSHJxpYEcueWoG4fgZTBzwJZKgyRt6RUyLmxN32B467jVNQeJDhtPbIzgaRkJ7YrAWRXnFjHcgbGs6N7/UlWH0nQueo/8Rgy7LiTgXFLW4ftwhJ0REXE0i1GJJs29XLEe+7DtgTanvkKsiNOsP4+HG0ivZvDBOpTRLrciECy2sZYZRJ8TCbe7aRwTgK//Ajlx26ntiMKcgdeuxOFzVM+pZzVhEM8MOWddOkJwpEwBxcoDI14qevKIJk2AyUOBosckFqCM15N/fB6fEYbFc6pQU77vZXEhVvwDKzAEnMkw4+QK3sFSUgwAIymqgh3XEl177l4pT+TG9UAF4dnXcvnPVlme8r5evFscrG9OMQ9+EbfRcesfXRUuwjFdBIeEV/Kz/zmJJJ9qofWnrIqempkPEo/tiBwBGjPhZnbEicYNxAEjUL1y7jMC5B3fJoqAWIVGzAjKSwpC7XP4IjM4OIjN2JJOUDAFcvHGZolGGR9XQiWjCNVTrKgGW/FJtRUOe7RWaiZYhKl25E0H+nQEZRMMZLmQbAlHKkKXNEGcqGDmJaKrAVQMoUI4++zJeho3l4ciWo09wDJ4t0ki17FSTv17QLBZOxEDFoAmmf5GCpUKRrVmHfo9bd2T0afu4iIXEzwf5gs+/8GzmqOzmqO/p+AnknSuukbDEiPvmE5wVQpMC9jzgX3IjtcvOVbT7J3TEbA5r5r6vjGc6305/JEaX7I4E+fupqOgTHqy/++rNnH9m0i9KcbKSCGafsw7EqidhF7cOIkRqNxA5bdwHFfjG/MFpgb8fB4dYCcJLDnz1fzGefd1LsmNScWFjXHx3AW7KGu6kKkodnsGvs1mfjkxC27DYyT0jA4gjn81UmcQY2x1gDnBDppEkdO7TtZQDHyw8CoEkCxDDaXziQdNuhVipjTHmd1x246Xy6YErOouT6IcJGDYFM/omLQtv9qhluvolO2qNclvLZAQo3g00IMShZ/9ORInqQHsjwy51Y187HOQgKBYVJD03lG2Y/bP8zChc+ctl/37rmc7KCLwqOHGApJjPqCFI+mSJfJHAsMcM5uBduW0VQFbBvFFtCdTvSSGjy1YzQ2bkGWdXraG3EHkmSzXjo7FmAYeWuIKBrU1u6hovIwmunlr82XUxR3IVgytmgQU2KEF8eRdofRtPHtyWQM50AXli9M4ZIxauv2AvBK7yr+6+ANOLH5QMyJ0xYQxpNpRESbB/yTFiN9TpAPrv9PXlh0Ob3dk2ORgsXKjMqynIwAZB1DpN1deE0XLl8PkjqGLxBFcUB6sIl491Lu84IuwLzwMb4MrFuyiUPWHDauW4xui9wSd9DsMNjlMDGqPaj9GSzd4l0JB02Na0l0L0NP5lf6BWXPMnP3kziOTBVyDX1Bw3JD8X8oiLpAycIY4RmnT8KaHlKJ5q5j2HSi9vShmyM43Un8c0M4cgGCvucQRDhaupKu6W0gmmCJhLouobj1nUjCALbtwCJEgePfcQmHJ+rOKSJt7s/hGzw1dk+scBcx5zDVPZcjMkZY+S5OaR89m0Ikelz84E338qwjT+Q/1dPMhbseYsZ1A4iyTUelm+5KJ4JlU9mfZbhAJe2WCI4ZuJNguCz6Sxx5SaAgUNmXYVpbirGwSsol0VfmJOuU8KQMlu6OTmiqALLmPCL6nZicyZiiIxHFZOrCLBU+gGi6cMbq8uJvNY6ScxMr34jh7qKou4GMw4dt+rBdx4lO+y8KIhq+pIElCMQ9IdLeNLosUtGfRdEtbAECCWNiLDgZu+YHiPplCiI62JByi9R3ZvBFRGIBiaMzHJhSftEhWDa2OFV8vXDBfxEOrz6D+z1znBVk/xNxlhz974RlWdimjqQ4SA13cnj7l4m6XjltWcFUULVSSrxvpn7lR5DUyRVMe/8oF/1gMxYiX7ywlPdeupjOwTG2tHRjmBbXrp7zd8craj+0A+GJ91Fr5bdAclY9I9q3sHGeUlYTba5f7aXXnZ94glqG6178FZ9L/JlbQ9+i3jFVMxHsSFMtbqI9FT7pBm1qL+olUJ9AECCXULA0EWcwB4KNN2NSOpSjtvtU99yTkRUUnp22AF9ZO1nBQdr0UNopcE7XEUYOefPWonFx+MHpfpS3CSjlw4zZAkeyEq9GXazZ+RUedUtoAvgEkwuTLhQbEqLNyy4dbXy8tBUBs8qLo9LmrvY/ML1h3YSL9PD2m/HMeBZ3IL+lIpgKSqYIwVLI+fP9sWvn1aTTQQp7e6jp7qGtvg7RsqgcGKR57lwsKU/gQmNjREIhEAQ83lEWLXqa08GyBNKpEPFEIeXlk4L1vp6PsH2wj4JUACUXRHdEyYk5mKtxceDPZDI+DresIZksQDB0EAQWr/grLld+VZ3QPNyx8R5sM3/jiqjzblc7u/Ri9mvBievoMwO8te1litJjKKkMDzS8BWNo6j7GpWaG+YkwfwsJweb+QL4vbwh08ubqzbyj7ONogoOq7UcZjrip9I0wlvWT1lX8DRbxURXGDC5OKyzUXrOZIBhMv/JOyr5toAwKGAU2qXNNeqetZuzIRcx23EP4iXzRkkUxwo15gmTbkB5U6e3xYx57428oMB3Kl+QtvEnjSjLWanzS78laiwCboPIrAFLmBfT6VlDBt/CkTaJ+mS7XBwl3Xo5DPIBDeRlBTCAbFqZdjGkXAAZe+SkkITHRrta/lKJnJN7z5m8TGX8nL07H+eTzX6HivDT+suhp2zlUqHJkuhdNzX+vas5CMSwKRzWmd5walDTlkjgy3UMkqFDRn2V6WxrZmpxuM+YKstZCRGKIQgKnuBtJHEDkVO0cQFZx4NTzhNoGUm4JXRFwp00c+j9+Gk87JQ7M8mFIML09TfHopGebIQkcnOFlpNCBYNvIho0lwLSONJYoIBsWI2GVpFdGH6hnztWPU1T091ne/xbOCrLP4izGYVkW7a/+nA79O1N/OI3Fdrr7S2jZEepWfwTZcWqBn63dxjc3jgAiparGzRfnA5TVlISpKfnbk9DpsPWRr7HsyHcmIv12mPNQ9LuxcZKUwfsaL+wvNbnodYu4NJ03Hd5H3a6/0qgMYBgSQuH4p3mSV7KmuplVMEh7W759qk9j2oXdzIhmmbZxjEOBalJeEcOpIHa4KYtGqU5N9WhpcddzuKIAW7ZQMiL+tMZokYRLyGK3N5LtrmAWu6nPtZIaUDm+fVJXlPLAwE0yYw1jPDKmMtrvnqh3xtASdssq2rjAPGFLPOmZ6iZshVS0uSEU2WDF/q00NEepW/Q8ljSpUyhalk8zIBgOard8FSVTyKgqsbEySq3/LtxkWLjor3R3zaVbaGKkYlL7NVpaiiiaeFxjaJqb0JLjVPnGCASGprRDThYz1i1huxIEapOIoo3XN4bXN+4tZwqUHfgg673nYlv/lT9H96I7ojgsB0NZBwTA5UqwYMHTDA3V093dhD8whMuVQNRdeEbnQul2ls/Yy5YjixBMG91SeDDVOKUtZpmLq9o3USCaWN4AOW+Atw1t4C8rLiGCB8fWvHbleclFpLSDcwZqkN8gyevw+JaaQxV5f7aEjcUjaELeKibPBGkL9CTyFgtbEakxx2hzh0mNQatislCTSQg2m0rbySSLuTTpof3Fr6Df+ABB4wjpOieR9gsZ2XkdINBifoYVvm8gJQQGdwcY3B2gfZoNmkhd99QJ2/LYmEEbWwW1fdISFTsG4WkyzpCBV16Ll7yg2SntmXK+R3qZ8rjCvvkrwH0InSAzX62hxPnmyUI2cGqEhwmMxf1YGZH2srkTxAjgkDO/Vdw72ohc7MItnbrYKh7RKB4ZYzSkoOg2/uTrhFU40d6MyYLmOLvnB+gtdzFU6GDR/hjedP4bcUlbcUlnlvcPmCBGkB8STtTzj4IpCBytCtLhq8bt70a0bEJRnYbjKdTXWJNk02b+oQTw+ttrFQMn2ruLdfExLvoHk6N/Ns6So7P4X4POrQ+dSozGIZgK1Y6PUr/6o4CAOG49GBiLs2n7MZ7d303QpbCzJx/4rSOdX80qmHz3HQtOSVL592Lfy7+fIEb7rXpetNdwtXkNMg7umu/kxVIF0bapS1oU5Wy2FUjUx3r4xIMP4chNDnrlgQT6oIRk59sjWAr2OHnQHW7qnRFmveUYtirg8uRYuieFL5e3FMyOdcFpEnQPSiWUmIMkzALWt91LSulHzjmICRLLGg4h9sW4aOQRZKMFUxdI9jiJ4GZgVxAAQ4IN58EvlkgIko0xfJIVzIbpkXk0dF7Lo57xgJWzg8hHYwjjq1lbALPex4JUM2//4RNoqsrA9JkUNYwiSDpypoDUwGwcdXnvQCkXoHLP7Tzkfhl8En9quIRhbyVXjnyLGws+jija1NTup6Z2P6YpIQoWgvi3V8520kvFsZvxDS1l2njj7VabIcduRpf+HMmtY6WdFDbfhJpcxUs1o8wfzdcrG578jQg2WnYypIMgQklpGyWlbdjjlrVg25vB8EHpdt7mexq/Q+TpqjUIwznEsRwCeVK0JnWQa5/6I8fmzME9LUt9/S4yGT+HDp7HzY/eRyhncv8NH2W4V0UazrEjW8KOYJaQI8olrh6c3YsJmwIx0cZlC2QEm2d9WbBFlrh76F78XY5IF3Flr870pMmD00v5orubL5ghMGwaahQ+715LW7aQz/EmuhSLZMlRnlVkOpJlIMEzbo3rUgE699xJl5zDbnZyMmPPpavpel81Vb/uQh7LH6s7LuT7Vrax3GAW2Ix+1CARm83wgevQUwX4zttFWWwT5X/Ke161vVhE0VvTFEmnzzB/Al75eebuv4R9S8Ms2ufEp06N+J02/bilvHA5JzrRBCc+M0q/1sArynnUR57Bh82BmvwWz3RB4pht0icKxFUfvpZuDp9zDiUDTyAL/TjE3ej2NMAkrPwASRjLby2dhBEK6TdnofvWEM8aWKki3OxhhesRRGDJvhiGKNJb7mDn/AC+tEnJUI6S4RyKYWPkfQeQTpIzmWL+74EiBymXhDMtYAoSpZEkqpEv2FLvRxRMDNOJb1TGNNwcUedS6d6NwxHBEGS0TBjbFnH5BugtdSKbNp6kgaaKpN0SCAKKZlI6pDEaUpBNi0K7g6qjmQkx9cnoyH0Or5CgUP3RGz6npBnGK+UXG4PadGYMjcK0NzzlXw5nt9XObqv9X0f3zsfpHXiEkGclDed9GlEU0dJxMqNdBKqaiPUc4uC+O8i4JsWnnvRsFKEAn6eJyqZ34C7M5zFLZzU6ByN856ldrOv526/2t66o4u3nzjvjtu544Xc4VIWmc65BlCQObn6a3Ks/ZVEqP7GvNVeyS1zMJcVNVHVXMuQQuPpcD+ZJe/DlsWFm7d/CooPbQbBxhvNJSIvnj3GFeIzMC16+tOReyuVWJMOFKWXyo2c8xJf8/8FxfylDFdDYlqIgN7lya88uIWMFCco9jOq1jBq1HM+uoEDpxCcOs9z3CKqQQRXzW2x92kyC0gAuIcrAzgDRtqlJNQGiXptPvl8m4Z5sv2ALFKRLmRGbw4Kuc9FsPw/6ckQkG4od3LHjJ2yftZJ1yy5CjOt4pAQX71jHvKMHGK2dhuELIQgWyxa8iOobpLn/Y/zIq/OjsV7KLJtQ56V8vaqT58sULMmHrk7Hmd5Czr2ElzZGiM/4NcmSnWf8zACyvQU0HfgWknB6s4IlatiCiWTmrYwP1qnscayjoTuGy3QRHF1APNiCJeXoKVZ5/6DItrZXcIRy1F/Wg+zKE0M1UcnP099mY5HMJ8R7aTL2s+cv5+MY6KEkbbC/ZgEDhYVcsPcVRl02ui+I0FjIoiVrJ5LvDvRP57nR6ykdG8PTvovRkpn8qeI8pP7X3xqVBBPTHr83Cb6z+guEnDF+mPsk73xVoV0aZKx0MZeqW/lqwdWMkuaXI38iXZ/Pz/elzffQnTx95OZrUioz9Em3fxAYEy2ctoDLBkE0mPGWjxJ+UEbpFtCmWVguSJ1vYhZD37b3Eu9cddq6PXY7i/d8DzluYYs2O9aUkiu6ECshUq3sYMQToKRjD5qosLDcpFLpOKUO24a1QxeTHephoKCQ4oJBFFOif6iRXEGKwsAQJaZO2boY8kj+Pf72ZV/jJZeTlV6FzqRJHxZfOPwyqw6vJTPfQjz3Ugq7356vHwvDEcWtjRBUfoVhF6NZjWStJWStIHFvP6EhL+bIEeTyJdhGFkQJySHhVz+DT5x03Y8EZPY2BbDG9TmqZqHLwhSNjqxbCOS1gAC+pIEtCAi2jS0IJD1SnpraIFk20rhVR1dEVM0i6xRRNRvNIRKKaFT1ZRkNKfiSJqYEBWM6noxJ2iUS8ymUDOd4o7VF3ChllFtxmhWYdt7Rw5L6EIQfExR68Ul56/R+52I6kssZ0htQ/V040oXImkrak+D8a6ZTtejNr3+R/wbOao7+iThLjv7v48Dzn2NQfnzygCXhyFVMyWt2MsLZi5h38Q+R1EnrRTSZ4fO/fYWDg5kJi9DrQcBmdSlUhVx88Z3n4lSVNyx/Ml5+4G4u6M6vmDqESjKSl1nGpDg0ayv8wfth6rTZVCSqkBD42XST4O6fkE0JOHOZvCv4eHl3UYaai3tx+HVsG0Tb5rxNETqfK+Q7F36JYuUosubDlNPYoomWK+PL3IXimOoxs4NLiUgN7JKXUNZtkrLywda84gjvLPo4qpDFMiHR48I2IRdTwAY1YGDpAkN7A6fc66gPUk742RUSx8vzLS6x3Cw9fh3ViWlYuRAAJjZPejSOKxa2JNAwe5Dzd+5GSidI2yIIEksPH+TgzEa08mpCoV403cWsxi04PVF6zHoeSN/DtT0mm32tDGr3M+zyEin7Ggj5Z9nU+WMGhW0UCGsosmfy/ZaF6I4xMqEjJEq3o6RLEE2FnKcfwxHNe/oIFr7+FTjj9VhyCtF0Itgy+9ytfLruNzRk61kaDzM7Xc/89AxUe/I9iMtw1bluFh37Lk1DjWBDwdAq4qGD6GqM3lCS20bfQihnENWGaZH/ROC8nSjpEjI9n+IDC6sBqLB7+RafoHn/xWi7x5CyaWTLQpckTG8AsaielFNk5qwNFBVNvu+WJbB923XououU4mBMUFm2bxdfue7jKLsnAyC+Hi6c08q7Kn6MI1rLPfq/s6wlH3ndJQZxzu+i4rkQUYfFjAvWoXnzlpv2zkv4auvVE9HC9RkBpJ4UYsqgyoQbEpNb05ucOlvGPQ4bdYFrUg5EOUuwfiPhhpewLQktUYrsjNK79UPoyRJsdByigG1LFMsivSdpZMKJvcw5/iuUaJ5gaoU2clxAPE3wZvXqANM8LRN/tyVmkXo1hhz9m90ygUhBHXetvo0u0eYO/152pmay0XTytniC97+Uj/Jt+iG30g9109GTB5GPZ/AWvxu3tJqscxhRsFAzxYiWihlpJ7PtZ9iviY0klczFMedaCG8gyDoC8uCU34f8Xmwlb4UKJvJCZwsRl/7G23X/J6BZLrq0BbyUvI2LCnM4ssVYmQi5vnUo3lnIJXPQ3AMcqn8Ad2k73sHFINgUHH8zSqYQWzSQDA+2bSEIIo4rvRSt+d+VW+3sttpZ/B/F6LGtyA4vzkAp+zZ+lIRr19QConlaYuTKNDJv6U/wFteT03Q2N+djofzipZZx13uAU4nRqhKLD104m8UNFazf38bq2TWE/adaSN4ItmWx4Ucf4ILIZOqCWrsnn84M2GjNo8WehhryMui6mvM68wPerpCNvPchpGiKeef04MwKRIfCgIVQmSTUGEM44cZiQeHOakRrlHRcQRqvXLAl8q7kJrokMRCpQQy48UsDJMwSuoRpNDlfxGs+z6UmZEtUtjpWk3VaXB7N6yayUZn2Z88s39u3rhPZ2SBwIqtrgWRx49H34B1cjFu0yVoSFjAgWfRKFodcOQbGU4QoNRKL23sxg0HMYBBZM1EiQ+xZfS626qShYTOlpcenXO/h3Gf4jz0RokY3n+8p5dNLf0QkJHFh2zrQ9pFQRRzJJLW55bSE9rGp/r1cK/6Af+9cxuqBlfgHVr72Fk6BZOQtIq+EBrlrQSW68l1GBZGtgKQPoehdzB0d4PstKzjo7uFLcx04NRdyLk9CFS2IaMtIhhNdjWEbCdq9IgWaRNhRympupeO5Fipc9dy9MAC2jWCn6RUriNghqqv3sz96KQU5FT0bIxk4odWymd6wdYIYBV/9CNFZf0QMD7F8xROMjlbR1zsLT6yEdRdeyQdefJCNyy7Gl0qw0z8DWxWxChz53HNjGohQnR3ireoLAAyOzGK2NrllmzNj9DkdLAo3EHIOTxAjgGnlm/C53k0kZaM4JJ5oHmLQ6eN2DLol6HdolOVU+iVrghgBtCo2rYrFDN1FpPVSIq2XntL/AjagoI1z+t7XiIfHfAt4ddG9zNXuoWBTFHXk9TVV2lMxtr9vIfVJL0esGgKvrkOOTi1v+m2k+NRjlsNGzAkk3SXsmPFeuoX8ImVayXGSyQQb+9fQ4QnSWXUJBSMb8cazuJ+LA7vHaxAx/L/l2BceRrBtAr+VEQ0VR6YO2o6etq3mYDPpwWZcK24jUXojx5RnaDIfxCHmxdvF8eRpznrjZK7/U2QsHxGjghPhKQQsBvUGjrAEV84koXpI6YU4C49SF4pxoTeG3COQ3PkF7GSe3Bk8j1S+AMeMa2gyPoZ8IDjZ+mwMo3s9xuhRRG8pVqQdvAGGFy2kiH8sOfpn46zl6Kzl6B8GPZNET0VxF06KZC3LwjZyDB9ZT0/XI8Rc4+H8LYkTkcXUbBnLz/0rI8c20tv7GIYdwyvPwBecjySp+Ipm4q9qQpRkHl2/j2+/2MaYcXoL0eyAzlVzy3j/pYvoHYn9XS74qVQS2wavNz+Z5rJpml/8Dcbh51iRfBGAl8xFbBaXU2l1kcPBqFDItDlLGAm7CDQXcP5QfnB7uijD8L5fUFI+SPUFfUjKqZ+ZbUN2uAq9ZyYrIjspU46SGVPYtWEaf7j6fQSkftRsAYaSxJJyRO1qPnv8i6wt+BWaJuEr2M3blG9gjYJlCJhZEU9pDkGyyUUVTF1k7IiHVP9UT7ljZaDJMLs7n45rZ4PA0XKBLefYzHZZJC2BEsUibgosGluAuO1GMnK+T7olkz97NLInSbRswGjw8+aBjZxXto/Cyv0ga7QePJ/B0SqCoT7Kyo5QWNgzpR0jQ1fzG+EGVrW8SA4DEXAUXsQhRzPl/d04LAfDzmGKsnkhZ1bKsq2+iJbyiwgMfg01d4TpmSoMwaI+V8H1o5dSrIc47uilVx3Eb3oZUhI0+xMcC/jpcLtwxR7AlMvQXAtQcocR7BzJ0LvRnU0T7RLMODXdd7OifxFBLYgvOgNntoSUp5O0r5NuTzdrF3+UxliE2w5HWBXLbzV0uQWuO8eDb+SHODI7yXrO4aZwmlVsIh4vpO34EnI5N6FwHwHfECVlk8mOiw6/k3DXZSQL99I7/4cTAhTbFujoWEBP9xz6AoWkvVXcum4rPcnDqJrGYCgEokxPcRmVQ/2MlYZY/qbnyMnwPuFRPv3qduLGZKyv4ZklfCjaiaWk8sEaewsQC7NYjhT9e97F02mVt6QqWEU+hcc7nWm6swZgU+CIEbc86LqSD7hp2wgWSDbcknAQtkRkwCXm34nkaeZ5AQub19H3CRbTUg9Rs30XmZCbseJCHCM5esqvRTEzzDn08ETR+FsMXNtElP58XUcvOodu63q89h4ySj2qM0pN+S+xDBfR4+8kYtehC3lbQKti8KRH53o5ilc6ioTEC7m5ZG2Vm2IORNOgNLIJ39DTVAyd6oV2OnQWe8l5V6BmWsEapnbwpBhlDj/qzKuRyxciOWQE+VVU8Xmieogi6ThuMYYi5nWDSbOE1swH8EmjCMIh+ozpdOfOIaAeol+bRanaikcaQXZFiQoFRIaWYCPilwZA0SgXW5nrfgZVzLAl+w5GtVqGzRqqz/s2kqQzcOg6Qq443vJ9SLEqzHQhBZITV2w6giXhSFWiuYaw5CzORDW2kSP9yj1Yif7T3rdSswZbS2L07znt7xPlvv9Vpr/pbWfUl2eKs9tq/0ScJUf/PYy17SId6UDLDJNOdxHTt2IJGpoz/wE1eL5MoGIhbft/RER5Bft1khsKpkpYvwDXjM/wTHMvVyyeTuNpMtpblsWfNx/iV5uOcyCaH+Dy0WLyq8OApLOsXOXHH7wEx9+xTXYCtmXx/M8+yflD/8VWu4myG37E8IF1rD70pSnlOu0S/vSu5xlNZ1na386cxkY8FVU8eLiZkT0mdxzJr9I3i4fpbfsr9Zd34a2emiPp5K/Ns7uR5cmtiEJ+FtEsB4NHPexqb2DzpVfjFkdxZEowlDimnGFEqObT67+KfpmXI55qLh19lcQxFwM7g2d0n8N++MUtkAoL+CWbjpiImMq7Z99ZksXuXUqiZyG2paAli3GG24h35DPQm9isd2nsPmlLz3aIWCEHZcERrn/5j/iXO5g+c9OUaxrJAmTvpMdcqP1NFB27juPuft6/rJZr9v2FQHqSvJUTYJf7EGXpitPew9airXRWXE0kkBfUOtIHMWUPluDCkd6OLXrJetcg6b1IxgimOhNTcqBmduEbewjROt1qHQy5lJxnNWpmN4rWTm2ilsUjiwEoGFyBaKtkncMkgi2MOkZ5oWkNUW/e82z22Aj3HHDy7ZkO+uVjJJL3TNS7yHsLN4V++obPRdu3gIbh2/nBDAfFWZt394zSGngCoXYHUng8SnOsmIMHLsA0VTKKyp6qBrL+GkRbxBfrJjjWTyidoN53nLlz17HBuJIHhVv48Ktr0THHvxaBRFEjb5r1BQTAQOJnvbcyxxnhwoLf4mq/hJY9YS7zvomcpxfBFulPF/HugIEdm/yGbUWkvC7D3LZDPOtehhjXWa7BuenTB/qTBIvyGS8wZLVyNBjAKbpQY37mZXfT03Eblu0jL+E+cYHxf70mUWn14FNMb5ma6NT0QOvSi+nn2jfs45PxnEdjv2LySWcno+Q9GVP6NH5vhvl4zInDziftkbAJaZ2IkV50JcTC/T+ZqMMQob9MBkMg4VvGQOWNp1xHzUZoOvAlgie82gQJ18qPI/orEJ0ntrItJoOSvr7FzMbCktNYko6pxlBT5WjeXhLFu5GyAWTTjSXlsAUT0VQJ9J2LJejo7kFEw41oqmBLE5q6KXXbNkb/XkRfKYLsBFHGHDyA3vUq5sjr52I8U0Srgqx8Ycv/uJ7X4iw5+ifiLDk6cwwdeomj7V8j6zo1X9GZwptZSFXlzQCIokLx7EvYcriL9/66GQ0Jh2Bw5XQ3S6cVE0vneGhrL/UhmZGUSWtykvRcUAFfv/EcJFGgKOD9H3maRUcGCP54xhuWabPK2Cws5LGL/o09uoOwZpOTMwhAfdzBLe0aq0fyVrB9kWfR5BSeS55D8ucnlHhvE6o7gjPUi21DoreJwsMlrFEntVb91LA5cA5Ln3yG58TldJy7BIUkjnQphpzAVFOMChV89NHvIUg2JQtiaEmZsSOTIloLTlmTa8U28bcbjMzIU0mX7iM1OAt/5S4EyWTUEMgeuJZE6+X5EyYmpnxN7bLJJqfOgDx1mNCn+agKDbJ69FVKX+0m2zCDVUvWgiOJb2AZidLtU8o7o/X4uy7mv4RB/lp4iKx3DbMyS1h4ZAOKrdDl6aI6VT3lnJwp4RCyqIKJbavo4895Z+FOfM6F7CiZTk6WkPQhdOcsTLkEwc4g544DAo70dpTcYWRjYLIdhpOLY8sZUEbZ6Z8aqXkCNlzRfQUu04VguCgcWUpA6mOUIJGinRiCwZM1fyHrXY0phcl6L8KSwwiWxcqj96AZWQzBoNfTS9D5Hj43uBl1bvOUS0SO+dFTMuljpVzm+zSfWuDk5ZL8O/6OTo1PHc5hYzEy/Y+M1f914ryx0XKOHluBljv91nDTrI2IRWN8xvoZ728eIhvbjSEYtPvaaYg3ILjKmLH0QYoY5vfpd/NnT55UfNH+HHNSUeo2f5146TYGmn4JlkTdlq9xQJf4aGMRQl8WO+RgSXw/5+x4Fkt18vsl1zHcnx87L1A6WdQdxeP1Y+gGOVeccPkoD8gzaI9VY+dOnfzlIpEb+zOUJIOnvR8FMJncbPKm21m45z4U3cCURbYu+TI555mH3tCw+Vkwiwbc6TjM2Hj8I59Zyo/0Kq5PqtQapxftV3W/SPHQK/RXnYtQfj6CoNCjn7boBCQjS13bb6jum2pZkUrm4pz3DpBdiA4ftm1haykwclipIQTJAZKClRoGbOTyRViJAQRRQvTmA3RauThWoh+poBEsAwQRQZxsu61nyKu2HdjpEfT+PUj+CsxIJ+bYcaisQBD8GLueOKO+SzsL6ah5E5Yg0Xj0EVRz6qJ3oMBPIJ6jv2QxXTXXoBg5iof30Ftdy9W3X0zlzH+su9pZcvRPxP+fydHo0S30HH8MzRyiIHAe3nADgcr5OPz5bajUcCf7t91KTu7HZdSQchyecCk/AdFwoujFFLkvQ3UUkk62MXCSuFowVUTLgWoUU1P+USoWvmXit7a+Eb755A6e7zSx32DFdDKKVY2bl5bxsatPjYb738UrP/0Y5w39BoAR20+hMGnpidlufsxN1MxezCNePwcdJfzn9jQzEhafXOjiml6diwYn9Re92V1kq9ZhLDyUP2DblO4poiHegYlKuzEft5WmQj2AIuawgb1iI61qGbsLSvmPrifo/kMxf5hxJbkFhYj2uF5k3HM6SjEffuxUF9r25RbCmwzUMDibBeRBAa3Oxii2sUKQi5eQHppFrGMF2bH6fH22iWTlQLKxLBVbOnWbsk02+aNHOxH7EVsUsEqcXBt5keqWg5guF7mSSiyXh2ULnsfhH+J4ZhX3axdSlR3kjkwP4VwAR6KaF4QU9yxcgiXlvzNPLsK0tntZNbQKTdQ4kq2g2H+AkmzJeNeZPJxbjgC45VGWm+1UO050h82+gn20+dqwsd9owT0B2ZJZNLKIqlTVKb+Jao6nSl4kK2fBhtu73ku3lX8PgiPzUIwgjc71HMmex0jxqyBaPF/xPAl1PLCg4CMVuJqqbIDQ0HMsHM1rKw4GD3KgLMTPtq9gV09eryY5TcysRIW7kUCwmunOJlqCHj60zI1ojOX7R5C5tr2DTx0tQBYzdC/+Ntng5BacZYokU3kX7Xi8EFGwqKg8TC7rwuHMsN6+iEN9VzD/+F4soNXfyphzjBVDKxBFBW3pMc6xt/FR+QEKYv1EnS4Wuo/wYeFH+e1ubBDzdMQ3sJTS/bfygPYcT665jPkdHcxseYniokUstqbTJqa4wxNEiOfHhtLQMKpTx9AlhmNhdP0MLLmqwK3JNrzp2X+7LODIRqhvf4re8nOIB+rP6JwTaCno5q9mIcukLE3yAaxxBbrf9vLD3CwaPBluiI0SzzSg/gPDCKm5GIt3fwNXLn7Kb3plKdLQ0HhG+78NQfVia5MWUMPjQcpkEazxUBqhYoRMAjn7xoFfzxT9RQs42vBODMUzxZonGDl8kb3knC5yvjf2+J29Bi5414X/kPacwL8UObr33nv54x//yOHDh3G5XKxatYpvfvObzJgxufLOZrN88pOf5LHHHiOXy3HZZZfx05/+lJKSycRzXV1d3Hrrrbz88st4vV5uvvlm7r33XmR5Uh++fv167rzzTg4ePEhVVRV33303t9xyy5T2/OQnP+Hb3/42AwMDzJ8/nx/96EcsW7bsjG/+/y/kSEvHGWp5AdNI0z/8e1Lug69b1puZD7ZN0r3/lN/c6ZlUl70fBIHSuVcgSMopVhtTy2Jkk2jJUTwl0yfiDQE88vJefrmxnfa0MoUQVTk1fv7elfz+1cO8cixCW1pFHF8rukSTGi988LzpXLu6iX8ktv/pR8zf+yUcgkHKdvC7q58kvOuPVPS+wl7XDO5b8F4qBQUtO8qhQC2fP5Dl2t7TLxUzVpzB1V8n58uLFkXTpvKAk4bYqRm0TaBVCHLQY/C25OQgN3zAy8gBP99a83GqK0cR7Kmjc5IQC3ufYNHGfAqQnNMmeb1JaoEPLVVILlqF6uvH1Lxo8TJsSybWsRIjE+JvMYiEYPOqU8djC4xIFn2qkfc2Ix+8MVyTZm7sEMue30QqGCJbldek+L3DzK49jBLuYIBSPm99j6w0nopDH8SV3IBiy0TD14JtI1kGwfh6CiIv0DQ8neJsMTYpHs6cz/lCK5VKPwmjlI12JY+qX2aG2ENmTKGlr4q7pn+ES5XjJCX3lLYn5SQCAh3eDtr8bZRkSjAFk/pMFSV6AWHDz5jxN5b4NoTxYNk20XHBbEp3UTu6BBBY7XuQLYl3Mxo+gKEm6AgeI+NIcMg9SVoEW+CynsvwGHmrTkpO8VzNdj49dA+LhiPE08N0Jg5QHG6kQckTgaNekTsWuYhYW/CP3o8glDFc8WVsMb/9sWowwrf2y8hylC7PEyTrtuMoPP029Qn8KnIPRUc2E9RCRNUo63y9hCyVCyP5HHJPNlVh6BtYFFtD3UAPumDwp/nL+Kb/c7jH8/lpQwJqcX5qKNt3K8LgXNb1/oZY0ENtRSkzSwYQTQfhjjfxuHmUnwj1CG8wtys+UBI5mkbbOH9oLz9d/XZisgdpaDwBtAQ3ulqo6Fk0cY471U/ak88ZKJDDxnG6qgEwHceRijZjJWKoOcias5HMuZhiiKw/g8fdT23Tr/nCoU8QiXu53ddLVJ/UYgm2wFO5RYwgsrJ6Bx/t+gOZA8tIiVWojhFSUjXDwSVv2O+NRx9FMnJECpoYKD61rGAZhMdaCA8/T9Vg22lq+NeAKQiMhKfTVvcOcq4wlvT6/X6mWHRzkJUrF/3tgn8H/qXI0eWXX84NN9zA0qVLMQyDz33ucxw4cIBDhw7h8eQHhFtvvZW1a9fy0EMPEQgEuO222xBFkVdffRUA0zRZsGABpaWlfPvb36a/v5+bbrqJD37wg9xzT36vvr29naamJj7ykY/wgQ98gHXr1nH77bezdu1aLrvsMgAef/xxbrrpJu6//36WL1/Offfdx+9//3uOHDlCcfGZeeb8byNHlmWR6DuMM5AXgCruwBTycaKMpecQBBht28ax4/dOiQ90MpyZOtxiAzFhK6Z66ormBFyZRspCb6Nm+S0T13t+Vyu2bdPcOcJzLcPolk1dSKWhxMfCumIuWdhAKqvxvSe38lRL9LQCapdg8LFVJdz2GktQS+cgxSEvBX+nV9mZoq/jCO1rv8Pq4d8B8Cpz+MyiuznmK8dtZLgq1sHvCmZNOefyvixfa546wdq2jSAIyLRyfOXPyPoiAIi6jfNIOSvHmhkSRI47FPY4HOxwOjjkdFCpG3xreIRpukFmREFLyCQHHMQ785P+B666h0t8+8EyJ7a3AHL4qDO6mL7yryhdAlq9TWJoAb2bP4RtSxMJJU8HE5sO2SIl2mx2GiREmwZNZL4m8xePNpHa45Tzyl2858hjFIz0YXgCaAUl2F43M+r3UVhxaKKchcDdxg/QEr1UjD5HtdHIM9OuJqO6wTZQtT7efGwj0dwADtNBOBfGbbqxsRlIS9w8uJZbyj6LRt7S8Pbudbyv4xmyHifNhQvoqVxGSXQXf67wU6iXUy0lTtGknAk82SR1re34s3EGKktpK5+GZcNrUkGRy0BBagZuo5DOYCsvzLifWSMLmDe0hownP6lOM0totEvY4t/CI4XrKEtVsXB04UQ8GoCnq56m1PEhfnpg6tZtu0fkF3U6z1cEkXOtBAfvQRhPG2EoVURK/gPESS3WHzcmqU7b2FiMOXYScR1jxNWMEopi6y5UGcJmPQWDl3N7eYql7SNYWDztiWGNLMbv38EiFPy6n+3TFtPtc3Ht3g2I4+/MsCuHP2BzafHv0feJfH7WxQR9DXzY9VvCms60Td8iZtrsdRyhZtlvMJz5d13SfCh7b+E3yQQvlC4ji4oczWHrNkEpTa0+zDW7X2bV8f3kFIWDDU0UjQzgSUZQLXixcTk/m3ct4rguZ1HpPi5zHCUl2lARJZeQGM6WENc81KUFgkcuP+WZqgV7eKkmxaG+6dQHOmgqbCFmB7m45GWiWpA/9L2Z+QXNPNFzLekBFSdwR/A4/dkxRCWIoMcxsTDlSn6dzJMx1aFxU+OjLC/dzVg2iEdJYzx7IaOja8i6ighGj+JN9iBaBoqZwFl9kNg7x4gQIrvbQ3F2jMC+SgaF84mEJ8cSZ2aUYLQVbAvJ1PEmDiIwiKKLjIUrCEbjFI12knEE8eTyWr38BC2Me/0xccyUHEhm7ozs7jaQU/1YgkzcX42u+Mg6i8i4Ckh5ysk6w9iC9IbfVFZsYbWziJRVzOHsG1u5BDGLWxIRLBnT18/MGytYNe//YcvRazE8PExxcTGvvPIK5557LrFYjKKiIh555BHe9ra8Mv3w4cPMmjWLLVu2sGLFCp555hmuuuoq+vr6JqxJ999/P5/5zGcYHh5GVVU+85nPsHbtWg4cmNQE3HDDDUSjUZ59Ni/IW758OUuXLuXHP/4xkCcFVVVVfPzjH+euu+7iTPDP6tzunY8jCDLewgZ8ZY1TYvKcDMuysLQM2fgg7oJqRGnScpYZ62P42MvYloXqLiSXGqB/9A+k3ZMxPgRTQdELUa1CisNX05H4AZZy+uSPJyDpPgq4mHDRasrmXzNBdizLIta5j4HjT6E6iwiVLyNQOXsiF1nfSIzbfvUKnXGThCmh2afflz8Bl2Cg2SLmaybshWGTuRU+agp9vPeSRf/jyNSvB13LIUky237zBZa2/QxZsGiRZ+EzRqlkMp3EK8I8blzzfUzh9FEtbun9E/WpFG9qvwoBiUTpy6QLdlNy+O1kAseINDxKwq9NGGbUJDTui7PerXJAVflQLE6VkR/4LWBYkigxTWwbRg7mLUUno23GDG6b9QFucu1AzGnY6viqzTTRZQ/ZSDVL63ah+gZIDzcSa1+FbRkI4ulXdwY2PbLFNodBl/K3zfaWS8q7h5cr1CpdXLj5RZSMG8vpwhEyqKlopaj88JRznLF6fii8mQ2eeVyy/5dUJ6sZcY5wKHQITXGSFiNg51gxtILydPmUczsNL4t27adOHEU201ACgT0J2mYvo698OYIt48gWINoqmhph8a7v07owy4/LrqQsF6TeTGHbGgFZwnFSJDu3naCEMdK2i0GhCASBmUcPUdHeS29lFYpmU99+BGcuhyUI7Jw9n5THQ05SqenqxAjWM1x0LWDzx6bvM+TLa+1u2fklEuHmKYa4SrOAGXYJL8uHsIDBtMIM1SAq22wr2ka3t49U2S+5qt9mQcRkS6HMXysUsA08sT/iij+HgEZRpgjFluhzDYzXL5JzLSReeBsIMp89kOK63qnPUNOTqMqk7qzdpfHjgj8xa6QQS9L4XXIxd6hr2WHOwggfpDZZS9bhoCfgZfrQKBkpg2tcpPvi9HlMP3wvh5ouZTR4FYJts0jYwofVvKDc17+CnK8Lzdt34uUCGeRMAc1brkA53sqilsN4sxkMUUK2TAaCYVrqq9BFCyNQSCIcBkkG20IZG8Ix2EPSV8Gvpl+HGMsvPmwBnD6dXPy1W3I2N5TuoepwXoxvizEc5z/AN1s+hJF54/HoBATgbn8/KT3BmB2jOXyQgmyI8nQ5pT4fzwzPYd/r5DarL+/i3dJTjNpFuKwM0zJtRJxufuF+D8fi9QgZAyFjIpg2tgDSPBc/OHoXxS876fdeRH/pslOsMN5EFwVjLQi2QcZZRCQ0A80xGXdM0ZMYsgvBtlC0BLYg4U4PEg1NpqHxxdtxZ0bQFC9JbxWKnkC0DDTVjykpgIgpn34OOhM4BIM5tTtILXic41IZCzrnED56JQdSImOGjU8SKPTEqbIDKILISPFW7OKDlBx+N6mCAwimk4zDx8JPvPu/3YbT4V+aHB07doyGhgaam5tpamripZde4qKLLiISiRAMBifK1dTUcPvtt3PHHXfwH//xH/zlL39h7969E7+3t7dTX1/P7t27WbhwIeeeey6LFi3ivvvumyjz4IMPcvvttxOLxdA0DbfbzRNPPMFb3vKWiTI333wz0WiUJ5988rTtzeVy5E5K1RCPx6mqqvqHd+4rzyzDcORZv2g4KRHfhj/YxMjQy8SEnTitahQhQELYj+HIB3UTTAdgIdgygi1jKq+fs+bvhSNbwfTquyltyscgsSyL9fvbeODlw7SM5gekGxYUsXJGOUtnVE0ERmztHuJI7wgPbDjK3rHTkwcVk2qvSVoHzYSoIWGclNzIL+mUu+FwQuFds118+cbzkOUzG8j+XkRHBmj5w1ep73+GEkbfsGyLVc0xvYJPrfkMUVcIj2Hzy+0Pcd+sxRzx1mIj8MXjP+Xynnqy5kosAuS8HXSs+OpECIKTYdnQ22dzPCbwtMeFhM0PB4dZns6RHHDg8BnIznyaC0GCkRYvw/sm3zkzYJNaY/I746v8wenlZucORG2SHAlaFt3hoSu6jOWZ/POxAU3QaVYF9qkGadFmaVZGRiAlmiQlk8OSgHXSRG75FDBtxPTUQHNGjYfzhjZQPtSDrqhU9XdgePxotTUUBUeZUXUUKzA1/lRKL6ar7638NORhzL+MBcd/xoreUzU9ve5eXIaLsJYXzpqCRtbw0GMHsHtzrPBUI1oeEEZYvenHHJi7hqT3ytM+N0Pew/mvPIxqaBOJcAE6CySaaxbhtWUWtezDn510wc4pCsNFRbQ2LiXnWIiiBxCtvCXT8G1FNjtp7DzAcX+IQFJiuGwGtnlu3gMIiweXfRp9XG/3lubbCeeCDHj241RAkKautAUbPGMNONwZRl09dHg72FW0C0MuJe2/mpznHNRsM4HhqWlw5kXm0BCdmb8Xbyc7C3dOEDBTKiFW/ElMpYwrOztpTDq4tt+D+zWv4SvBDr4wv5w1B39NXbKWgGUwV/krW6NfJaf4ORZ+goZ0aMJaBDDqHcSd8+LSPRwqsun3X4xbiLDy2G4ERJ5tWsUt4e8wnclYPoKh8NIeiZdKBL5eKGK5U3jaLmf9UT9FR5pxSg4KhgbpKSlgpKoGu9iBrGTx+Ubx+UawTJlIpJxIpAzbslFHhxGTGr9afgNa5xsHQBRU+OCiX1PTK/CSczrrjp65/rBQEPiM7aRixm94qaMOQzB5sfxFSjOlNEWaCKp+rtGr2WAV8g1VI5s4dSvWVahTWjZKdMxLbMyL9TdkPZZb4pol67jk6ZcJ7AzRXfeOv1sn9X8DtapIhUvDFeqip2ozj5ZV8fzARQiHklgBlSWzD/Bx9X7C7VdyrLiLIeKUeIcpTnto8bo4wHyMOAy5SlGtHEsO7+bOO85M+H2m+JcNAmlZFrfffjurV6+mqSmvBRkYGEBV1SnECKCkpISBgYGJMifrj078fuK3NyoTj8fJZDJEIhFM0zxtmcOHp65qT8a9997Ll7/85b//Zv8OWKaJnp2HyB5sRxRLztLPb+iPw4nE7MnTTNy2dCLb8qkfpGg4kY0wQWkl5dPeijtcjaS6GGvfRnR4N33mrwEbyfChmqVUld2CKKmEa5cju3zIDheWZXGoc4B/f2QrHXGBtC2TH33zk8RPd8b46c4Y0MIMn05vCpLWiZXb5GuiCibXz/bSWBakJOBmTk0JVcWhKe0djad49WAnpSEv8+vL/lvu9WcC0zDY99LjxHsPI48dY158PSuF149L0mkVs8+cTiczyQSKebxmDlFXCL9m8/z6QWT7bfxku4ZX/COK2EHcuIE0ky7lw9OepFWzKZQFQpKNDRzKSnRrAm0xgaOCAl6bz49GuCGRxDah65UC0kNTV4uGbCMb+Zkv/haD6DlOcrEaYp2r6B8KUUkGAWGq379lgWCwSzWo1SSKTYGIaPO41yB5kvFto+vkyWVy4radEnqDn3N71jPrWDOHp88lozhxCDmKj3dTPhjBDBZiBgsRZYNEcAkNFUcprXsCRGtKaLrR6Lk8mrueLaXlUJs/NqPz58wZCp623yvG3fIF22LYkPirmV/5e/QcH3aYSEbBeMlKtqy8BwQbwQYRDVmJoOmT37lsLOSZy51ozhgFIz1UdXfj0HJ4UmkuOHIQRzZHe30d+0uK8cfjRIsKGPPORdGCuDJlOHJT2yYnVgAraC16B5ag0e9LomqhfP9jE3H3o0s6kiVhiiaDvg5Kk+ezWjzGA0ELhy0wL1KHoeTf8ZzmplAvw8pEwdVDVaqKPYV7kI0B/GO/gLFfnNI/FwyvJpwsnfi7JllDTbKGmBKjNdBKv7sfqf/T5FyLeK70ataqZXx/joo7m6YgncKUXNiZncQDK7D0DYTHo5eH4ml2h27kF5dWkFNFqgeuw9X7MNXJGgAGXAPE0/WUSil0oGHEYm+dyHt2HMIk7z5+6ZHdPDj3fXzV+3lELBydAV4ZLuLhee9Fd87krkQLX+QrUPsCy9JvpbmilIFEIT1yNQ5ninmNL+NwnPpNllccyf/DVIn1zeHQ3jI+tu4HvNB4BYdcdfizCRyiwcrhXVREj9Pjq+bJgjdha/CfW99zSn2Vzgh3bP4N0UCQA4WNFNgWLxZXEdEDrMke4UZpMZWyD6QsO5AwBBNdMIipMdRxopzRssRLt3Nxx9WszArcHEzQ6ynBqPPi7RxF7zHJjCi0j5Secn2Py+DKgxvwKA56ptWxzleNNWogpk2eevUC/lJzKWvO28b1ufsYXjsNp+cyTLkGU8zS5+tBNLN4kxaKqaELSbxaAMG5EEPpJ+s+RlQ2qEguQNRDjDiPEhZlSowwCdONJBqErQLGrCw2Bh5RxS84cIqg25C2DFRBotg/ik8rQEXERCBnG2RCrQS0AmxfPxgOsr4uUqU7MZUkQ+5Busxq7jv6cZLNKuJ4kllpNMeejQ3cWvwtlEKIDgSQO/LaSXOaB46aSMPZib6xnRLnLvvH6o3+T+C/TY4+9rGPceDAATZt2vS3C/+L4LOf/Sx33nnnxN8nLEf/SIiSxNebr2QsdyVzQkkWhbuYHzqOw9mCahbjkOYgyUFUySBQuJDo0E40M4McXENRQTEjHX8lnt3FSG4RwYL5NNXWsnHAwR+2t1PoVWnZPcBYtp9Sj8jsUh+XL7wBL2+lfyyG7nQzq6qQytoysprO+n3HeXDDNrYNn7x1lR/EBWx8kkHcPJW4HElMPVbu0FhY7uKua5dTURj4m1thBX4P16w8M8+Tvwe2ZbH1Tz8ld3Q9vlw/bivJIqFjsoAAEdtLxPYypAdQ9Qx/9p3HIWctKX+IgVAxgUSEkVAxkVARpiihmjke3Xoc2T7xHqgkrGsRrKn3+ErJs3xXP4w+nnT15DhLJ65do2l8dSTCwlwOy4DO7QVkh07d7pINAVuyiV9pcSx0A7G/no9tgynAMX+OeWJuvEpxMpuVbSNikxLgv3w5PBakTmqiVxYJCAIDloVhgx1Q8tsTDoGPDA8SivUzY28luZyfnlATnngaVyZCzE7hdfnJlZXRqEqEardjFx/IW2XGPZaEXJC9yesYMqt4xe+gPdQItoaa3o5opFjZ3cmMkTyBkbB4JttAiRhltdxGUgzgtXSStskfjcX4Ywnu2/0DjgUrEKtXIYnTAANFiqKbhXndlA1gYaFOIUYn4EvMggSYUpaOarBFA11JYihxFM2PZLqwBYus4kE0Vfwn5TLNymn6QknCaQm35kLVVU4Mg6Kt4hi3biHFwAwQC+6iOF3MOYPncCRwhGFPNwIW3WPv59LxTB5JTxumdQC/aSEll+b7TAugWiqaqPGu/gv4dfm6U+7jwshMZkVXMGgnsQWbYCSDktIZrsyvggN6gKUjSzEFk/Vl64myG0cmH7E54zkfSy5g0FWLLTiRRAM58zjB+Cb8+hUA9LlLeXT+BeRUEWybrtIgruE1GL712NjEVQN1wIVfCXAseIiQFuLG7S9M2VQS9DRzurN8NfgdZg0/QDbj5LkVn5v4vdM3i4djH+OD/u9D0+95I5cJJVOIkiohXXiSQ4ikEajaQ0O8lBbvQs4/9gIXWFNNYpbioCrRySrPNjY7l08ctyUBK6BwU+smSlMttIdkIEnF2B4EbK6O7KXIWcW5Jdcji/kx7VjdHxiNzAQSjDpHsAWBEWcKG5scGt1FGwl0XoIHJ0/EKiAGue4xJEHlk+EEu5IyIjZeNY3DyhESHNy85TEWdrQgOoPY2RjssrkTaCms4e4LbyWtyQijGq+OLmRv2RxWv2sHl8QfxxN14VAcVO9sBG8UTyBI0FmAXDWKnhNxWzvQFJ0UfipGarC9OXRnC6LpRDRc5HxH8IzMRbRULGmYnKefnK8b0XBiuEbyuiQ1QUBJYklZEqFjnG4/YggnR4wZiHGDpOjF63ExmKvhsRc+d0rZEhkG88yZ3JBEbghkJp1KpOOnyjqknMG00Jw3eDP+NfHfIke33XYbf/3rX9mwYQOVlZPRkEtLS9E0jWg0OsV6NDg4SGlp6USZ7dunxkAZHByc+O3E/08cO7mM3+/H5XIhSRKSJJ22zIk6TgeHw4HD8T9X3r8RevqHKOxvZlGqi97hcn7tm8GPlQUANPp0WseJh0MwUIUcAbWJoayEhgX04xPnYzKf9LjVRhW6T9L3aJwgN/052DOW4beHWqY2gC4UTCyEcb3P1Em+SNF4S1MB16+aOSXg4sBYnJf3t/OLDW2okoBm2bxtYTkfunzJP20b7ASONe+g84UfI1ct47zrP3bK77ZlseGhL3Be14+ZkixCAN2W6DBLGLYCRAwHz/nO4cX5F5JyejAFEUOeKgTvL5kkw/Pjh/nRgSdxZz6KLRgMzXiUota3I1pT35Hvl/2G5wObp2zjnEyMnJbFB6JxPhiLgwFDB3z093pQEyK2aBN7h4mYhEyjgBSVERSNEWkRA8ffidme1xcIAux26AyJNpXiCVv9a7ZsLGGClJ1MjO7BxbnGuOUCmx2uMaq7+1ByaQr9DShKNZa7hLGaZ5GCx6gobKYCUNJFBLsvxFRSxCqfxVQTk5JPwSaHyvrku3nMdTFa4fj2npnAO/oLQrHt1CfqqUxW4jOCE72yJ1fOyqP7GfCE+XH5xbj0LPWxPuri/Xy9836mxfqIewMMVaxGF0/EPZHRzcLxOzZQhTQ5O08QJDGJaU1qakR0rPFvQDLHTbEWyIYXMqf/9m0MBNEAS8JpuKkfnurtJggaAiaW7QJlhKSk4c3mtVGRwu3UJmchIDAzNpMXS17BZur34E3V48pUINgioq0gk8XAiZwuRfN2oWbK+WH7+6i1jjJIEaXaBRyWetmqHGWABAjgTBsIxho0l0bdaDMxM8pYcf7dkGyJy/8/9t473LLjKvP+Ve188jk3x76ds3JOlhyRwcbGYMAYzJANNgMMYRgGBphhSN/wMYaBMTDAEG2wwQEnIdmSlbO6W53jzfnksGPV98e56u6rDpLAPQPfo/d59Ojpe/auXbv23lWr1nrXu+bewtHeZ3g+2y1i6rUevNiNsq3W7aurHX77Ld0w+nsebbB9LuSL16bZt/MazjxSQqoaG8ICWwdKBPMx1fTDOIlDKumOzQs9LxDIgJuXb2Z0+SQH+2/hxb6f5fSgi4xjbp95hHz1RUx7G5/e8WauXlnh5t4/v6BLVnOAvhPvJbN8NToImI+madr3MFG0ET1zLG/7OAhN7+4vcFvpao6Ku4gqU/THKfrMQUyvyFTvEZo6ZudKi41zn6TqbOapnTt529HH2Hxqjvmih7lbYKeyrC5txMZgNBxjQhcYigcI8qdYTU8yM/gwmd4zLD25F2gwm+pmkmrRZio9xYbWBsqdCQ7d9IuMzL2J0tydyMTFWcuO/M1ymi/P/QW1aIWMWSBSAQrFlm3v4Jktu5jLtlHaxo0hHRtc9cI+/uoTP8fpLW/id256G6eamta8zX3zt/NF7y6cUYjzLnvfeYC4MU6SdTlW3kxUl6A02jO6qgr1EGubwXB+njDayNvjT/Okdztz8ibu2Pkw+4O9qDZsKjTxxQiLDNIhxQ4OUSNPX7zIM8f30DnpMrpxiWVzED0bEDZNOrkMcqZz2UxDYQquK9SopmcJbZNg/E56969iVRPK0UsnKrL9T5CKsgxGfVTlLNd0ttB2Z8mZM6x+dRpu/eClL/IvEK+Jc6S15sMf/jB///d/z4MPPsjWrVvX/f4SIfuv//qvec973gPA0aNH2bFjxwWE7Pn5+bNZZX/wB3/AT/3UT7G0tITjOPzMz/wMn//85zlw4Jxw2vve9z7K5fI6QvZNN93E7/xOV/dFKcX4+Dgf+tCH/q8SsuMo4qM/9F34za6NHguDR0q3cSC7G4TAVBGFqEbZLqIuUSH8UnBFzPYC7BrMcHC+yf7q5W1bR8SUbMVQ2uCOrT3ce90Wto70XnFj57Vg3xNfZuQL302v6G7vazrNkzt+BlWZZvvS51kx+tkWHyV/Xrjs2Wgrq50MkQMHg2Ge7r+Gg9uupVzsu+R1hFZoIfnGpQfIxS3etvIIt67AAfl+RoON3Fd8iN8f+hh763v55ZkfBqBqNPj+zb9E02hjoPmWWoP31ZvklWLGNMgqRTFRmHERV9YxiDnxbA/xia4hodKauXvHOV7+CbQyuoQUNIbVIQ6yIOC4pVg2FL7QPOd0d8wf9E7Q0RVEFKOtNUVwv412U7SGdtCYLfFIknBXYvBjuEgimsKnYCmMKLtWj62rBxSm51jd9FkaQ08QYtEgh02AQ4C9FsJVCFbp5Qi7mFYToELascuj7lsIsXBbX0ULi+GVF/D802yub2SoPbSOu9IVmEzxd+1xPqyP09eaZ+yxL0MiMNwEP+tw6KrbmTfehB32cA5dESdTdIj1OfVeU3TYWygzqjZQSRQzmYcoL2+hngydPSblHcE3bRJhYEYZ4k4JLRWW0aQgqjTiIpF20Hq9seuIJkVzhoVox2XfzSHvMX5n78fYuXQX/X53rrpv5D7uPfQhenSTdvo4lrIRtdsxVNdQM+kQ070PJSLKfU+hZYKlDQZUnopsYWuTijy3w061I5zGnRwaz2DFms1LKzi5k1x19AzR8kGevesemoZC6K59HjmrPND3NIHRXYyVEYCGrfUJrip3Vb3nSrv43I4c2doz9Kw+QNuus2vxDh664bsRSUCqXqNZ6kPrFXJtg297NmGh+HHqugMSnvPvJe28yJ5kgY3NNX7OjmspO1Xe9eIxUrG79u4onhqZZGrwQ/z1yYdxEpPEbONVt3bpAFGOetjkad9hxRR8ZY/NqjeDrYbZMw1utsNdo39ApnhOJNH0C1idfmKnQpRaPvdAggwvPnUD0aFFXCx8EdPavJfR8Ukmtj5x0WcoEmudPls9zvPcE+8mps3nxj+HXtM5ygd53jT3JnoKJruv+tOzxxcm30LFncdOVShNvZXC7BvO/tbQLT6lv4zTW2HzjudJp6toLRBCE4Yehw/dRaNW4s5HniRfqfI/3/CDPFoYpvMKmV6vBdo1EH6y7t/a7G6qRKBArv3/NUNhpE+yKVNgofS3wDm+YcrXtB2wYwfbHKDFLPoy1pVU8At9v8R7vuGb/gn9uDT+RRGyf/iHf5i/+qu/4tOf/vQ6baN8Po/ndSeED37wg3z+85/nT//0T8nlcnz4wx8G4LHHujW1XkrlHx4e5jd+4zdYWFjgO7/zO/m+7/u+C1L5f+RHfoTv+Z7v4ctf/jI/+qM/ekEq/wc+8AE++tGPctNNN/Hbv/3b/M3f/A1Hjhy5gIt0KVypwX3+S//AzKEXqczPsjx5+uzfEzsFSYSRRGghWcmOYGYK9CY1du7djS4OcbAS84UFk5vH85TbAfVOwpYehw/cPE5PqcjK9CSh36FVXsXKFej0b2a51iKKFbmUw4HJZTYO5OnPp7lp+9j/EUMoiWOi0MdvNyn0Xnz3Xqus4LdqTD9/P8nkkxB3SBrLXBPvIyVCQmVgX4TofD5iLfnBgZ/mC9veiue3aKUvfGbD/hIVK8f75z/Lps4Mb1t5lMFwBYlGa1C6QKCuYr/xJj5VOMYPL34rEskHN/4KZ9zuTrIY5Ugpl4pZZ2emwT1lzS2rK2y/TLVsFQumDhToHO1+B51rFaeuuofFyW8hArrlY895gkI0n0mHnH5ZBtnefJsbgkNdccMk7mb2AAQtcNLMbdjBLxztcng0mifGn+ejm3toWw5ZGtzOV7mpfZSpVJaNnOYQu/k430GOOsfYTluc88JkdY0Sq0wxgRYXhkqFarFl8s/YtQxDnaELfje1ZEgLtqn9/J66kU6rxJvDMcRahXvDWiRvzFNJRkniPFKvD9cahCTY5LzDvMHewwN6P6o5hCsbpPNLmE6JZbPCU9kXkd4C2XqR0cU9iNrtF30GOWOBdlIkvogejkHIROphPHeWhjfPUdnDEPOkI4Pe1hhL/nUsxxuJdAqDkNLof+M3xtoE1Pn6ya/HXTN+Hut/jOHy1dw4c++5to0qgYwwjIgaJl/e8hc0nRp75u9g9/INtPLHSMyXkZ00pNoSM7A51Xszn7spj28FaATDFZMbTvg0U03absTNxx4mY3qsuhemWRdVV+6iLtokawv9VO9G7t+oya3+LkKvv26a7+HM+D0A2O1nyK38DqCp9f8sXnWCwVbMsY2Zs9oGxcU/5C2njLNk+othxVnhi7uuYmP5Kj7wzDFSwiOmF1PAkrXCE4NZnh/6UxJ9Yl1/YmsUmdTQ9lv4tdU66R2fueQ1XoIMchzbdy9LKx2053H9VU/j9lxeM6hCAYeQr/AmDszdya0n9vHw4MOseCvrjtu7upfx4GruNf+E49ePMsYUJgkdXGYYY4xpRk7cixnkqQ89jjZC2oREuSUMIjoKsgaEWrIaaYZsTRi6TE/vRu3PcuuBCvbCYX79PT/Kg85GaF9kvrMFhOctyaaA+J+YMyVCQIDu6oybmSPE7c1o7SKEj5A+juEgMvsR+eNIq4piFKXqWOahV2r9lS+vNHYCE03BDcUP8O8/8JP/7DbPx78o40hcQgPhT/7kT84KNL4kAvnXf/3X60Qgzw93TU5O8sEPfpAHH3yQdDrNBz7wAX7t137tAhHIH//xH+fQoUOMjo7y8z//8xeIQP7u7/7uWRHIa665ho985CPcfPPNvFpcqcF95nN/SHLmCfZ85//D0Ucf5uG/+t/EYfDKJ74MQki0vrzVP3HN9SRhyMjOPVz7dd9AKpe/7PHno15dZXnqKGPbr8N2XjnVc/bUQWY+9xt4rRl8b4DELWI159lZf5S06BLwnip+A2LDbZQ2X08S+QTNGsbDv8Gu6BKlGoCn3R38m2t/jTcfvp9/v/S/yRo+CknLSjHTyXPc7+eRTbfxyd3vuqgOx0CwwttWH2WiM8v3Tv8tf5cZw1UwGg7wqUw/j2RPE8iYWCTYyiKQIZGI+Y3JH2dPZwuP5p/i0eL/5J5mi3nT4FCvxxutkHuPNvHU5cUDtYIl4bD8aB5jxkQLzcK9oxwJfxwV2Rx0NF/0IkpKcHVgIoGMEnwhHRKIrtHUg6CG5ntxOLJrhvFTZwiIsLV59pvTYRthp6gWNzLU0+Gbjw/wq9cs8oXs9WxbnKVtOyzmSvj2OcPA0gGRcLCjkNC0kFpTbNVpuikCa324UWjN5vlZNi+uMJmbQ4pVxitlxptj6zxEEkG/Akt5/F08zmkselWN7zPvo1F7HyQZLgVBRNaaph6dn62j2FCa56nefdzU3MHe9ma+knuU+3qe5J2hwtKa4WiZoc4pJt1Rfssb5o7Vm8ivbCIKxzBlFdtoEUS9JOcZRTljAa0lwirTn9qHdlb5772LTOZA6iaRvYnYHkMmdWJnC57I09s+RRD3ExinSMLuZs6NLb5++p1n291f2s/x/HFGqtsZaG7ASmwCs0NPa4Te1ij/sOv3aDnVs8e/5dj3M17ehbIrdLw5tNEClaJpbOHAhl6OD5m07CX6Fv6URHdD5LXef0eYuqZLyBcCK9Zcd3oagzrXzZ0ivkzl9tV0js9ti0lXuyEuK3aYqOyh7qyymDuDUJIh/wNUsimC6A9Q8qX0eZfy0K+izG540/IPI1ST0L2G0uJHuHsqe9Z7FgvFF3btIZGau44+QSnM81zPfp7b8q1sWZpgst/CTEKE8mk5dfLLv4WRXD57tNr/c/zbRxa5ZvBjBJsaPN5+I7unDjFWnsY5aWHrIarfVSX2yuvOC7GYZZTp+j0sTQ1xeKiHipVmvDlJKSwz445wcKjLfzSTmG95+gs8V7qfsttt5+4T305kRDy68RNIJbmmfA1HR9/GZO9GhjurZO0yR+VGbH8/kb2FLWYZK1nBDU9Qbh4nsMZph8tYwUVqkMkU/ekJvit7lCAJqc1tYuT+fvrOHMJJJMeHx5ntG2RJZ0lbMUulHophk5Mjo7irLep5h6lRxea5Gabyy2w+3EchbvD4dXeg9GPocBWkiaEWkeYMiR4BZSBkHaETpPG1y3getjRvzEaU3Vs4nRTZoE8hW8dZrZvE2ZgNpmDAifCsAlNxmoxhsVOeYp+8BU+1ST8zyPf/+9//mvUH/oUZR/9/w5UY3MWZk+T/8GZcEdHUHlP3/ikbd99GY3WFxuoyhmXTPz7B4UcfYubwwe7fTIvCwCBLZ06xMn3p2mXSMDFtm1Q+T3Xh4lWSAdx0hr6JTbjpDMPbdtBp1DEsm1PPPspg41m2ZpfJmR3yRhu5tts8wQTLQ3dTuv4b2X5DV6xr9vQRpu7/KBtnP03V6GNzfBxL/PM19SdbBeY6WRYz/fzDjq/jc+Nvvqjn4lL40NRfckttH1c3jqFUk48Uc6SV4qid5bmL175cB1c5/Oj8+7infiORDEjnPkS/f248Ayyc87IG19YoVCQ4NNNDqAy8XR3CJQP7C+cuqFzNsevfwZzV9SpUpOIvswGdS+iqWcBHSLEHgxh4cfAk92tFsTZNRbYpqnPcGB35CMsFYfDXN9xN27Oxg4Svf/EpSq3q2eOaqSKH+gfoa7YITQNPScaWTiOERCp1tlwCwqSZ6kHGBmY0i60u0cnzsC22+GRc4hQF0oFPwWnyBmMfb9IzPFH9EFqt5/L0m8cwRIQvNTLxKMcTL+PrxHQGnyUaeozNUciLtuBT9ix9qsDbW4uURcSiaTJlmcybJo5S7NSjPG8sIFCgYWMwzJy1Qqad5d6ZW0m8OR7tO0rbUFTNkMiUKJkBITAwIVni1SKbKH7oTD+n5LlQyqJ7kkeGXrjseRntMRrDEavLHcuob8SRd+GbglYqT9OJiDmJGc1167+Fxy9oQ59NnIiI7K208+8gsjeDMLGjNm84+hw9vuBo/yh11yMxLBayHrLzIKn6p0Bodizewu1nvompXJmcO81zuQOc7lmvfF9sD9JwysRrxaEj5zrcYIbkPC2wes+HwNrOTaf2ke4ssL9vkbaxjBlNIjTsLe+hN+hl2VnmQM9Ruopeap1o4Usw2EDk3YitCxjBMczgWVpWCwQE3nXY1o+wUjhnuDuhIuNHDFQ1yyXFStrl7XyWq3mOh3gjj4o3IJIaXvNBjGgGhInGQEsXmTRRMoUZzeLFBl5nkuZ5Yrc7Fm/l7lPfhkbxt1f9JuX03Lq+aoyzwpwAWlgomcZIqpd9/peDIVP0JA4q6qWjz2BHMZWMZvu05uiYwIw1qQDq6dcucPq1QH8oSSuLgh7En9jGDONMii0k9ugFx/bpRXZwCIuQJQZpkGVSXFym4McOfop//6Ff/Jr29XXj6AriSg3uJz7523zzgf+07m8zYpC2kcNRbdKqiaMDjmdvIhy8DndgG/78YWjME7UVqw2btKtIj27oFhKcfwFHN9DSxA1Wicw0kZVFNOvMi51MHjpCoEz63SZKSzqJRZAYDHt1hlN10maIBLZkV0mZr1BGAWgkLhJF2riwTMFsVOB+6zosB1wzxo18vuJeR9NKsUEtcm3rKHsbxxh2upOQ0hBrg/v93Tyf2cEjm2/jdHocOwxY6uuSXktRlQ9Of4w/HX4Xs+6FYTlbhextHuc7Zz7OcxzhWdekJzaYsQQN4/Kvrwn0SU2/mSC0YE/zKt45+16yQR9aJNjZ32IgfOgVxySMBScO9iIOX1yWwO93ObTh+6mmd5CgOWolfD4doYECgjdj8SARK2gyCEYRfCcOleGAF7LzTOZznHGH+I6nvgwkrIqQHn1ukdBxSNtWpNfCO9PFfnpbTbzw0tIF/xQkIsE4T+CzT/q82HH5ir4KH4db/EN8u/1lXKvIqebXkYR9iLOcnouVvl0Pw15AqDSRV+Or45/i61ngYWuZthB0pCBGcOYVpB9KyqTqbqdhj4N0MaJZhA6Rqo7QIVp0zzfDqXWL26tFX2Jwc6fO+2tNHqi/k7J7bmGwgxWsoc/y58UNJLqD1P66c9PK4bMzJxEa7tlw4YKiMRFcGJ51owxXz93NwcFHaTqV19RfJTy0MYQZLaDXuHm7Fm7jztPv5aGeVd5vfZxZPUy0/Bbu3/rXnCm9iKEs9i5ex/VT76Ft1/nEVb9JZFzCu60FhuolMmwkF5bDeQlO7KCFJpRroqhrNQFfEecdF9lb8FO3YYXHsfwjCN1GCxehQ5RRopN9M0HqRpz20zjtJ0DY2P6Byzb/ckglcZpb+MDBHyErF0m0xaq0+Kvr/jOxEZ7lIb0aGAyQ0E0MspIcsewgSKNEdf0tChuhL1/25bUitsawkhp6rQ6gJVP0GEPUcWlbJYhnUfEKUtXRMk1kb8KNpohSN9OTHmPR2E4umaJpbqEqe17hav90jM+d5rcWJ7njJ37sa9ru68bRFcSVGNx2orj14WdJgga/c/jXuad6caLglUakJdZFSHJ1Uvxt9s3M9I0w6/TzdH4Pt1ef55rKIbY1T3NHc9/ZUgrnl1XYxwT/Y/P7+czIm19V2YZM3OrWwLrMsaaKefvKV3nv9Ec5bbS51g8JpMMZy2JcjLC7eYSnvCxlEfBIyuHhVOqSbaFhKCoyImK2ey2uTivKVsw1x76X/OLNdPLHcesbEbobuo3tCnb6fzLc6Za1UQIW+h2GFtfL8ZcLFiu+Tfi5LMbyhQt/nEXR9AAA07FJREFUZzDN8c3vZsXq5tEdtRI+kzqnmD2B5EfSGcbjgJHAIUBjA356jh+5WXIyGeUNx15gvHJup77qrCLaJUrnCwyqhFNujY1hYV2ZEAPBsdJhpr058mGeseYYfUEvek2KoGpXWXKXaFtt6ladptWkv9OPqUwGO4NILbGVRa822COOc1SC076Wk2E/G2Sdv1BbGEjKfMD6Ii3GkP4WOp3tCL0+LNetGGcgiHl01ycYXN7CpuVz9aXKPbN8ZdMxTvemMIOTBKkbuWb175nSMyQXeUfSSuNlbmLOHMWNK7wtc4YjCy1Oy+ULjn0lmFqzKwi5veOzOQw54aQZsUcZ79TY3ZjC1AlPei4tIXC05o6OjwQ+teVGjjy7Fz+fx2g3SFJZZOjzH63fRwqYt3uYttM8N9zHl9PDVGplfmVxmptaXfLqg/YAHx65dHbshvJu+psTbFu+ASdOk8gQM7ZZyc4itKDurlD1liin5jhTunRY+nzYsce183dw9cy9fKoQ86Ol3+P5dpekXQgszMot9GW/yHXG09xX/QUikSBFRMOusX/oQWruCoY2ublpkFp5M4+MPcjJ3vUV5YUWXD/7FjYvX8exvqc52ruPtrtyse78H8WlbLGB9gChEdKwGggt8KMi3/rih+mN1s/5D408wMnhL7KjuoOeoIfIiFh0F+nv9NPv9zOVmSdb20o62kXLnmYhO8NAo4enxu+nY01fcF1ljHDT0tu5JiyScif4ymCZ4+4B6v5+rOAYgoTE7EcjSMwhZFIhdrYQulchVZ3YGkULC6F8EmsAI15CKJ/Y3oiWLgirW0A6XkALF2VkuyqZFwzMWu79JaoAXApD/hwtncL2E25Y1mSNNO+ZSUjVE55Siv3540z2adwgwI00riphRwmOX2dmeDPVjMng0gx3Hp1n402DvP2Hvu81Xf+V8LpxdAVxJQa3GcX8xl/+Z/589F46hst19YNc15nFSPXydcf/gqubL/K/Jr6bptfPYHuRmxa/TH+0Ql9c5UVvO0JrdvvHWDB68A2HupGl5qSxkoRn8ruJpaQY1WkLlzetPsG2YOqy/TlhjTHpDTGX6ufh4vU8UryOslW45PG7m8fZWz3KotXL4cJmFpw+DB2vK6/hqYDOWrmKe8pPMuYvMByu8MdD72LJufgORGrFjtYptrSn2No+hYyX6Wm9wH4r4R8zryIW9jIMhR7XtUdx7CZ3mzUKlqA6vIyMShSn3oIyQtIre/Dqmy84N049Sl7/EUV9bqE9uFwiOWwjhhIK1zRh1aDxQAZ/IzhHBTIQhFmXIxu+i9XSHrzOMoFTOCvLr9E84sY84Z7zCuzFYGj7PAfS/ZzuHebG6hF2tZbpoc4TfQXaiwPcMnkMzuM1SaH57OjnufvU20lbAhEGZ1Wyp2XAgZEHeNfiWxn2B3go/wwHigcJLrXjPw9ekCEdOywvfRNJ2MMGXSaxK7juLMeadxAk6wm3RZpslrO8XU0ThVsJO5uQawZR2xZYiUYBJecUyg7prKk7f/nqOlHucxzNXo8d78W3HRJD0rZjcs2vkql+nIj13hYTyS5bcDqykElIXrq8JS/wHvxpsNrYhWmiygY2vu0XOdTaSHtukVOyyUHboSMFpSRhyVw/8X9Xrc6ONYMopxQmcCg7wendGtc+lykWJTbtZg8bJkOKYYPZdC91zybs6aBWx3nxxCa0bePOnsIf6YYMvt//Y0bc2rrrnXGGcXTEULhMKEweHLqat849y6eCH+BI62bcOI3UBtOFIwgtGKlvxXxJpVt2iNF4xXkMq0W0uBOhLRISjLUwZCxDzvQ9xBbjBFvkUR5PSzKxw3irF1sr9tl5Bv0s13Rinml+J0okfN3oT7IaFfkid3ffLa0oLt2B1OfGanF0lcTyGT49wrD1IkP2YYbswwQqxVK0jcPte1i1I8qpORqpBcbLe8n4fet4aADHBx5noecFqmaX59Lb6aW4VvjWSRwsKSi1hshWtpHy+6h7SwjTJ2MknMod5mTuJBWnQsvsag4pqXASB1OZFIIC/X4/K+4K05lzRojQBWJDkwsSbl66iWK4Xow2IUEiEQhWnVUeGXyEIBhgfPKbeUdlEy8Z9C9BkfC/h59lZ/4MOV/Q17kwsadptlhKlRls9bDoLfJc73Ov6B2T9PHOM/fy7c0byBkmM55gMt/m5PhTVApLHGreTmgYRInJkezEufN0ws7OYdKVhKV8gSW3j0iaCKG50X+aoXCeOW+IwOrmn3aiNOnQB6mpmHmm7XEAxoMzzNhjWDpiZ/Iix+ROrl56lqvqz7FoDLHS6GPTmdO0vSJGYtK2YzYttEmzjYyZ4tb8GFlDUjZqtA2fwbAXA0kl1jzf8ilaNjnZDaImQEdpPClwBHhSkJGCx6O/5N/89kcvP1CvEa8bR1cQV2JwKwf30fjzX8TNHOCXt/wAn+x/dXwaNwnOVTPXySXT/A2VYKuQjukhdUJfWMFRIT1RFUMrbqnt4zN9b6QvXOVYeoKGeSFB9vbai+xuHGJDZ46NnVlMnfBnw+/kH/ruvuBYU8UMhss4KuKqxjH+/Zk/YoM/T4LElw7pl+nnB8KiamVZtko0zRSn3RFWZUI9epGqCHjGdVg2L9zBlISkrBMumGk02Noin6R5R2svV216CBwfLSUItc4x5ZW3M/7Mz647XdDBEifImJ/DYAFLTiHFOfe21jB5uEBn/zmvVFLQyCaI+Fzj7VyRZ/b8DA0nQ0No+tc8MxpNVWqeSSe8YHQNo3dj8b04fGL3CeLTc5gqoZYqcrR/ADeK6GtUGKhXzpN47GJPPMafjPwtU6lZvu7Y20lbHkazRpLOgRDUlMf9m//igrGLKjcSVm9EyBir9DDSKqOCQbS2SNoTxLXreCncVaLOqFhmWvfjiZAFXcAioUfUuUseYkKFGFYLK+phIdxLzR1lvmiwmjNIBER2QG/V4qozAbnO+YUwNV/cc5Ry+vdprL3uaZHHNkZpWL0Y7YcJXubJNLXm29omaXcjBxbH+fqrHiTtNWmVxzi2710k1XEyUeHcszRC8ld9jP5Nj9LyS+hmhiQGkfaxGh4bV8uUiUDaxG6GVBRRTnvo4RWkSAgWt7Fy4m68dJXG9PWoxMJKlclPPE7Pji8gjIQ4yNCYvoGwMcDJynYS8zRoReboC7Q27UbbDn3yJG/1nqdueSTC4LrKUcw1knRLunxh69WEjVG+de7vMVD8ZP9P01wZZfNqBjc2kUkWgGb6NA1vgd7qbm6f+G/c2OzygV5I7+SR07+EWNM6UyRILpwPPFnmmvRnORHvoBFsxZItGqoIKsM278vcmf8oH+Hf0Obcuz0aQbB6V/eZiYRvL/0ETZnms8u/gkBwV+6jHI2uYrHT9YRudb9KNe5nOT4neyBFm5syH2fQPMlnKr+AWlPZ76Qnsb0GpojJapc5WaWQ5BDNUaLg0vOrsOrowimWjXo3SxPWFMovRM2q8cDIA93Ql4ax1hg3Ld90ybZDGfFQPM6it4Bq7GRAR7y7bZEOeomlJrFWEVpiramir6ZneMFs8/VRH25+js8VHsE3fDYHozjNIqZeP3cdzR9lNZfmzpW9DCYR/VIy0p7gj3ue5quFBxCcmx+ldnn/se/lG6KdpKVAXsKr3jQhFQMiphMbKKCSaJTWOEKwEmvypiBUMTPhMo4tiAOfFX8V2xoiZXWNumbskzUsVDJJwUphyxSh1lRjB09qEiTLUYUhK0PJzNJULz3frlHTYwqKpua4O8UfDfwdB1Mnz/ZxLBjkBxe/metbu/BFwGdKDxKLBIWiIwMiESORmNpg1ahxzcFhvvcP/ssln9M/Ba8bR1cQV2Jwq88fYPWvK6SNOQxxPx33APcN7eZgejOZpM1EZ5bhYJmKleNgegtH0hvJJS0MnTAULFM3Mzyf3UHLSNE0UkTSYGNnlncuP8hbVh9jS3sKS8c8kb+Kz/bdw/HUOCe9cebc/nX9sJOIREo2dOZIJx12N0/w3XOfwlUBO9pnuorMuh9fXYUrn8WUXZ5Dw0gx6/TTNNNIrbi6cRTjvOyYSDs8b91MT7iFtnmAf8h4PJxp0TQa+CLkqiBme9hEiW6R1X2uw8JFjCE0ONpmJOrh3v4ltuYaNEODYN+3IcJ+pt1T3NrsI2W6FGkzv+NvaZQaCAGpld2kV/d0K4J3+hCyhtMYR0YD2OIIGfNTuHIfgjbiMvobSsDkag7/vq4B2cgM4wWrmNE5T0zLG8B3Sxzb+i0cy/byyWxEhGY4kUjXYE7FqOTcJ/RhYbB91wP8fu91lE422Lwyd8F1X0JaOzS9CqtOmWW7zNHUKRKZYMYF3nT6RjJmDllfRqcKaNNCxQU+1juLnb8fIWO0cmhb78B33ko6FdNIdRddY7IJsUb1Ouh8d+EarcyxmO0lMm0MlbB5pcqdK48zEkzyd8Nv50jvOLGUIARD5ZiFgoFei6lasWbzfMTVZwI2z0d0rCpCC1p2jYXsKaZ7mszljpNw5pL3Cl1jKBaC97Y0PVGLPlHAGksx94+/gFYWyBjTbhL7hXXnnRyuUsuW8Vpj7JyxaGdPk93wFL2DhzFkgr+ylezAUbzsudDk8sI2bKlpLW8lro4RrGwnCbLr2u16KEKkchB2CxHbaGWigZWhGsnywxi9eWS7SXryCJ2RTcS5ErLR5vav/yQ6MQgaQ0RmSGnapOQ3OTxW5PHJbyU12+FNQ5/ins7z3Fe4nccqN2IABpq9ieIoDkb1GtzCLG/If5RdrQvT0Q9lN7Lf28Xh8jvpm+l/VfQdAOWU+aH8D/MZ4x4O6J0YfhvZqhP1DLJTH2M5cyPlaCvvV/+RTXFXauRLzR/hRPPNF21vi/sw292vcjTZSYDFHfZ9nAlupK0KKCTH/DsIVPeZhXYFoUysOHtBO5oYss+TD/LUw20X/L6cOUnFq1HULlJH1KVCE+DIGDdxkEZALBQKxaHiITbWN5JO0mfPt/wsiWrgdiKm7B4iHZHtNKhkXDpOno1GhXRQIF/dg0bTzkzSznQ979nqdly/a1TUCgcJ3VWSuB836admzgIBYyJL1ZrHUha+fmUu24DKID2Hj44/ShQfXPebmVi8a+q9vK1+C4aA5dQsDbeb0feid5L+qEQhyfJi6jgbgmE2+2MsWxVySZpN/iiFJEvVaGBpk7Ty1qRh178hCWrNb7aW8YqmJTvY2sLWFktmmaczL3Jtawe5JIMSiq/knkYiGQh7mHLm+WzxIZbs9RmC50No8ao4WrfV7+ajH/6dVzzuteB14+gK4koMro4UL/6Pz2DV22TaXTVmS5zGM76K0i1sOYvSwyS6G35KGfchRZtIDaJRuHIKIS6up5PoLL7aSqzGMcQ8GfPJs6JjvrAJpM2Thau4q/wM7kXIf1oLIj1OO3kDneQeEl4STdQYYhFLnCRv/m9MMYfGJtZFJs1+5sUYnyzO8YzXom4Er45k+TJkkhTFOEdPlOed5bu5sbUbaSRM3fArBC8raErykjEl4DwBNyPIMvrCv8Gr7ez+WyxjiGrXM2R8DlOuV0y/GGIpWOp1kFoxnU3h/Q8PoyaYHrmL41veS6q9yND8gzhhm0pxB/NDtwFwxkz4ZCa8ZBK1AdwrTUaufZbPir3smT7DcK072Tl2TG/Yg1ASR9soNIMiw3/Z8D/PhiHO3Xsaz/kJ7jryCBmjRFKbx3TzaCdFFEj+6g1vJa7GxGkbnbZeFf/rn4p8K+HWI00m5rtZSdOFw8zkjzFbuEja8hpu7vi8UQ7SSSKkv8CSoVk1DG7wAwadDdQ2t0k5DdrNEv78NSzv+2ZMbWL0RjSbJman609b6OuwSQZkEBxkH0JAW9qE6ja2LlzsKXQFNqXlo2IX9IXe2rQNM/mI006CMG1QXU/lUsHhlAmpuIUnbYaWFb3T/0hfv402LeylWSZOHOPMlq2E/aPIRoOx0r20Esl8LLmq0cSeeIhJ2+AfDw1z18pXMHRC4KT4DxNfQAh4KH8ji8k4UZJmszhEr1qmmFTpibrhuRjJ+5xfICN9fjf4bVJqfejx0dzV/Lr+GUyZondBM9RUeBocJbDXPshVqTjiBvxm6ceZiof50lo4zZs6hkhi2ht3YemQD9h/y0fH38v3nvx7/o572aZP8kb9NL/f+CPcTtd7/fCNTXprip3HuvPiBvdR7s7+CYk2+bvyf6WtzoVhd3n3MZeMUA0vXiIiZZ/gHZnfIW8u0FIl2qrEYrSFre6jnA5u5MnmtxGorgRJYvgE7jIy6Rr1WiiEloAgY/sseGfOF6rH1gYp7VLTIWacxgoLxFYDM05hxClamUmksjFij1R7pKukDlQ9TZx9HC27c60VFPAaV+GsTb2x0SYxO7QypxHaxEgcAmcVjUIKgY9kkzKZl+G5DNBLoF/lOTxg8qX+w9idJy8gZkslUPKfvgxv8IeYdZYYDQbIJWkSoTjmThKt3dvFDJhsnCaUEYF8dSTx0N1LbI3Qyb4FI1rA7uzDa97fzRo9D1qbhFyFNjKY8RQ6ThOHI3y/LPEzH/y5f/I9XgyvG0dXEFeEkD07yeEH76G31Waf9w1MHHo7JX1p5eZuho/mpdi3KaawxBQaFynKaO0S6zEiPbZ2zPmLYYwgJG18CSnaJNrGlY8jRUyie4jUNprJO3DkYZTOEepNvFR+5PH0Pv7X2J9TEiZWu5+hzhCedjjqnWHOXiERCR3pE8jLZ7f1GZohQxKGKTztsKIiosTGVQ6WNhkO+3hT/Saub+0gSs/iZyex/BQLOz9GlFntEqmPvIW+JZuVsX3MbZq54BpGJBg7fDeZxZvpsX7zVRlBlYxLuUewvFb2opUycEJF0pZoLch+ysB7ViK0oO328oVbfo4pWzIUS/qVxBear7oRvqEJXZMzcYgG7sDkm7D5e0JSwD1YXI3JC+Mz/OeNQ1x36gRblrsZPUILThdO8GzphbP96g97qJp1wpf0ZUgRGVtQZoYotZUgfSvXnzTYPfMxPFlgWzjIkihTtUJaYZu/fOO3o9aI2lIrNi00GCwL2o6knHVIpEaLmNiwsSNNYAnqKUnH6dbXuvWIjxPHLORtahmD1Yykv5Ywsdymr/IYxY6H0prl9ALTuaPUnRVaznp+zfmQWvPWVhtHa27wA3qdCSbVzaRLk2RH9tHyC/j1XkR9AL8xRGf+WqJm18uZSCgPKOJoEj8p48oxnh0bJj9/ki3xaQwVIQVnOVcAM1WL5aGb2B1IVGjQW0uoDiYESjG45JCONImjMRyBmwim0zE5ASuB4kzrKL3BcSzPwc54VDuQdAIWjBKrRoGamcVWIV/XeASrtxfleshOm7GFGm/oew8v+i/wXG8bkpjJ+YBIWDTMDMrMs+wM0NYh31K7j2RkAwiBszjN1aWTvN16/lLDB8ATqT38UvM7iMshvuHQzBZ5e+FZtog5vqX1AJm10HVTeixYPdxv38i+eDP7OxuY84toLUHAsFvmMT7EEiV+j+8CBM7SDPbqAhpobd6Lth3exoNcy0E+yndQoQDAAEts907xXwZ/CZ2f4/P7fhBbh/xU5o/ZfKJw0X7HAsy11eOq1D9QsI5yUI4QmS0c9xRbklWuTRY5HdzEV+s/QEtdyEe0RYu9qc+zEm9kMrjhgt9fDi+1QiVzhoZs4yoPpzGEDIsYSeqSobiXY7kUkG1XaRSOnvujFhSXbmGpYDNcufSSGDgHUdLDjHsRqlvLLTEAYSC0xIwyaJGgZYxKz1HzusXUhYZxnWclo/jk8CwN9iHPk5Xo+n3+5SzFSTKIMnPE6VHa2XcwGBa5a77NdQtTzHsOn946zplUDSuYJDFLKLOEEmsk8YtQQn7gsU/wyz/3eljtXw2uxODuf/Ez7P3EdyIA3xZUczaHBjajw11Etkm9Poojy6TjNlZUINXuRdXGceI0eZ1CK5Om0mSkwJaCcv8TlFWC1xxDmx0qVhktQ8biQfKNjUh1keyE8zBvrvBHA58kFooFa5l5Z5lYxOuLpr4qaO70YMIL2eAolIa01KQvRo1SEmP+eqhuQLlV9Ob7L9qiGSr2PnkjuWQ/ppxHa5NA7SI2JIgIQ2m0KgEaW5y4pFH0UrbTQq/H6U0OgdOtSSTakP2cgbkiSNo50qeaF5zbdvL89u3/jodz53gZI1oQKlh+mUzA3UbMzr0HqFlF3j0TcaZ/mjk7y1QKji9t4prTp8/yiAzgaOkI+/Lr3ennI7I3Uu/9MZR5bhculOYD/3gc034WU3p8Q3Adh81ZThqLrKgZtPN+Znp9Cn6ZHZNZcu1zYYXAaGMn7tlstpdc7eXUGXqUZFVYnOp5ATv2ONH7HA13hU3VrSTK48jA45fs51pjjAYDjOhFNkRt3tJqoIRgWxjSm3R3j18auZ5PVd7H/nAjmQTurLdwQ4mIXSSCU1mBsAX7zISOBelOyC3xozjuudT9xA8w3EtneIkwwFme5fPercy7g+QQdFREb7hC5PTjJ21AkI0bFKMK/cEKo/EC0pDQN0CSujDcc0kkCenTh7iz+HZG09tQaP7Eug9tmLizpzA6TUQUnv2SOk6aeGIbyLWPIo5pzi4ytgfGWeKuzvP0xOcMzV/Pvr9bqHfhJt68eB/h2ATacvAaCf3WtbTNGCewaQ9/mW/ufJ7h8NVl6n1W3cOz8hqMRhVv5sRa/yRhoUQwNAGAQUzystKa7+Q+NolJgtjiM8bbCLF4k/kwPzvya1x1OEV/vRtKKqcVT10dslIQvOsrNpk1Ia9x+znuzv8e9WSQcjxGM+nFV1kOdd76in2+JvUp+qxTPFz/XpThEwnwrGlGxBKRVcFQJlOttxAlJTQxiRG8JoMoa81SzmueHumjsJpiuP0ckV3DXZ4hzPWgHI9sdQdPbh5nsWCyZT7iulOvXrhX6Ige6xkqsUmgdmDK7numrQbNwmF8Y70ncKfawOmeDHOez+lcgabdw+GCidAJWnqgQ7q1P0zQCTJeQZn9WMEhnPZTgEBLj1gPgbZBC6S5glRVlFHCDE+ijF60TGH5hxAqIPR2E7l7McIZtLRJzH4SewzQ3ay4tVChFvZZAycbKn7uiTM0ktOsynNe7ox2sc0t/NH1G8mXY/obih3tKpqQYqfBVj9G6RwLdpOONnnC9vjb//DuVz2erwavG0dXEFckW+3wZ9Gf/C6y8Tl3owaUhEQKlARDQduVBI6B70qqOQslwfMVoTCZ7OlFaHCd6tmwiesn+I4kaSqEr6DHxI9cDlVLuO1BNjW38AnnICedBTaYUF8rO3vqEgrPttJ8U6fJaJzQNgSHPIdFx2BamZjANkeRNxU3pGM6SrDBTJiY7aBl1xgpVSPMWOMGCU6gSExBLWtxetyjnTJIzPVhDTNWpFsJY7MdPD/BDjVWkMIQFxosl0M17XBwd9eQiQ0BYu3/SuDuE3hPGcgFB3slumwxxcjwOLz9ffzlhj3sX6tpJoy1rNeXISvgu9yAp6+aZ9uBVdq2y+ObdmMlCYP1MkPVFYqd5lqfYh7te4wVr7uQKZGi3vcTa6R8jREvI+NVtMzgZ+6i0Olw7ZlZIlPhBha7T+d4YuzPuaa2GSEE7/Pv4IA5xQFzilUmGS2/g0xYACARMVVvkRP9D3OieISG2+WNTdSHqTh16nbrrDtdaHnZ+kcvhxdmUDLhhvYYb+gU2S72c13r3E47QXLKG2HKGWDa7uGJZCf3VW5k0K9TFG2a2mFSFXl5DNYkISsC8qLD7cYprMtUt3EWu5lJIgoRKqEzugVk970ScQRaIeIIvVZixa4so2wHZdoox0VGIVoaKC99yWsYcUJiyAvCkyqOycwcx+r4vGvDj2LJ7ibk48kXaKTP25BohUiStVT/DNq0SYTAWJtWvalj7DM38UzhOsK1DE+J5s4k5g1hlVTrBNPxKVqjm+Ai3LwYwWxpkFR6C1uiSXb7n2ciOMGEP42tLwy/B1j8uvpBlLTwpo9jNmuYchSRuoWw+Qk6o1tIsoW1m0xITR0jTucI+0YwdExadKhzzoBM0+Jd4kt8ZOv7uC/7ZoQR8a0rn+HnT30Uk4SKzPM/gt+luHppZXSAo8MWX7nKwbdMrqkd4idP/yV/l/1G+o9vx426Y5WVS3xTz38gY6zSHb6uWJJ6KWNPO/xF5Vfxo/Gz7QoSbs/+KaP2PnLmYleTSUQ0RZqW4XHQ3c3fDbyRLwzfRMdw2TYb8p7Hl6j0PQNakz6xn6jYT9g7hNPpI9PcyPx1L3CkNMRj+WsoNhUNr/vO3XWow61HfNoONF1JX13R7pvmLeGnyeZP8bHht7GxM8utlaeZjzI8rgbIzPwAykijnCqt3EmC84wkQ0tMJMEajcLTNgmKUMT0qTx9Kktep2hJWEhlyWqbJcemmk0hooSZVExLKIoixVhH8+CAyZwnkEqTCBhrKTrax1UW/crgxvmQF7IBh/rS3LakyPkwmxKMt0MKfoBXb6PNkMgrkG+1qalJGkYDX5xbQyxtIoBwrc8p7eATYmOuO+7l2BFl+bZf+XeXfUdeK143jq4grsTgPvblT9Cp/XfGy8sMLS+S+ScWGYyBUAqkhKYWmBpySp1NoD1tmUyaJquGwdOey7xpcMS2KSUJW8KIM5bFbR2fWEBDSsaimDFiJuKYUT8iF7+UY3IOGqhnTao5E98xyLRiirUILcANFMarvBUNhJZAS4EZK4SCy2k1Now9vHDdLDsPbCDfXsSS80R6CCHaBLag7aQo9waEbki15mAdMxGLKVQnhRn5+F6G1GSbVOVCQys2HJZ7r6GdGsBIfEI7RzMzSiMzyoM5kyfs7kf+PqfO3Zu+yt9M3cz9rW4Y9B3pJX7EillOt/lPG4a48cAJvOjiMfpEaE7mjnOgeKBrsJmDxPYm2vl3gewnMc5ZARPzMxSDFsOrJrsm07iRjUZTc5d4aPPHUUaTO5buwEsk3xHdwzE5z1ftQ/iqwv3jT5AO82ihqHrLr8ngQQucMI8V9KGtGomM6GtsJh0UkMJiW/oEu+KQgq5wb+PiujrH3HH+q3g/T9S34ifrPTwbZJl77HMZLTXlMKtyZEREpASD1EhbF/bXmT2JWa8SF3rQhoWMQ2SrwczAOMXaCoV6GTdKaKZTBANjxLlL1/m6+H1r1lZb7JU5nNWFdT8HpsXMyCaE7dJXWyVdWUKuPeetjHDdxvefPfaF5pM8l1lCuRfX3NJakz59iKjQS1QawGjVu5wfwDHS9HkT1IJF6tEKyk0Rlga69yMERDGG3yZJdxW90fqsMQiwlMpyYHwb5XSWmpfGJuba+mGurx+kL6qgFRxd2UI2ChFhQPrkATJqhLj0LQghCeofQydzxG4abTsYnWbXgAQ649tJ0ueMItPvdLvkdGU2vpnPkbUa5FUDJ4k4yDaeZzd7OcoN7OOXvN9l8PS5+nuttTpws0UD1TPNTdbn2dqaZCxYYDhYJlxToT+WGueT4oeQM7vIBJqX0wwQCWgDUAxZh7kz94dMhVdzTG2lV7V5Q/ZPiLTHMf9OZtw+2obHoyNjfHLjzWgBXqjpqSfsngrZuBTR01A0syfppGcxGxW8mTMkrkt7406EEpSWb0Vqk17nKwwOPseXxq5npL3ErvIJfvLqn2TJGCAyOWtMW7FmsBKzcTFm61xIxxEsFE1WMwauvcR2nuWWfUepVu8h1AMEroF2y3RSc+sMpdeCjHZpEZzd+PSpHDXRpkdl0ULToevNTFA0pE9K2/SpPHOyTLRW4UDors/NwiS4jFFzPjbUl9m5cIZcIeKh/DtYslfX8b/Ox3BSYlFWSYRiQ5QmrWZ476/+93/S/V4KrxtHVxBXYnAfuv9ZOp96krzhwq4XCUfvY9uZRfpXQwwFFc+gJiUNJTATzaYwIhGC1P+Fx5DoLLEexpFHX/ngNWhtoUgTqY0IERKrITQWhljBkfuR4tKuaK0NYj1EoK5GIxFENKwJzpifxnjRI7inQbwhhTJb6x0OGtznJOkHJc7JS8siRGaKSmEbkZVmqe9apIqpFraSmC6zRsKCoZFCs5yCQ6YiiroL9bcNHOXA1Rme53qKlPmt019hMtfm90tvwk9S9JZb3H7iAG4ckaCpuE1slcK3DALZoW4ucip7gHBNUTxwr6VZ+FE2npnkhsUmG5dymHEeZbS7E5qClltlMTXPoYFHqburtO1z4Zab565jNNjIeJDnrfoGVkWDv3eeQquIv9v0mZeNjaBU30q7ta1LTrWWKEUZSvWtLKgCK94SW4r7uY5F7u4cYUdYpm5kqBg5sqrFQFSmLR1S6uLPrWJm+aJ3KxUyfDm4hmfqW4BuFwpC0KdD8iJmQC7Sa71GgUaV4E0dR2qPrXOLTPXmWSjkKDXq3HbwCMWO3/W6ii5n48hwD6d78yTpHHG2QJwtYvgtjHYTZTvdjD7bRRsGIgqRUYjZqGK0G11PE+eGzg0jpNZ0bAt9CVL7tvlVBnd8O0OlawmUxpGCerjKF2b/qBs8FYIklaXTO0SYymKGAZnZUxh+C2U5tDbv6ZYtadZxFqcwQp/ETdMZ29L1JJ5nMNu1CvbCaYRSpIIYK0noWAatUh9B/wjavrD2YRRHBIaFbzv0dZpo81x40ps6RsYfRWffRiKgKjWlcJWw+QnQ59LLTTmCVjVi0SLsHSbsHcJo1nDnToMQtCd2oa1uu7fyLCEWz+vd66RGtusTvEP8I781/v18Mf9GepnDlF3pj3cuf4W9jWNMMsoSPRxhM6sUaZHGIMYh5E08yv6evUxPfRs9jcsb+76tmdxzku+r/wF/k/lWVH2MkVP9lzz+5cKQsdmkWnoeLTXe1DFcdR1xeJTWhhLK8cjUx/DaG88eL1SMll2PXl4dJDMwyZyXYynaS2kxh/EKZXdajuCv3pCiYM2ytXWGTftOUFy+l9j00KJCaDcI3QYeLl5i0rRrtM0WyVoR7nScpmW2LnuNK4V8YjEQNzDsBaaG8xwqbeFweiMtw2O0vcB3vvgwUTBK1YpYzJU41D/BluhFosikJ1hhe3CazeEsj+WvxmkKfvCnX6+t9q8GV2JwDzz6PNP/6RdopF02z0zjlrZSvukWklwEUYY52SASCYEIaRgtIhGz2R/F0DFHMg+SkOWGYAZXx9QMxbIZ4KpBtkUGFoLQ2E3ROkUcnsIRZSY6y1iv4glqLQhNlyjZSRTdRqwHCNVONC6CDoIOppglZ/4tppwk0T1obJQuoLVLQh/N+O0oimgRE2RmMKIMIFBmG9PvwYhTQIhBFVNOY4plICFUO0l0D4oMYBB6SwSZGVYGHsT8h0UKL3TDQRpojTq0RzPIpiJ9qkMn7dAhZGT53ITeTA3iuz1Edpa2N0C6NUsrPcSBsbs449rUpUYJzayhmbNUN59Cn5soz+52hODG0SXODAyxfWGSgfoybTvFsxt24kUht53sGkQvoWxXeHTwkbNG0HoYCG5h+PROeiPFVh2TKIOvTHyOqrdET2sYO/GYz528yLnnILTg3afeiZAmb/T3sIkBEhR/7jxELBSD9nM8Gl2Dtqq0MHlnnPAO+SkaRopC0mDR7KE/LlOK6/jCwtWvblf4Eh7I3ohEM5CU+Yx7B2fia8m28/S3m/QYbVxl4Md1qkaHphmj5PrFQbabpKaPE+VLhKVBRBKjXA+zVsZsN5BBd7cs/RYIi3sOniAVXTw78yV0bJumY9PXaKKBmVKWmWKWWtrDTBJSoaKaunTJESNRCK3pbXa4anqJwDQxlMZOYtBQTbtM9nS/fzdKaDkW4ys19OY72bLxmwF4shVzQ8rAEIL7Z/+M1fDStQ1HKh2sWHN0x2bC/pGzf08QGC8j3Yo4xl6dxy5fPskg9jKEvUMkXmadUfVyiNDHXl3AaYCdfT9CSLyMpmBInu3EDLaXCVufBR1iOjdiejeh4kXCxsfhImVNlGnRGd+GctYLtYrAR5smrIU0TRXyg+Kv6BPrS5/USfNb/MBl7w3ge/g4Z7KDfCL7LajmMHOpFAVxGk/DE0M7yfgx9zxr0LfGewoNsF8WAp/sM1FEjK5qLHXeJkonpJuztDKa1f5plKEwWg3cmUUe7/8W7qodxbdexB/ZhKMDdh5UzBfvQRmX53OuQziJGS4Qm0W02YsyLAyxnt/2R2/OsVgwUIZgqLPEzuV9tMM0ou1STJpUc2lGl+apFAucGhhn89wkTStFJZdj0+ws0tLk6m3GK8u0s5JUOIxHm5olaImEojIxlYOwGvjCpJrJM6jmiWsuVTPPzGCae1YeQ/lFMBY53jdGSxfp1W2O9vZCU1Jq1zkzMEzFy3Asu4FIWqA1ffWEbEdz14sdpvpMHt/hdpM8XiV+5ZGP8r0//7px9K8GV2Jwf+8PP8rs9DKGiBmdarBr3yNkw4jEy2GmeoncIomQ2E6BbN8OzEwf0smiVYKQ3SrsOgkBgTDWT/haa0hChNkNZ2gUYWYW7R4g9Kog21gRSGVjqhodsQkl09iNTTjN0XVlJ7RWrJifxI/mcOOryKeuw0rSZ8trvBxaJASZaebSL1IWM4TzY8S1IqXKfgqL80Qpj9Vdg2wY2EHv/NVgOQTeElaYJzZ82maFsruP5ulJorZB4DfpnVlheLWBRlDPbiDfOHPJcVXCYLH/BuYGb+H5vs3UpSatBQd7YNqBliVQfS7akmBKtCPRORv8BBEpUBqd6X7oAtBrnKirpo9z26lLk6ZfwsnsSV4svcign0V3tpNNVYgjn/mwn2ZnExt8Czu1hOUsMpuZpu5eWhvkfEyU91Lo9GMlNvnqHq6zHuekO4CMI747futZJeIHzP2cNpfpTZa42j3CUXeYO8N9HPO3ckqPIpKEIjVG9Rw3WQdxREiMyWnGaJJm3uhhqjNIi1601GRNk5I6TMZTdMRmVsMUYVORmA5ps4CpFUonzIsKWuizmkcXQ5f/o7HLi1irC+ycX6XpWDQch8QU+G6afCtg++wcWT+kY1s4UYypus9itlTAH9xGtt3BXDmFbzn4Q1sx+7bjB2Wk1UPWHkTNP8nI9FFU40LDRNE1cvLtANBIDUoIIkPixt1VVFkeKxuvZtlJKNsaSzqIJO4adFY/YfUwoSnx8jvZ3n8nvalu7b/ZUPGfdYcfkQ57LZPlTo3KC79D2u3BnD1ANZOikrJw4gQx/A42jN6OKwUnK0/wnHOSKFdal3EHYJWXcJZmEPolT4nATL0VaRSJ/SfRSQ2tuu/Qy/liyrRJUmnidJ640IvRrCFUglmvYDYqCJHFzn4zk06WQU/ybWvisi/omD8MA+5udkuqnjR8Zh2HPaGgV0HU+iIqOoUwStiZdwMGUfsBkvgkYc8AyvHQQmLVy1j1MmCRuBbt8e1nDbaiv8BwMo8TNKgbvZzM7Tgrgis7LYx2A6PTRBsmcbZIkumm8Bs65kb2cY94fF3R5/NxwNzBl1Z+Ac/vGmoaWMjHtM0qKeMhtramsMsBmZRis9GkM5ellh3gZE+JJbdIZK5R0/0O3vQxnuz7Rr7JHacRtmnN/i8am7ejbReRmPQFNj1thbe8SC61yqpdoNnYge+NY8YttFxAiQwT7QPc0P8ZljNZfMtjUzjLcnMAah1mBq/lQP29wHo+1nzR4NiwzePb3XUhOjPWxKbASDRWrEkMQbLGUX2p7/+nYKqYPatzbJ7VbJi1SDVMdFJGxdPdEiXuVvbviHlmokRf2WKgmpAWFcxWnt3TIc1cg3LWoGMaDKxUqI1qfuPHv+Nr2sfXjaMriCsxuL/7l3/EgSMdhoyuxk2oDZb9Xk4HGbygxduPPYQWgqtWTlLy62uUQ4EWgsApInWMGfsYSUCcHiDIj5DoCFSMV5nCClv42QHCgV3k+q9D2mkcr4Bh2oiL7HRivVYHPeqgog4Liw8Rzj5H7+r66uRtx2apL4e74x5yA4P4jTmSqmAxOEIYVTF9D6+h2Th7GlOdV6mai8seTQ/0cnpsgGKtTqrdYmSpihspYmkQ2DZe4FPN5pjvGeJz17+Po6ND7JmaY8PqCyjTJeNrjm7YzpbZKh1H8vCOrZzu9WgZomsAJRqdMsC+DKP3FbB5aZY3H34aAZzJnGHFXWGwPchoe5REJJzJnGEmPYPUko7dZKA1TFnbaLtCSwgynT486RNYdVbSF/EkaIEXZdi1dBuGMjGUCQjyfi/D9a20ZcxQz3Nk7dMII6HdtjglNgBQqDT5Zu8b6SiNK2DeqPB5+1xKuKFjTBUSGJepN/c1hogjSBJk6GOsEdDNRhUjPMed2DWzzHi5gdCvnA/Z6ZnA33I7PX3Xkja735+ftOnELYrOpeUvOlGdysoLCL9Bp7NITQb0VGuk6mV0boAw10+S6SXtDWAYHtLrwTBcXCuDcRm1+rbSJBqy59W0mw0Vf5z4fHFIclNF8Vt4iJeF4QKlWQxD8oZB3lq/uThefoFna19CrYXFhEqQZ72RFoY1gbA2MOBtZqObI9SayVBRS87VbtU6Ign2oaJJtKqjdQj65aEWAyEzSGsLrncrI2mHCUtSfNn9fpqQ38QHDXuEwffhUNaaj6uA61uClBIccDQzlqY3EdzdMTGTMkmwHxUvgfYx7J0YztUI6aKVT0c9QGs4dS5L7yJwFqawaz5CZIAIdIhWNbRh0BnedNZIEoki3Y5JLFDKwAlaiLiOVjCeLHN74UX2G9t5PnUNOytHmZALmPQw5fezEOYIhKKNjc64tC1J8rJopFVZxlma4XB6F99VehOb10jyh8IaL6z+GZ2RTRcNYQKgQGqQShFb3XE1Ox0Sy+p60c5HkpCq2GTDLZTMBVbU1Rc0p9EoQyFNHxF0kwa00IjziDyJ1EilaRY6OL4BAhqOiWdUSYk6SZBHC00730QaPqdSo/SvWGiZ4CYRdgy1ngaz9iBDizb9nQaRGxBpB1e0iKMUmUYGLQJiO8aljaeaBFGWIJGgfZLwJEnw9EUGxEKY/UijFxUvIISDJkEnK6ADhNGLkAV0UibYmOdn/+vrIpD/anAlBvfRP/sY/5EBRpZPMtJcxHtZWKOiXHxtkSCpJikIDOrKohD4eEGTVNTi7pNPEZg2LTvNi8VxMlGH0WbXmImkSdtymajNs706RSZaT+qLLA8tBH66D63ADDvIpIMXNtaI0hYHJ7ailODp0nasMMQTETdNH2LLajc7KJESARhKsZIvMtM/iBf4LBV7+Ic738RiqZdbX3iWtuXylVtux040Nx84hJIdRpYX2DI9iaESivUas/2D7Nu6i3KuO/k9u3MvzdSls4deM7TGjBKE1mxp1rhNHGUu16RpWEyyEVNHpCsJobSoyTwD9Qrjq4sU27Wz4ZwT2RNM5U9zT+0GjnlTHEydRKNJKw9PdYugzlgxibx8+AcgExTYvnwzm1euJR0WcPQspF9EqA1oevBSIY0kgyXrmOIZFsQgSq6fWI12na3NIe7I3cJ8pMgbgpQUfHb1EyyX7Auyr8zaKjIKULa3ljG13uMoohARR10vSegDgjhXPHecSroqyoFP4nggxNlrmI0KmYUZ4iREvHyq0Bo3irESRaEdML5aI2X1sLr5WlKrszjLp5CRT+Jk0EO7Ub2b6VgGoSHJmCVGMlvONhVrjfkyo6MSKywhcGW3+Mmlyi38cxBpjfXyTDWtmYs0jwURn3IjJm1Ffssi5WQzP3Ms5t3m5cMtvtacVAm710JOs0GLZrRMoGKayiFvZXGkgSk9hm0D+yL3taQV/WuGzek4Zn87IowTYilJYaFVC4RDd2RiQBAIA2y4wTPZvMYJUmgOGzPMywpvjPYiETS0YomYzecVKa2i+DV8niQmg+A2TBzgOR3TVHCtLxhOJAaauo5IUg5IWFaaLe2YYlKnnn8WbUhEHKGcFNo0MetlUpUstvNGWiLmlCVAdBV9JDDcWSDj7yeyF/EHLs6tOh/O4gzFtkNsbCJJIqLkOFFaEJV6Lgj9nXugCc7SLLrZpi48Vu0+bircxr3Wet2lr/gzLM7/FVGxj6B/dB0Z/p8DZ3ERq1LGTt2Jaw0TicIrnqN1BDpCyEsT/4FupEF3BVDF2vuidYhOVhBGlyCvVQ10CxXNgnRAa1R8BiE8EDY6qaLiKaQ5AsJCRZcO/actTahMouSVFcLPR3HjDr7n1/6f13TOK+F14+gK4koM7l/+1V/wk4O70UIglWLX3Gl2zU9Satcve55e+w/geGaIVipFOvKpOWlWZRqtBIbUpEXASqlIFEkq2qO3XKa/VaFpebhhQBOXguszMT/DqcExTm+aoJPtfmAyTrofhnWR0FmikUqh1nKrjSSht1plqVS6JGH1a4K1kJfRjlCu2Q13WRKCBNmKUQUb4SeIasBoq8Yud4lN+cNUHYeSOcWAnKFFlue4kRk1hrliIQODXKdCvtOmp1XHjS8keWo0CsWJ/Akmc6domO1X7GqhPcBwfQsNd5Was0I6LNDTHqIQZMn4wxQ6AxT8LjlU6Ygw9SSNTHiWl/FKkEEHs9Nk4+HDDO75t2y1SjwRxowYgjHD4JHGFOkDv8vU8BDNfJ5itcbw4hIjK9VuSIeuzELDtZkb6EerhEynQ6IVbcdiuNJAaLAShRdGVFMuS8U8+WYLqRSzpSyRaVD1HJQh0VIi1PljZyBw6WtrxiOP0Nd4ho3MDEG6F7c4Rm+m9zUZMZHWvNhJmA4VRUOy2ZEEWnMqTDgqAqSABhZnzITbApPN0mDQ6hrvtoAhe/0ClmiNr8CVYAhBW2nqiSYtBS8EIY+h6BeCE4biiJHgaMGwEBSFZFhJ6kLxFRnja01LQFK0iHYX+Xenfpbf2fzT6GcVIw3FvbHNMRkzLg0KWnCHYTIqJJ/UIb8jAxTwQ4nD+41Laza9HPuiVaQw2WvmL/p7iKaMJtKaTpfXjyugH8kKivHzSNKRTnjQPsiUXGZf/gwn+jP8yKkt3Nu+DnmeT29VdLVrevTl9Z8eIOIoCSkEX49F33kh+tMknNGKFwOfdKJJYdJUCsuAomHhGoIXjQRfgAmU0cyimEVxlTawFKxGVTa3ztDndpBGQGJIpCGRKkaSkGTObQhEFCKDDspx0daF42snJqGM0UFEuxzTsoY56PQwvmYM/UQi6DO77T1kHURqyZ1xV3X/7+JVHvWncIN5NrJEIF1WZJa0dii4LbAlutmBSGGaCpXJEck0yy0bS+SxjSXaEopS4WTWfwfO/BnsahVhlBAyD9oHJMgUOlnt6hkZOXSyjFJdz6xYM2CFLKBUCyEza8aOD8JDINE6ACGRwkVpf00j6Z8PSzgU3TF63A24Zi9K9pA205ho6nGdSucY9XCZjN1PvztOyrCpRQ0M6WDILGFSJ1I+SmbQvS/wjl/85a9Jv17C68bRFcSVGNyP/NlHeDo9wTOZESovhXy0Jhu0seKYnlYdoTXp0KfUqjNQL+NGYZcc+hpR9TLMFnpZzJVoOh4r2TyhYWElMZFpYcURqdAnNC18y8YLA/oaVUrNGqkwoLdVw7ccZou9zOV7Aaiks5culOsniLhrzEg/QWW6YSJR7X6MIlbotNX9uxRgCEQ7RpsSY7GD6MSIUCGaMQgQzYgeIjZMnCbc4PHt+pMEkzs41B6iR0e4UlNJUmSMgA0bnuNQvof9zRvRFUmUKAydIh3UyXdapMMQJwqJZYdABgRGN9V1PjXPirPCQGfgbPX6RCQseUtnM0IADGXiRRkCo0NkhBQ7vRQ6Q6ykZ9myci2DjY1srQ8Sqt5LPg+NRngzmN4TzFv9Z7kEIgq6WjxCgJCwxjOxmjV656coVdv4ts3A4gL99TZP7byKN236II4U/L8qYLeUvBWLyTBCP/ST9LS65PTI9Fjo2cLM4C5CmSCTFsXGCsVGBd/UNG1BZBp0MltRZprIm0CpGio8gtbxmju8W/tNGAWEzCNkpiv2JGxAUcQhl9qKJQQ52yEjJVlD4F6Gg9RMNJYA57xjqrFmdU0sUgKJhqNxyFcNzTE7YVlqBhNBQUmKSnDESqhcRP/B1jAYSwKhySvBRtX9xqaloqgEHRJ8KcmqbmGDeVMxbyiSl3VXyABDdLoymcok1mkMHWIKH8NoEJR8OoM3oAY9dtae5cv7/x3v3fnTPFy8F/fgIVgsXvTePbFCru9LaLtKc/o7GBUl3ohFvxZkheAmTCLgPiJE7CPCCvlginrzMFVHgVb0xinG0tuJdYy0etiT2XXJsX45Yh2zGq/wXGqeWaPMGfMkX7rl+9BGnlTjeT70zBLXxBMMqgL7zSmOGXOYGHxjeCN5fV7xZRQRCS6XJro34xqekb1sqPLV4oyKmJLQRmMi2IAkjSBAM4TERPG4cYqj1tQF59raZFz1siHpZViVcLBQqLN8vYshQfGQt4/fHvlzHGXwH6d/mKujc1lqFR3TEIK21owIgyyCBpqTJNTR7MUgj8AHKmgiNBMYNNFYGhwhaIgOT5knOC2XznIPZKLw6nVSlTKOMmjFNXJWD1JIMlYB18jQ725gNZglUgFSGHhGBikMlE5oJw1s6RKrkEiFJDoi1hG2dCg6Q5SDeSIVkLN6sKVLLVymGdcYSW2hYPdTi1awjSy2zJKzcsz7c2idkLf76He6EhnNqE6MoGC9BsHUV8AX+TTf97rn6F8PrsTg/uFv/Cq5jkCZHv2ylz/d3M9zuQKrtnnZOlhZv4USktHKApuW50ksgbAS8o2AUq1BJA1810LqBC+IkK8gbxNIE0e9doOrJW1OOEPEESA0YSTpjSQZo0PJqOIaLWyhiGIDSyqUKUAmeEZCHKd5rLGZ4ypDRxsIICsUSih6hCJn1xmza9jKJZQRuzY/wvNiL/YZi4y/wkp2gKhkUkulyVkVGnGeRqeHUrtC01JkmsdwwwUqTgU7semYHWp2DYFAoWhbbdRr0f2hmx22felmbp55I17YB8jzqqArSsY0bVXA193dfKzmENrBMHrQWqFFiFbLBKkpwnSTyDrn2hdhwNDCKW594gChYZAIQTPrIZwEfE1fsw2xiRIGy9k8Dc9mdXAnt468m5xpUleadxUCNgrJ/6rZJFrzlWqZIFwBbWC4w+RMG0eAKwVZQ9BKNMFaqCgtBeEa96dgCEpmN5wRqG7op6264SylIWUIcrIbwvIV2N2KFBeEui6FulIcTRT364iDImEkkWwWktNCUUURIShLRSi6Bo6FYNFQxGvNq7TZNa4tiepx0CkTbRsIP0anTFSvi1zxMebayEqICF/hOZsxkEDsgIzB0CQ9LvGGHDq/9oxeMl6TGk7rybUwVURijRC5XU+CE7R49plvxY8c9pe28j1X/RoiqZNf+BWccBHLH8PRVUorI6xk2yyPDhNk7wId41Yfou/5XSRxAU81SSUtsobJVeWDOOHqWf9N4niUx4YIUgaWsrAjA4XCFA6BqoAKKax2yDcS0mYOz8iQMfOEqkMnaZEysoTKJxGCWadJo6eHwIp5Mf0M+3Z+B6F3zdlhufP532d3vRtuiZIGjww8RiowuXP1HvJmgYJKM2Os0iEEAYOqwKZ2BjtKcJWFFJKp9lGmO8fw0xlSwuMaYzcT2T0YYr2HVGu9jp/Vjhu04xopM0dqjWMWqQBDdNt9NVgVDU4Zi6yIBh0RsicZYyLpx9QGdZ2QFQJDGCQqwbgEB2o6nuGB9HE+O/YP1NIjxNYYg+Xn+bEz38necJS0+bUzCgCqosWD1kFWzlOYfgl743Gy2sNEdo1RbdGrc9jaJBIxnrbpiIicvkTI8Aoj0IrnRJVpa4qYmJZsorSLq022R6Ps1iV8FE0MqqLBND55XcBHMygUaW0wJ5bolE7yvT/9i1/Tvr1uHF1BXInB/fLH/oFfrP4yFa+DpUx2dTYxEPVwbWcHJZXjWPYkNaNJSWyj7GV4pLiZM46NLxWRYYK8kM8gtFrvzdEaNw4ZLS+xZ+kEfdU6WnazHV6OxAB5Hrmz6XpUvCzldI6Gm8KLAgZrZUarr1Gj5hWgijFFd4V62iRMXIJWBiUMOpHE7TQpeyE66iB1mzPZM6y6q2SiDCW/RGiEeLGHEoqO2SEWMRWn8qqqPwstcLSFpxxycYaK2aAU5djgDzPjLuLEHkliMlbbzujSDUhl4ioDdd4O2SBEyIhYrZEktSaJDtHKniEsdAX6zKCN0hptWuiXcVDMdoOB6VNsOjVNLlBMDw5A0MAyciht4XYW6WQ3YYy9hd7sBFUliJQmZwg2ORIpukbNz+g2j4/YaNfgL09qtqxN9onWNBXkJBeQg7/WSLTGB9JCsE/H3EdEHc0R3X2p2gJq56enC4V2LAjidcRS6EooCN2tCatz3fuKN2bY1pzn1tMv8sz4OHP5Eo1UL1uW5rjtxH5E4NO0HRy/zQs7r+HQ0DiRlQGlu15JQ4DTHRdZDdFSoHNW94X/Z47N1cee5zvrn6FWy/Kb8bfyFvMZHr/tdla8Ne+hjpFJHTM8hRmeJrY3EaauP28oWpTmfopdsxn2nMhgdQJMZdBJS1YGPDJJkXIhYim1wpnsGQKrgDKyDNUDdlW2oNHkwhyJTEjFqXMhTmkggg7Cb5IYAmG5aGkg1gzzql3lgbHjVPq/n9ie6J6iEpQ08Gqfp2/lUxjaoGYkJKkNmME0GT/khtmdZHUPSiiOFU9R6hQZD7euG5NuOGv9Qi39DlZlid6OJI7bBKqNMhNeolsqwyTO95A4XpeYbhhI0yMXCOqqRq4Vsk2NMJHZQ6Uzgxn6xM15jE6NjEgR2DZ66mly+c2w+U3UbRclJDktsP06ydJBohP3o8MGCIPYkDQtSacwSG1gnBlR7m4KDAV9m2jlMhwqHuJAf5PKwH8C6ZBZ/WNumlph+8oEuWaHgi+wwxjPSNOIq7RFgKtNsjJFysjQCaoEYYMNuoBrFZkXNSrhMpZbpD+ysKrz9IkikQXh2E6kl8O3spySyxw3Ly0DcUlogYtNWjv0qjx1IhaNVZSIyKg8JW0xpnpYRAMJgWygiamJkJzKYgLzxgqlpIeadvARjGMiUVRJqImYDAkBmqZRRgLGqxSHfCUkWmBZPr/wH3/1a9LeS3jdOLqCuBKD++IDX+YvHv4cQhpMZmeYSk9Ru0zhzmycprEm8mVqyU3tbWRUno4IWbTKZOMUA6oX09BU8anKJlUzoO3tZDLdS2SPkBh9gECKPGaSkAk6WCqh4kpisYKggKlNIqkwwkOY0TQyaZAJq4h4mlAqhHUrvcEGhpqCbKCIpMDQISm/Q8cSLKfaCK1YcWaIZKebxUCDRLSRWnYn8ijHYHuQwAgwtIGXeHSMDg2rgRaaptm87Fi8Wuxob2Q8GEIC17R2IJFkkhTDUR9mJ8N0aNJMNB3dzT4KLvGGS+mjlEucTONbB0lkDdsX2NyNMGw61n60bKGjBkGxeEE69svRtzTF1U/vxw0tFoZ34Y6/kQ25EbzzdGmU1igu75Fpa80P0eLo7hzGXBuVtRgMNP9tUZwl2r6EutacFgllNHMo7sFiGMlpnVBE0KHr9p8Til0YPKIj5oQmvxay6NGCDIJZoZhGcQLFKJIBBHU0T5MQiFVs7RMbYLgLYFeIjJA4GAOngZYZVFYSDF6LSvV2Q6qxgkR3ZRQA7ZndUlGtGJ02EWjcqMPeMyfZOXkCzxIE7RCtNUoIJBo37YJSoBIsL0Yv1kDB5MadHB2aACEQKgaVEDgpmq6HVBFZv0MllcFSAt+yqXtpMp0WWb/NHS88TE/gE1kWc8V+SrUasz29TPeO0PTSeH4HOwrYMXmYomjyHUOf4LtP/gqrdD2Hv9/z3/i3O3+JevrS3oUbT+3n4OhW2raHjJfJLX8EMzpz0ey9xCgSutfQyX0didWVDhBJFaf9NDKpYUZTmOEMbljl6vLVmMokFafIRlk0Gt/wCYygazwhWDFmeWosYHnkp9ZCo7Brcp6h5hIP7L4adEJp6XeR4QFqvT9G5O1BqA7Z1d/HLC+RdEYRcQY7vx9ltMn6JXbXhhkOBpCiu4GIRMR8ap5ld5mB9gDDnWEk8izxHyEQcYiIY7RpduvZXSaTDbo8Int1HquyvM6jJpL4bJtWHDNUabJzbhVTaxIhmM+nOTqcIzQNEmmsGeSSJJUhSWVRtoeybFTqXDr9orvIV4eeoTr0yyRW14smVIe+6Z/g7rkbKYVrCuxJjIyjs8agCAOs6gpIibIchEq6WZsq6cocGGY38UElyDBA+m2K9QZ7ppfJBxGhAZUsnBkvMTe6Ad8pEtgpYi0xMEnJS4cw/29DK41R7jAxP41yTKbGxlHehVIzRhSj7JclhLRCtlUO8O1/9NmvaZ9eN46uIK7E4D78h/+JB2Zkd4u8hraocip/mkD6tM06LVuTiBjffPWFDV8LhJaYwiHSnYvn2f8LgZWYZJXHnvY23l69g0PeSQ56pwhlhKEllrZIRMwWfwNvqt3EWDhI2axhB3nKsaajNLU1IyglBdW4S1R9CYkZoaVCYaAQSCVITIURG9ixQGlF2/oqnZJeN3mLwAfBBZkzdhwysZohHZrM2XPYScRA0o92BpB+irHiKCXLumgG1MWQaE0AnCLBRHCUhJpW/KPpc/S6PnTGxH5oEZ2zCW/swTq4yuBChQHlMYJFlKyw6kxiFM5QSfIkaKzIwPNd5kU/jlknLyo0ZYoYkxhIrAaWUcMVLYzIpql6EUITOVUiIyLx5tBRHq0NpFVHWKtIs01iFImc7SBM/NStxM5W0DHaWG8kpNstdh4/Ri2TYnJsAjcMybYbICWuH9A3M0/Jb1Bo13E8GBs8xag9jTRWKDsjzC3vQElFf/9hxr0ZOtKioNuk44RGxmSqsonWcg9BJ0tS7nLXOs4QttsGEiwR4LkN/DgHaBy7iZKa4eFT5LOrVNpFpExI2y0aYQbbiKh1ClRbfaTNFq7VwXGbuKZPVnXwninwLc1z1cR/wvxbtl79AqfVBmpehkl3gunmRqJ2itCxuUV+hbcUv8hpNvKryS/SMruLskiqmNE8SqZI7K5cg4zL64oOXw4yqeI27sdr3o9QbbRwkWtK112xji4hPzYHqQz/JgC9wTLvrv85d5YeR0rFr0c/wwH7pm6DKlzvpVYBxcVfxoymSMx+2rl3kJi9uM2v4jaeR7cn6A+ytNwl2qlZkPFZGQ8jdthS28zOxjYMfaER1DE6dCKbJVVglRSBEaK1QW8SUDCqjAt5zgO6VupFqKSreI6ibqyiDZMwKjM2A3ajq+ukBKh0njCTYbanyUq2iRKCptMhH+YphAUyUYaKU0EJhW/4xCLhRO4kzeI30s6/m4KqoZDUZZZM+c9I17/CeG07e6ubQIKlLASCRCQILZDIswWdXy3M6gpueZlco8GWuUXSQUzWDy9oIVqTAzCShMiySAyD1Z4eitUKbS9FYhjUczlW+nrJNJs00hl8x6F3ZQU/naKZyeAEAZFl0U6laGUyyCShd2WFVKtNO53CDkMSwyA2TYTWpNpt0CC1woxjIstCSUlsmNhhyNj0NL0rKyRaMdOT4eAmE0XMtSd8BqoxsZvCCQIC2yLV7pAAcwMZVBIzWI2QQtLIbGLqveO8/8deLx/yrwZXYnAP3/8QH//CUTAjlNVAGP4lvfuJ1vhGh7asspKqoHRIKpH4tk/FapAYmtiEmtHE0AJTGUQyIVojEjvaRqGIXkWK+dcKXuLSH5UwkGSTFANRD4EIWbRWcbXDjL1IRwYILXC1JBYKqU1ySYbN/hhb/HHycZqJYITxcBADg3rSNXIyEmwh8GQ3bTtUmmqiaSlNrGE+0rQTTQfo2F2BtJYnyLc0XqjRoqtDkogAoUAnZXRSIXZ8EA5C2+honsgNUXZCYimSNVmBVJxQSnLMOOfpx2goRSmkNOlTeW5Um7B5dZlnALVE8Q864iAJt2JyHyF1A/q1JBGawyKhARiyRT59BCN9irolqG/8HrSXxTxcxZ6qk2AQ3DMItkFu+bew288DEiEUsTmMlumuboz0sIJjCBRdppEktifQ0sMMp9Gi++/EHEZLFzM8g+UfJLFGSMx+lJFDmf1o4ZAYBbSRQ6gAZC+RfQki+hqnqb9WY8PKLDevHMVymnhGhyi0Me0OKnGwvTrCCnFSdTRgWh22pE+x6UybwaWgu7AbgqVem9CWDCwFeMF6XlFsCFZLFnMDLvWsiRaQmBKZdJ/9WaFKrS8IqZmRQkmBGyQYCQitaWS6StndAsbnHa81I/M+m0+3+V3/m/jvyXvO/rRTnOGPNvwSR7Zd2nNkBIpUqDiT6efX+Xlm5fgljwUY0rNs5zDfxN/g4vNp3sMso/ja5YjcfeEJa4aNjJew/cME3vVomUImZZTZfU6ubvNbfIi8rnL1wTr5eswL2wt8pOf7+Ufx9QDYus1P6//K34pv46jY0+17NEti9oM4L8wcTpGqfw4rOExi9hO5ewhTtxKbPch4Fa/5ZVKNzyNjDzexiQwfU1nEQqC1ILYvn6krEpt0UCKvTLRQaDRSSxKZsOqsEhnnwjvpKE0+zFPyCzStFm2rQ9WuXkK1/uKI7I3UBn4eLSw+rP8bDbL8qfgBvGiB9PzP0KXyr9174mBqm8BoIJGkowwNq46hDbJxBid2EYAnBdII8bXCDlPYcZqW2cFdE1oqBkVG2iPYrTZGu4EMQty2jxNH2EEMUYi2DawoInA0oSmxEgslDZyOT77d6oqmJgnGWqZiO52iYynGF2tEhsaOBbHZrScngVY2T7pWRglJPQP1bIblXML4gsQJQoSUrORjTow6hNIiFRokRkgzn6LjmoRCcWywQcPxCY3oAlqD0ILedpZYKqpuExDrjhFaYCUmXuzyo42v470/+Quv+hm9GrxuHF1BXBHO0Sf/J/u+PI699lEkMsBPzeM7KySmj3gVhOFYxGgtCIyIFW8RM3EQWhIYAU7ikABts8WKtwjaYjk9jZIJUhkokZz1FgktMZRJf9hD2SrTExVJBUWKYYn+xgSmX0AIRcaElBmTFzZT6dM0zCajYT8ZlWJXezMSgRF5zMcx+SRD3hCUE8102DVWCgb0WoIhyyAlL69Hk2iNBiINtVgxHyomY41Cd9WM1xLI9FpSlwQarsAJNTJJEPEkcTKJcj00MYmdoHWAGVgos0OQkyg3da5a+yt4cKSGa6KNXKs2IhAsiRrHjXmKOsOmpB/3vPK8Wmtqa96efiEQQhDrrrGm0CygOaBjnlcxjxsJEaCFQjpLGKlTqLAP0EirgpE+gZk+0Z1MDImWDrE9QSv/HhJ7AyONeVYeV/Rbk7SjItWtoyQbs8ikhRGdppsUnRC56xdPI/GBmESmuplxX0P0Njv0RB0yfsiGVhl0mc3BKYTRJp1ZZWJwH70tn2IlRElBI2tSz5jEpsANFH0rIZlWfLaQcakSIYBDapwX1UYm5ALXi2MYQrOk88zoPkwSzuhBLGJukwfJi4tLLmhgNd9dkPurIR3b6C4wkUYZkPXjS+71fcOgZVr/H3v3HSdJWSd+/PNU7Dx5Znc2J1iC5KwEBUQOUVAJeirBeGBATMfdCeidonDemcXwE8yHgCKigCTJYQlLZnfZvDO7k2c6d4Xn+f3RMz1xE+wk5nn7Wpmurq56qrq669vfJxFaCksqqgseBvBguD8X+Z8hQ4IFDfewqeMEFCZ3O18grM/TLZLIeMgmVYts8CmGUapb4PSO53FEyDNVc+h4U4miEWc9S2inkW00s4FFzGEzC9jAAjawkHWE0sQyRo8d00Udq9iHxzmGdSyhW2y/t+SAeWoj75E3kGrLcEh7O2u75vCyWsAnnT+z5kjBFmcOKzmUN8lnWLl+X3AEq+Ydwkox2F5qf/UsdXTyICcMm0dte6LF53HSt2MXX0IJF4GPEi6+u0+5a7mwCe3ZBPYcAnsuRtiL7a1DyCJu7mEM2bfDXIxQQ6b9GYPTP8N9vbDIERI1AzrDcnu5ATYmydhiNtdeRN6o5+DwKX783NeQns3bD7+erJHgzd4f6On4Mx3hnv3sAJjSJDRCnNAh4SdQQhENoviGT8ksEYgAz/QIjPK0NrEghm/4hCLEleUqfSkknuEhlECO6JUjVDk4ifrRSk9cz/Qqy8cqy+5yQqey3d1xeOfp/OLz39jt/e2IDo7G0Xic3D/d9HPuvO9FotIkSS0N/gIQEYSRAmEgDQ8RmoRWFmUqfDtDaBUIrAzSLKGGBDe7wggdzDCKEURQQiIQGEEUaRYRysRQJiCQIsCQNqFVqHxYpOFX6uitIIYZRLCCBFYQ708ll3usGLI8a7wyfKTyMGQEaRWRRkBoFDGki+MNnj8hzP6eTuW5tQXldj8ShRwYsIyA0N+GZ2+klPIx8BElD9NLYvkREArf9REqRBES2j6YAWEkRujsxpxHgKNMosolL0pIFA0qRY2MY2KyPGymWsVJS8W6ICRlCOaaRmVgvidVQDeS1TLkIUK2mOUvpIHbxdCvl/pwE4VYFj/ZghnbgMLAazwEP/UWkrm1hHILUm4BYaHMRYR2E35kOcGIsXCcMOT0J//CP9r358ePXk2Pk+TzR3+W+FsitMW3P8nm9riBpGQZGFJRV/IJzHIlTFQGtEWiGEqyV6YPKXwaaMdRJTxl4NmCOrON/ZynwRccbK8YfmkqhVAQz4fE8wFzthap6QvGStyM6QW5gO/Ld3FncCQM6XY919zKlnD2qPUdUeBU92GWBl3YhBxqrMEmoFXVcYCxjggeNgEmkiIORRz6VJw5opMelWS1mstjcjkR4dFAGhePDqpJked441lSIkeAxWNyH+6Sh/K38CgAauOb+MZR3+G/n7mQV7v35yTjKX5gf4/IkAarEoFvmIShye3yCBTwTuMxnmUxV8fOIBlPUxvpYUt2DqYIMYTi+c59cM0Sy6xWDvY38y7rIeJk+Y08mVft2cScIj0iQiLWx6KqTRRDl1mpNkhYPOK9mXwQB1sQ99PERIE6Oojkc7R0NfHmrg2cJR/iIe8ALvC/BMABYi1fiP2e62qOJ5Qmds7ik3X/x8O5Q3jGXMTcuW2sje5FbaGdRG8vdZFeFs/axJ94H09zBL2iPHxBSvayf/gsc3IbWGftzVOJoyrnwVIlAuzdDsyFCqmVm7CDdqQKUUaCqPAxDQdlROmhjv3V0zQW/8HW9AbSgaBKGBycLCGduZjOLIoihodDLzXMphVDldgc1hEzbTYxn6fEUQT9GbH6oIOrHr2GvxaPZotq4MR5L/CtfT4JwKnqVpbIlezPi3T4kJEW0mogDDKUwiy5EISVIlSSrJ8jUAJLGBTsBTTKDeRCKIokhaBIQfq8Wnrto/hPFEMZ2KFFyfKoLdZgSRtTCapC2CdvU2VlMayQ5uoM0nPpyixgs+eQtrIYpmSWGZDNO6iYIppNYMk4odtBKBV+Kc+i2H584gvf26Nl1sHROBqPk/vMyhXce/XXygO5jKHPaSbhdyJUSNqZjTRiKGGhABOLiHAxnRim3IK0HZRbHh4+xEAYPkoFSNNCRVS54es4EYFCmZTro/3+LvvmDr7wBkZslRKzUMLwAoQUoAJkJEY0CJG2RWhbWEpgCIuSpSiau9f1fnB/gICYckmpKD0iR0JFWBDW06gG5msycLGpVrFKWwEAQbk32FMioAXF8wTcr0rEghwlw8E3bOqVIgjzNBc24xkO0bBA1FlPunENlpLYmdkYhPTEIF/TSjomwc4TWo2E9lykcyhe7GA8e9dGAzeUpMYvsH92HV/a+D0+034xB65fw6ef/SMA3z74HGqXZUnu67PO3Zt1kbks9Fo50r+fZdVPlKORULDVaKZgRKmjk96wmjrZSdJKUyBGXSZPKQ7SoDJKcTe1OPgkyWAGEttXeE45kBrI8MRzIfFCiNl/TSezAal0gCkVoSGwpEIpuFMezm/DE3lWLcIRASebTzJPdWITskk18qKYyybVQFqm8NTwgNCIbEaWZoEa0ShV+KOXTRhJpPZRrjrgFlJ2iXV9C/j6E5cAJkmRxUQy32wnqQrUqzQpkePW8Bj6+ufSWii28WP7f1litZATEQJp0S6qCC2wnRK25eOaJWoKJcycwY3hCUQpcbr5CMKV+JbAcwy64i6Plw7kxdwyHs2+iQ3+bGzh4w85LzYB852tLI+u5QL3DuK9ijvl4fy/4J/IMDh+0afNP3HunL9QjBjMbSnwnL8XgTKYF2/lcnkeT+X35Z3xhzgneg+W4fO79Knc4R1Bb5hExhxcVSTMGbzTeJwakeHpcClPzT6AmgZBpj5JfsTo7MmSj0IRCIhmcxhFH0OaqIQiEioKcZeuyO599yZlnhrVy8KwhVXGEtp2sd3WgJqtfXx69c+4r3QwK9RyABrpoXl5yGMLRk/zMcBQkoWlDEXDpNUpv8ezSiWaSj4vJmIEhkEkVICkaJoYSnFoX4ZU6NGktlArn8KRa6ky02SdPjIypOjbWECy6BIRHrFISLUUZEoGmZKBMgW26bMp62JbitASqLyiRhrMmVUg3drABunhFy2a6wNSTpGOrjiGERJ6krxtkMw7hFKQMjxUySaIhhQ9m2rpITIWQdrGqfaJ1hQp9Lp4BQflGFRXFYjEJeRTJCJvIRGdzUvxGLaRocZfj+h9kUxfmpAQx3CoTiYQJpBP0FRfRWBlKZZCinGHTa7JJz547W69Tzujg6NxNB4n9/7HVrLyVz9hmTGfvJch53WDBF8WMQ0bx4hgYGAIi4zfhWU4WP2/ZhJ2DaEKKIV54lY1pjDp87sARcxMEreriVlJpArxwiIZUSRvhhTMgKIR4mARmIKMFeL6Ia6ykQJCAywlwHKwsIgaMQwlMIRJFXFCAZ2ij26RJWNuv5F4OTM7mKKNKLs8WJzY/fTsAEsZNMpq6lSCgvDYYnThExIKSYNMYSsTKRSWMnGxmB3W4YS1hMIggmQbJq0ij4kE4dMahnhhSK/so2jEsZWJEWTIBnmiKkCqkLQqz0mW8HuZXdpGIkgTRnvoS/g09LjEixa5SEBP0qettogSsLkxT18yiWUfh2eWIOxEGQ4lpw7LWIznNFNyGlEjpgJJhTmOKz5AVlbTY9WQNWKEpmCBsYY3ZVexf2E1s41NRKVHvBgwe1uRazNn8r3wvfzbU9dz7OYXALh9wZH87uC386D7WXJ1iqJrYkiF60lSmXKbMysot/8p9o8abYblySsdX2IMbaguBIElsAJF1rUxKbfDcQKJOcbXgadMssQIMNisGnlJLmCrqmOTaqSLFAaSh+WbXtP7byZeYq/IamqNPKuiXeT88ijGEXyajBzxIErRLJHyqlnnz6FPufhBFSqoQno1UAmyQgbzeUOIAJQFSITThRnZgjCKKBkDaaOURViYC3IwgBBmGiO6hWjNQ5yd6uPtL7WQus0kd6zk+sPfxF9XfxDU9rOXwu4pbztMEKXImeZD7CW2UCVyLBBtbFO1rFeziVIiTYzVch5Py6Vso3zsVWQ50FhLSdnUizSHGKt5j/kgpuNhWhIrUKSTJqEwMDyDrGNjmQE1uRLRrOL34dv4SnBhpTyG24pT+zDFrWcB8FbjGQ401vKX8GjWqjkAvMN4givtX2IaAX/2j2WdmoVCsL9Yz6nOo7TEqrnfP4jFxlaO9V6kzW8gTYx5oh3H9PmZfxq/9N9OX7y6f4AsA1EIMEoBdWToJkncyDHb6WBtcQEh5V9eCoFKWKiIiXJMcMvzJopAoiyjPOhsqBChxJgVQzZG8eyxf6Q19HgQKFIh+I5BxoCqQkh3KCl5IbK7SKw7w79Zv2FFuC+3yaOHvf4Y4wW21s9izeJ9CKp2Lzu9O+bkJQ2l8mfywN6QLVGDal/R4wjypqDKV8QCRcpXFE1B2hbsn8nRlLfIRtN4ToGccIlI2OxGWZCO4iqf6jBHtyuwStVsjhuYlKijnUWlHOtiNs/EmliWDWj0fErCJl6KEJcl2h2DzdEEi3IBtpR4JmyL+myMpHglZdDlCnqd0efclIo5BUU8ULhSkbYE65ImdSVJLIDAAFtCJJR87P5b+dD/6BGyp43xOLkvvvQi0eu34YwxXtF0UMRjm9GHgSCuXErCp4hPjYqTVFECJQkIKeDRIFIUVUAGn6woYCEomAVylEiLAhmj3JsmqSJIpXCUDcqkoEI84ZM3SkQ9i7Z8Jy1elqbYYhJOijxtuHZIxovQphR1Err9bjJBQHUpy+LCBkylUEruYAzcnZMo+hI+Dx2QpmXOkQj3zRBsI9ZzK76VJrSbMc3F2DTjx5fTHZ2z06lUXFVkDltYFqzhhPRjvG/NwyRLg9UvgSkIhgQsnSqFiSRJnlVqHr8P38ZvwpNBKf54z2VEs+XAZ11tExcf90UOE6s4x7yPBtFLmjhbVR2vqmZ8ZZEmRrPoIkYJB58uUiQo4GORI0JeuZRwqBVpqsnRpZI0iV5sAjaqJgSKTqroVklMJAYSWwSsUvNIq8T2DnkYK/UsieRKCkEN0q9B+SnARFh9mFYfEStNRApkGCcSuuwvPZYYKbIqhlGwCPExRUh9VS+BW8T3o7iERNws2UKMnnQdeaNE0SrSZ6UpWAWEAB/ImQXSdo5ksR4TE89px1QmhnKwpcDGIhXEcEOHOtcnTUBelMgHNiUjIGMWCYyQWmVyoOWy2BE0z17JrMtsjEL5fW+/NOC64ACe9SMUnT5kcTZKRpClRoRZxI2u5VjDp8cu8MTWdyOLc1/TtTkWgWQ/sZEAgxIODfTiCp8OVcVc0cE2VccLanCUZzP2Kk7yBU6seZUlfi0/TzeT63jHbu83Qom9xRaWGVtQCu6XB9JJdeX5N4l1HG88y3vMB5krOuixYwgpyBkO1WGehCzRRjXr5WyaRRdJM8s/woNYRisWATWRXpQhWGktZFVuEaZQHGStYXnQgq8sekSCZWELgbJYI+ZwbdV7eaTxCAwU1YUuTm55iP3C9SwXm2mT1eVAXph0qhQoWGZtxrcMnCBkVbiQP4fH8JJaiCCkuvl3GGaazOaP4uFylPEiFzp/48/qLayuW4ppK9xcgb1617MhMZetTj21YR9N+U56wwSrEosIYg7xXIbGdBd90SQYgmPyz/JY9E2sq19IrMpFRUyySWuw08A0VVXIYyHoiu76oJSmlFyw6ib+6yLd5mjaGI+T29q1hY2X/4XqSDNeWMAxoyggasbxlIcnS0SNGBEzhq88fBXgqRKOcPCVT44iCSOBQJBWWRIihqkEeVUkLXL0yT5MDBJGCsMwqRJRLCS2ilIUaaQoEldVgEeJIqHwEVgoZZMWHgXl0xp0IL0SPiX8sIQKSiRis4mZgmYhCcMQUwUoTPoQRAyXtJdng7eNEiFmGJZ7lEhQ0i+PQwJIx8WVFjVOEx45LFkkEDYy7KXkFSgKp9xlV0pE4GPI155xGktgKHqSHp3VJXxTYSiBb0kKbkg67mMFBp4t6Ul6+JZFYNWjIkeQqzkV39i16q/54QbqZA/tVgN9VDE3aGG23MZRhRUc0/U8y7taSBbK7W6eU4v5UfAunpHLaDS6aaabJHnqRR9pEjwu92Zd/y/3kd5k38nVN95VeSxNeNdp3yLcyXgx40+CCBBWBiuxGmHmylNu+DXMcrawSMGy/ELM1FY6PYuCUUSUUtihS0oYuCZE3CLReCcKwaz6l6ne2ovZLfDnKPxF5a8jq1VACHarKFchhxA0QmG2wC+kCIMo2b7ZCCFx3CzCDCjlahF2DsfNQRgh9F3caB+mk8d28hhmgGmO7tkZ+DalQhUCgR3JYFoehiEReUjdYhJ/aPCcF5dLuj8TUMjWopD40iJUgraii1+KsVdDK5FoeV6sTMnhR+uOZl33vijlghLIoBqUCcLHcDoxzRKpSBsLUi0clNyMD6zoWUZJmqQDk2zf/hTzi3azalFywJx7+OCie6iNFog+B9ZWQcehNj/o24t1fYuRXhNz4+18eMndbMnXctPq95DOLa5swYy9ihndRJDZH+ltp52bkR+WcRsqQokiLiYhAkWwC7083yTWcbjxCh42K+VStqpa8rjYhBQoZwgPEGt5u/kUe4nNtKo61qvZvKQW8KTcGwefLDGiFKkTaQJlEmDRyei56hwjS2TWn7g4bRHx0vysHjpbP0yRwZv+IWI1S40WVsl5tKsaZosu3my8SA8JMipGUuQ5zFhNRkXJEaGKHHFRxCZAYuDi0yB6UUgW00a7VcN6MZuVyX1Yb84hG69jWzRF0XQ4sLCGBV4LG5iNjU+tmeG5yF4UhUtDqY9XqxbSG0nihD5CQSwoEKXE6sQ8aoppWuMNzMl3kvBLbInVkXVi7NvbQlskRcG0qfLyzCp2UzQdclaEnOngGxbxoETcz1HjZ2mNNSBQRIMi8aDA3rl1LPI2ES8VsHoKZIIovUGcGCWqY3lwDV52F1Nvp4ngIRFEDY94NkteuqTtOIYj2Lf3VV7ta+Kz3/zlTq+B3aGDo3E0Hif3qVu+wxO/vpO8abzuEXp3lRIClELZDkoYGP1zeYmB+doUCKbm2yxRtDQWyEVCajI2qZyNIcEODfrigxmX0FDkoiHtNSX64gG5qKTgehRcGydMEhghnltD4CzBEC6mMChhEDOj+M4CbFHOhATY5Kx5eCKGGtILpzFo570dd/BozcGsjJSriCzls7//IguKrSzqaeUDW+9kVrGLXhLUkybEIEeEHpVkg2riGbmMdWo2j8l96SW+SzeEYYwiZmQzyepHuXrDWub9LYe3WGK1Coyi4Npz9+XO6F74pWZkkEQYBQy7B8vuxTRKKKOIH1Sj/OryDdjwAAXSBQRGdBMWIVJGCYIUht2HCiMo6WI4XQAI4QECJV1MM4sQITEzhxIl5kmTuF2gXkaJK5u4IajCIukEWJaHG+2jVm7EbQVREMhqhYz1xwKF8iweRlpgpgEJ7osG7toRE8cmy9epmRn7sxPUKYJZCplUhLVACCKEoFER1ipEEcw+gfBB5AVhg0IU+mvWAHeVgQigMN/AcEJEqPAWq3LHgxwYWYG9RRDmHBLPhQx06MkdGxJ72EBIQfaEkNyJIUiQcRgyJRlGN0ReMFA2lPaRyOry8mJg4fXP9zZwxBFT4pg7/4HgS8H6bC09fpSNuToUis3p+RS8Gvwwhm3maEi0YBsBcxKbOLS6kwY7R+Q5QeIeE2ddeY9hStH1qYBg7uB3wcCMFjIBrYUUz+Vt5tglFkc9crlq1vkhTxRSbMk2U8ovoMpNE4tt4tDatSSsgKyf4u7Wg+juPgxZaoKd5XInqQ2ZIMQ28gQCrNRKjmu8n4/ck6HqqfJI7oVliq+fNpsXWj5EyW8alzIkyDNPtJMlxmy6qBEZ8kRIqzhpYuSVSxvl9lM1ZMgRwSagmizLjBZcPFx8ukmRVrH+AMyjTqTpUNXMEt0UcUirGB42CVGgRyUwkWSJUlQOs0Q3FiGvqjn0kaCRHlIiRwmHVlWHSUgUjyilSjXvnnCm9yD/+z/f3GPbAx0cjavxOLltGzbzTyuupuAXaOpoIZHPUJVX1GYdQBEKC8+2iJaKKCWIlUwCS2J7Jg19Ltm4B6FByZGYCmzfIDDKbUl8SyENhWdJqrM2TmBgB7tfsZSO+XSlfEJDYipBTcZGARHPxPWNcsalv6G0Z0niJQvPkuTdkHwkoC/hExqKggPZWAwzTBMv2jg+WBISBYtkzkYJhRUKfEvRlfLIR0I8W+LZkqIT0lHjUnTi+PHFiMRRGKUNhPmVSCMOIoo0bAyZRwkLjAQRt5mCuw85cxZgEFe9ZEX1a+6yHguLNBfb+eimP7Bg6yZWqXnEKLIsthUfEyOUFDyHTaqR28MjaaearaoOv3/Y/Z1W6gkPO7GK2tgrSL+WvHIwRUghjGEaJaqsHhqMNGCRFpKI3cPcYj3/VGpj+c0bMXOCvrMC3FcMIs8b9Bxv8uiy4+kQJXrMPKYfY5atqJNRFALTKpKzsxRCA1OZOGaAZRaJhhHAxg9tqqI5TOFTVAYlBcosloN4JYi7BepSbYSBg1eMYgiB6+WJd+VQs0vY3WD2CowsmN0C5ZTvdcIHq0NgtQjM7O7/IJAmBLMEVpti5JBd/iyFshVGSWC1T3yVRJhUFI6UxBedT7btdyRvHR3MhBEIEwIzoxjaZE+6UDhIEsyXhDWKsKYcKGIpREFg9oKRERhFCHMOZquJlZaEVQK/XmDGS6gqiYxSfn21QiZBSED2N7cyKHdOkCCKYGQh+rRB4m6zUhWojP7XANJRFA+UKAecVQZ2Z3mdoE5RPEgSNCjMLoHVKbBbBKXlkuKbJDJWLoMolQNIZ4PASAvoDwK7mi1aQoeOUpLe/ByiVoakkyNiBtRYklonS8QqYBnQVUyQsEtIFVIMbDZlFrEmn2BdIUG2WIeFRSzaSk2sFcPMY2FQZYYUpMXanr3Y3LsPgVcNQhJxO6mOb6Ep2kkpjCCRJN1ebAEZ38WySixMbaTaCMkUbJqk5LB1HnX3Kuy24deT3yxZ8y6TZ5uibPCrebnzAISMEDMDotE2+gp1FErVmE4aU0iCIE6xMBtDhFhGiB9GsY0SvjTxgiqEMghCFymd/oE6py8juhHL7kUJHxPwSk3g1SHHyByaRh5hFLGQlJSDIULOC/7O5d/81R4tkw6OxtF4nNwVD9zMe7wafHNIDwpZAmGCCsCIgJIImUaoAKE8UCHKiKOEhSEzGEE3CAtQGEEnyogSOAsxgzYUNtKsRqgSZtCGGaSxQgvb6yJa8soD/Zkm0nAJzBChFKFpIYUAw8G3omCm8Ny9AHBkGikchMzjqAxe6GF5G5GGizKSWMLAxEEZgsCqp2g2lWcvp4Qnksghk00KJUkFr+L7vZiqiKVyKCMBhotnzgbDLY+oqwICESdvjk53vxaWlASGgSklb+ppIVXqI0ThmxYNsoPlfWspCouMkSSrXI7sexY3KNGbj/Gw3J8n5HJKvI42YsLDsHswoi24Vi81ZoYmUzLH6GOfboumQgYiEhOfTDyOlxCkCn24VonqlwuonIFc4OMUPdyOkOjjBkIJvHmS4offRNDxIrU/Le/Kmy/x5yhkDZg9YPQIjDzlG6EE5SiUDSpazgoY6fLzQXN55DgjLTBy5YyHjJfXR4DVJlAuGAWgP0AZOTfarvJnS8L+8pmdAhEAJoQpCOvKN3kEhFWQPyYkbKScuekDa1u5HGFd+UYc1gHKxAgjkMlhbxEYWYHVVQ7ShA8yAvbW8nEpq1zTI/xyNsTI9wcHYTlhETQoMEHkyx0MjEw5UySjIBMKFS2vLxOKwhEKs24J9a+8G+68i/Cth9Dr/JbEnQqro9wxYaxz5C2UGDmB1TH+wZy0GBVQDgjjivxbJLkTQpQNtT+1cFfv+fF7AKStCOYqgjoFVvl9cFcb+HMUCIXRJ1Cx/gCuf5xVs6scYAezFDKlUA6E1f21dZHy9StUORA3egVhvSJoKGcNg2YFOYG7uT8nLsDoH9RImSBKYHWWAzijQLnXbXH4+yFj0P1xH+VA3ffswdcbCpkCGVeEqfJ2jZxAJspZRpEvB4jY5edVtHxc9maBt1ChoqpSDmQ5q5kvRtggGsmbNlnLpJ0q7EBihkVSeBSTFjVBAbtXEI1nCKVLKelj+T69bbPpqa0ncEuU8iauX8R0CnhVDnlssjLJ3LCHDlVFvNBHtV+kEMbwIjY5M0bUzSIKgqKyCbCIOUWEERIphfiGRR295c4leZv6hnayKYXXkaKxO2Cu2UaqKyAhPNxi/3dKXpBrgtxsyONiZQwiToF4QZV731X5IMAMwfAV/lLFY2sO5Uv/fcMeveZ0cDSOxuPk/u2vt/K/mZDeZJTWaAPhLgygNlMJpUgEBZJ+huV9a9kYnUdPpJpUqUg0LH+At8QbiIYl5mW20ZRvozHdRn1fJxE8trizqC70EfcLdIoqelSCnIywVdWRJ4Lo7w2zUTXtNMtj2b1EYhvwSk14xf75lkQJN9KOaZRoTq5hP1pYlusm5WVIR2MkpSLhlXCCECUgrkJi7QFOd4iZLbfzMEqv7QZZ3F/Sc35A9d/ejnfkRqx/vEr80cm5lqSjyp2+ouVMjkwApirX1hkgq8pBR1inkHGFqq0itLNU6qQG5pkADD+K6VVhSBslJJG+hUR6F+P01BJUZwntHKYfx+2aj9lahIiL6TYi+1rw50uCWI4g0kW+9mWCSA+mn0AhMf0kQgkCtw8jdJFmCatUhRFEcfKzMfwYRuhglBKETjdCRJBWHi/WjlVKEToZUCbSKmD6MdzsPNzNtajWdWxruY9fLT6ED218kVlHnUN2ySuIjA+ugxfdSlhsQ4bd5WyMv4hk/m3Y2Tr6xG+Qm17B7FYYaYHwyp3nRFDO+oTVqhzMpRREYwg3iTfHQ2SLGF0+Zk+IKJQDO7Nj17Jy0i0HDvljTcSivTGDFJGeBdi5OvoWPECw7XmsVoW1TRDWgndUDTLi4z6RwX3ZwMiBt7BcRQkQecbAzIhyUFMUSFehIuWARnjlAMDeIkYFHlNZUAv5twTkjpPgOghpInoLpG62cF81MMYeZ1R7Hf787r3512/dske3qYOjcTQeJ3fNgw/zyTueZ3PYxH7meixL4dkOBlAj0mSiSfqKkXI1lhlSjLhgGtRnuwhMi5wbxzYCAsdBBpB3IthBQN6JkvDzGEUft1QiYgXIuA2OQEjFNreRwDQRQuAHBjFZAqEoYuOGPjEKhKFBGIATlCAvKRRtZKQ8CWgdabAFoWPRW1VD3Msj/BCbADfwUBIIIZLOsY1aUlaBvO+gbJOStEh6OSJ2QCEVA9tAmFBwIrh+CSMIqSn24XsGPWYVW+06vLxBLJtFhkZlUs+RYhTxsHa/7c4OJI1eomGBhFekWqU5Rq3goOJG6jflsLoFMqrI19tQHeJkJEauXCVhtQmM3O7fAJRVDhyEbyA8MNPlj5t0KLd3WaiQVQqRL2dMZEJROEziLYPa507mu6tn84HiBiJnvUhY6MR9xcBuKVfFBHX97W6McgPmYJZCJhRGvlxOGVfICKiYwmoXKBvCJCi3vI7VJhCl8s05aFIITyAjqtI7XoTl7Ityy0ENQiFCBzOIYXop7EI9InTKKyJwe+dhd6dwW+sRloFvboNYBEPFgRBZ7EZ0SChmINmENAzSHStpyW2gKARx4RCzkwSlNFsiLp1ulBovTY+bZFusjmNbnqO+pLCrF+BIQSRUhJEkflCeQ9AOFcowwI4gAWG6SD+HKnThGYKSCMn6fSjpYdgxsGNYwiVppzCFjV3KE1oOCkmm2M5aN+Tl2oU8Pvcwrr34dD537U1c+PhfWG434QoHrCiGX8BINOHEm1G5dvI9q+kstuIpnzlV+xGduz/FxTlUVJQHTrXyOLlmRGCCqQiNLO6WJHRKwkIXMijhWnFErI6wNsBPZSAeRboehAGe2YoIIDC2gQHKCBAFE+FGCavBLczFyczB3BilZctzbBGKJ2JJOiIRPti5gUXNe6MWeZjFGGa7SWfrBpABNfssQDZBKbkJI3Rwe5oJnTyFug340XZ8t51Q9KJiCtNLYuebsIs1SNOjkFqF0V3E3mhgbS03oDd7BWaXIKxRBLMVYVU5K6lskMn+TFKknEEUJYGRKWd6UCCj/dmjFChLlbN6SYXZV84Emb1gtwiUgKBJ9X9uoH+KuXLWMFXOMqlIeVlYVw7mzYzAn6cQMkKy7RCqnzoeZRTpPexhMk0rAIXRW85E2hsFwi8fg0z1Vze2CmQSZKycgTR7+4PeEjjrDLzFspypBPBBeINt7Kx2AUY586IMBaZAWf2fxwyV4xRBuTOCke9vniXLfw9kKaVDOVM2xqgryipnhIXPsCBvYDuowSrWsV5LODBkS7mNmnJBRhSyGoJahawuZ/jsDf2ZUVE+dmVCWN+/D8rfScIHs6v8vvzjqNP5zH/99y5/b+4KHRyNo/E4uU//7S5e/dZ3aMh00xNN0uVUkXFi5OwodhgghYESCtMKCQMLQynyVoQ+J46lQkqmjaEksaBEYJh4hkUk9MnYUWJBkYLp4ps2Ravc68A3LELDoDVeT8FysWRA3C8SC0tUF7P0uAmC/h5O8aBIqpQjb7sUrCh1xT5m5bpQQrAp0UTGjREKg4wdIzAsTCVxpI8T+uUAKyjhhh49bhI39MpjlAhBKAykMJBCUDKdEYO6lT/QlgxwpI8pJYZSRMMSThgQ8wvs1beZqFVgq11PkQieadMTSRIJSiS9AgKFLX0SYYGmsJM5qh23EBCVRfIxF8uXmGZAwi8QCTxipRK2F5Z/oQuB45WrF41S/338NVJC9VfzgNkHYU3/F4gNZrr85eLP7/8yr1b488vBz7DmBn5/5iBSOTUDG8cIIghpE+1chvXoQn5asvnkv13Id2/+Ix95sZX4MSXCeBY/0okf7cAq1WD6CYzARYQ2omSi3BChbIzQRakAQ0UwSzGkn8cMqpBuESNroewifqIH009iWEkoKYx0gLQUVlCLmUug7BCVKRL0BhS9Yvl7T0mCoEjOzxFaNsKwKfm9pAt9vFjVyJrq+bRHaogGPgvTW/EtQcF2MKSiZLp0uDUIEyJGCdNS5GbVsf8cg6Rrsb4rIJ2XBCpCTSrKkjqXzoxiTtxgcV0Vz61fwytbi2QCQV8pRspL44oSnuFil0oYnsR3bUqRCFWlNEVcjFBSciOoqIXjCObUgCsNCtLEtiWqlKOtRxAYgiA0kCGElkNDPGS/2UneedgxHLawCccyCELJv/3+Dzy1sqM8aKtbHvxShgbVmTQR36O3Lkm8Pk6Pn8Bo7eCQ9peZleuhSoJn2RhmhDAsYJayeHaE1lgVm5KNdEZqURGDohWhIddF0XQxwhBlCOySz+JsJ0uUi2VGoNSLI0NiXhbTjlOwY1iBTxCWaHFMHq+eTb45wYGLqli+YD/2nruIRbUWP7rldzy7oUBXMUlj0I2fcphT6+CjaN3iM7ujl/l+SDpaRRdp0iLGwdkejvACquPzMEOPUPWR9QP6VEgf5WEP5rhV2LMNrCqF4bv4RjsicDDsKlSoENIhVDlKvoWlash57VhRj4iRxCi5iJoCYVU7YbyEH2sHIXHTC7FKKZQRoIwQZZQ7ZwROH0GkG2kVUUikVcQu1mEEEaSRB2FiF8rT9IROBmV6mMUqpJPHKlWjPA/RGaewuo6/Wj5r5iWJGIIj1mU5sTaGrC+gEhI/3kMQ6UGZJaThlWcvMEsoI0RIuzz7gB9DWgWEtBAY2LmmStZSEaIsn9DtI3B68aMd5fHhRH+EMvzrcawvm8EoBaA8WUE5gBloZ9YfCAqvPyAq9ncOGEiSh+XvKemCGtoZVw0vAgaDw4TJcru1gar5AVahFtNLlWcuiLYDAmmWyhsyJCK0MYIYodsHSiBCB2UEmF4SJYo8c9eZXPo//8WepIOjcTQeJ/evv76JRd/8yuu6Cb9WQxteajsm7XLQ4s8p937yFperI4xcf5YoLco9oqoABWGDwp+tEKaNMgL6uwCCNLFKVQTRbuxCPWapCjc9D0rludiMzgS59gAjBiLiY8g4QhiEJQOVriYfxiiEPbiBRQcGG2yDZ5IGNfNq+MaFH6apKoZSiv/4za94emWavdJ9RIrdJNwqsCNssqHbCgmtCOBh+IJ6LyRvmBQMH9cMKEUdQs8gxKAQTxLKcu9Gx/ewZEhESTzbwBcWMVXCcx2KhosIZX9jVItYPIrlmMSiEeZGFXlcECZVjmSfWQ3UJOtpqm1iXm0KIQShVGSLQWVUcscysE2jPD7gjkZafwPxQ8najiwbOtMUfZ/qiKQ375GMxnCtCIsbU2RLAaYhmJWKEHfHzpDmvYDunIcloD1dYFvawzYVjUmXzZ19tKc99p1TgyUkiWiEppoEycju9wiTUpUHWg8llmXih5K+fIlnX21h88Y1dOe24kYcls1bwtzZS7Esh9WbNtHa9hQdnQVe6ShhFdP4yiQ0TSwEji2ojTk0RAyisWaqYnGUEnilIqVcF3mlaMun2ZyVWNkClgxJKIs+00Yon7QRwyeOHWSY6+doziuqSyUSEnJuhD7pUcQnbZtkjJC4ihALChTNGJ2WRcwq4lsBSjYS2h5F16A5AScdcRQnH30kkUh5DsxNLa3c+Ne/smpjC0IUQUaIhgaWVHgm9KkEUS/EEgoVKETgEVAkcGPUOQm2mhJfWMSDgFAZdBiShfkCc1SCWfkiVhiQUIrqUh7DMLFcF6O2hGm5KGFRLEiCfBwV6cHM2VihjREFT7QhSx6JiIMSNRCUENEcpkqW28b5IUYoEYkSKBvTjBDKUnmoCEshrCgqLJWzZ0oiQoFpJDE8gZ83wPGw4gYqkscL8uCbWIVGcArIok2+VECUonSokFyQoYgkgY0tFQnDxXETYBXxPIsAcITEM1xCGeIqhaMkCcPkxVNrufD9F72ej9MoOjjaiR/+8Idcc801bNu2jQMPPJDvf//7HHHEEbv02vE4uZmebp674e04z6cxe8qRviiWG6UOmYoJBJXpOYQPZk+5wZ+KMLxhaf+Ei0aWwYnKwnK61iiWU5qiOLrxbBgvp0TNTHl9VP+vAYfKLwtll9PNRr7cMJWwnNUY2n5AmaryOmWX/5l9Q4Y3kf0/cPp70Bi5HTfkLf96Kv8qUVa54SVWuRcOQflXkJDl8iinnNKFcqZFRstVRDJeTmuLUCDy/cdkgYyWU74q0p/2pv8cOxEMZRNGwLCiCDOOjJQAiZ2ZhWivo5SzKHkWrg1GKovheoR9VfjZGJ5ZIPBMWkoO7WGKuPKJmhF67QCnUJ5HqssO6LJAmAERwyPuGjg1tTQ0zWbB3KUEpSJb+jyqzRCBhR1ziETjHLhkEfXJCBHHwgslrlWuGtU0beeUUlP+8xIEAUIIstks7e3t5HExTJOedB9mEGDYNrXxCPF4HInAtB2y+SLtXb2kojYx2yTwffJSEI/HKJS6ae9Lk8sbpCyTUt7HUhnSfZ3E65M4wiQjq+hJ92KHATUpCMJugrwktBwsW6FklKxngwypa4hQFUtB3kXZBk48Tq9v4ZqC6phBVTLCwsYmTLOcAg/DkJLnU57JU2H1D2zp+XnCoFz+UrEAVgQhIOFaOI6zx9+n8Q6O9lxjjklwww03cOmll3Lttddy5JFH8p3vfIdTTjmFVatW0di4+xN07gnxqmo2F9+H3RQQpjxCCoRWisDwEAik72NYPk6hDtv1wcoSCBNwQBUJRAjCIUqAMA2KYYgSJqHh4xgmBSVxfJu46yGNAsLxMaSN8MHJ+wRRA2ywnYAgdDGEQShKKCnwgwQIgY0HQUBomORCEyUMrNAkavg4VZ2IfBIntMGCEAMVSELTR1oBRjEKpolCIZVEGCWkoXCFgcDEkCHCzmDYBcxCHGGFGEZ5BOPQNJChQSgFhjAgFMhigl7PxggdIsJHOQGmWQQrwDIhCB1CL4ofKPKiiDKiGKU4Hh6m41MKIhhmgB3mKORjZKWDW4wT+iHpMMQhwAocCpaJVGAaAtO1UE5IMpYgXt3M/scu5dB9lhKNRunt7aGrpYWYGyFSW0ssHsfzPBKJROXLYbxEjJmRUdG0PWWqB0YAllW+zVZVVVFVNbR95dgDwJZVsff87Y23NHpS5olkmiax6OjvQtcdnC8xGR97cNDpZFpnjo488kgOP/xwfvCDHwAgpWTevHl8+tOf5l//9V93+vrxjjynoz31S0wphVKKIAgwTXO3AouBS3I6fPFpmqZpE2+879/T9qeq53k89dRTnHTSSZVlhmFw0kkn8eijj475mlKpRDqdHvZPG25PBSRCCAzDwHGc3c64CCF0YKRpmqZNmmkbHHV2dhKGIU1Nw1OPTU1NbNu2bczXXHXVVZXUZlVVFfPmzZuIomqapmmaNo1M2+Dotbjsssvo6+ur/Nu8efNkF0nTNE3TtClm2jbIrq+vxzRN2trahi1va2tj1qxZY77Gdd1hjcY0TdM0TdNGmraZI8dxOPTQQ7nnnnsqy6SU3HPPPRx99NGTWDJN0zRN06azaZs5Arj00ks577zzOOywwzjiiCP4zne+Qy6X44ILLtil1w/0itINszVN0zRt+hi4b49Xh/tpHRydc845dHR0cPnll7Nt2zYOOugg7rjjjlGNtLcnk8kA6IbZmqZpmjYNZTKZEeNH7RnTepyj10tKSWtrK8lkckp2HU+n08ybN4/NmzfP2HGYZvo5mOnHD/oczPTjB30OQJ+DkcevlCKTydDc3IwxDgPoTuvM0etlGAZz586d7GLsVCqVmpEfhqFm+jmY6ccP+hzM9OMHfQ5An4Ohxz8eGaMB07ZBtqZpmqZp2njQwZGmaZqmadoQOjiawlzX5YorrpjRYzPN9HMw048f9DmY6ccP+hyAPgcTffwzukG2pmmapmnaSDpzpGmapmmaNoQOjjRN0zRN04bQwZGmaZqmadoQOjjSNE3TNE0bQgdHmqZpmqZpQ+jgSNPG0ZVXXjlqapqFCxdy/vnnT06BZrix3g9N07SRdHCkvaE8//zzvO9972PBggVEIhHmzJnDySefzPe///3JLpqmabvpG9/4BrfccstkF0ObgXRwpL1hPPLIIxx22GE8++yzfOxjH+MHP/gBH/3oRzEMg+9+97uTXTxN03aTDo60yTKjJ57V3li+/vWvU1VVxYoVK6iurh72XHt7++QUagopFos4jjMuM1jPBPl8nlgsNtnF0LYjl8sRj8cnuxjaG4T+ltTeMNauXct+++03KjACaGxsHPZYCMGnPvUpbrzxRvbdd1+i0ShHH300zz//PAA/+clPWLp0KZFIhBNOOIENGzYMe/2DDz7IWWedxfz583Fdl3nz5vG5z32OQqEwXocHwAknnMD+++/PU089xTHHHEM0GmXRokVce+21w9b7xz/+gRCC//u//+M//uM/mDNnDrFYjHQ6DcCNN97IoYceSjQapb6+ng9+8IO0tLSM2t8rr7zC2WefTUNDA9FolL333pt///d/H7ZOS0sLF154IU1NTbiuy3777ccvfvGLUdv6/ve/z3777UcsFqOmpobDDjuM3/3ud5XnM5kMl1xyCQsXLsR1XRobGzn55JN5+umnh23n8ccf5x3veAdVVVXEYjGOP/54Hn744VH7e+ihhzj88MOJRCIsWbKEn/zkJ6/pPB933HHEYjH+7d/+DYA///nPnHbaaTQ3N+O6LkuWLOE///M/CcNwzG0899xzHH/88cRiMZYuXcpNN90EwP3338+RRx5ZOa933333sNdv3LiRiy66iL333ptoNEpdXR1nnXXWqGvx+uuvRwjBww8/zKWXXkpDQwPxeJwzzzyTjo6OnR7rtm3buOCCC5g7dy6u6zJ79mze/e53D9vPwoULeec738nf//53DjroICKRCPvuuy9//OMfR22vt7eXSy65hHnz5uG6LkuXLuVb3/oWUsph60kp+e53v8ub3vQmIpEIDQ0NvOMd7+DJJ58Eyp/RXC7HL3/5S4QQCCEqbfUG2o699NJLfOADH6Cmpoa3vOUtADz33HOcf/75LF68mEgkwqxZs7jwwgvp6ura6bnQtAE6c6S9YSxYsIBHH32UF154gf3333+n6z/44IPceuutXHzxxQBcddVVvPOd7+RLX/oSP/rRj7jooovo6enh6quv5sILL+Tee++tvPbGG28kn8/zL//yL9TV1fHEE0/w/e9/ny1btnDjjTeO2zEC9PT08E//9E+cffbZvP/97+cPf/gD//Iv/4LjOFx44YXD1v3P//xPHMfhC1/4AqVSCcdxuP7667ngggs4/PDDueqqq2hra+O73/0uDz/8MM8880wluHzuuec49thjsW2bj3/84yxcuJC1a9fyl7/8ha9//esAtLW1cdRRR1WCzYaGBm6//XY+8pGPkE6nueSSSwD42c9+xmc+8xne97738dnPfpZischzzz3H448/zgc+8AEAPvnJT3LTTTfxqU99in333Zeuri4eeughXn75ZQ455BAA7r33Xk499VQOPfRQrrjiCgzD4LrrruNtb3sbDz74IEcccQRQbnv29re/nYaGBq688kqCIOCKK66gqalpl89zV1cXp556Kueeey4f/OAHK6+9/vrrSSQSXHrppSQSCe69914uv/xy0uk011xzzaj36p3vfCfnnnsuZ511Fj/+8Y8599xz+e1vf8sll1zCJz/5ST7wgQ9wzTXX8L73vY/NmzeTTCYBWLFiBY888gjnnnsuc+fOZcOGDfz4xz/mhBNO4KWXXhqVxfr0pz9NTU0NV1xxBRs2bOA73/kOn/rUp7jhhht2eJzvfe97efHFF/n0pz/NwoULaW9v56677mLTpk0sXLiwst6aNWs455xz+OQnP8l5553Hddddx1lnncUdd9zBySefDJSza8cffzwtLS184hOfYP78+TzyyCNcdtllbN26le985zuV7X3kIx/h+uuv59RTT+WjH/0oQRDw4IMP8thjj3HYYYfx61//mo9+9KMcccQRfPzjHwdgyZIlw8p+1llnsWzZMr7xjW8wMBPWXXfdxbp167jggguYNWsWL774Ij/96U958cUXeeyxx3SDfG3XKE17g/j73/+uTNNUpmmqo48+Wn3pS19Sd955p/I8b9S6gHJdV61fv76y7Cc/+YkC1KxZs1Q6na4sv+yyyxQwbN18Pj9qm1dddZUSQqiNGzdWll1xxRVq5MdswYIF6rzzzntNx3j88ccrQH3729+uLCuVSuqggw5SjY2NlWO97777FKAWL148rKye56nGxka1//77q0KhUFl+2223KUBdfvnllWXHHXecSiaTw45HKaWklJW/P/KRj6jZs2erzs7OYeuce+65qqqqqrLvd7/73Wq//fbb4bFVVVWpiy++eLvPSynVsmXL1CmnnDKsDPl8Xi1atEidfPLJlWVnnHGGikQiw8r+0ksvKdM0R70fYxk4z9dee+2o58Z67z/xiU+oWCymisXiqG387ne/qyx75ZVXFKAMw1CPPfZYZfmdd96pAHXdddftcD+PPvqoAtSvfvWryrLrrrtOAeqkk04adl4+97nPKdM0VW9v73aPs6enRwHqmmuu2e46SpWvWUDdfPPNlWV9fX1q9uzZ6uCDD64s+8///E8Vj8fV6tWrh73+X//1X5VpmmrTpk1KKaXuvfdeBajPfOYzo/Y19Bji8fiYn5WBz9X73//+Uc+Ndd5+//vfK0A98MADOzxOTRugq9W0N4yTTz6ZRx99lHe96108++yzXH311ZxyyinMmTOHW2+9ddT6J5544rBfxkceeSRQ/iU98Ot96PJ169ZVlkWj0crfuVyOzs5OjjnmGJRSPPPMM3v60IaxLItPfOITlceO4/CJT3yC9vZ2nnrqqWHrnnfeecPK+uSTT9Le3s5FF11EJBKpLD/ttNNYvnw5f/3rXwHo6OjggQce4MILL2T+/PnDtjnwy1spxc0338zpp5+OUorOzs7Kv1NOOYW+vr5KlVh1dTVbtmxhxYoV2z2u6upqHn/8cVpbW8d8fuXKlaxZs4YPfOADdHV1VfaVy+U48cQTeeCBB5BSEoYhd955J2ecccawsu+zzz6ccsopOzy3Q7muywUXXDBq+dDzmclk6Ozs5NhjjyWfz/PKK68MWzeRSHDuuedWHu+9995UV1ezzz77VK4r2Pk15vs+XV1dLF26lOrq6lFVjQAf//jHh2VFjj32WMIwZOPGjds9xmg0iuM4/OMf/6Cnp2e76wE0Nzdz5plnVh6nUik+/OEP88wzz7Bt2zagnFE99thjqampGXY9nHTSSYRhyAMPPADAzTffjBCCK664YtR+diez88lPfnLMYxpQLBbp7OzkqKOOAhjzvGnaWHRwpL2hHH744fzxj3+kp6eHJ554gssuu4xMJsP73vc+XnrppWHrjrzpV1VVATBv3rwxlw+9eWzatInzzz+f2tpaEokEDQ0NHH/88QD09fXt8eMaqrm5eVTD07322gtgVHuURYsWDXs8cKPce++9R213+fLllecHbtI7qp7s6Oigt7eXn/70pzQ0NAz7NxBUDDSE//KXv0wikeCII45g2bJlXHzxxaPaCV199dW88MILzJs3jyOOOIIrr7xyWLCwZs0aoBzwjdzfz3/+c0qlEn19fXR0dFAoFFi2bNmoMo913NszZ84cHMcZtfzFF1/kzDPPpKqqilQqRUNDAx/84AeB0e/93LlzR93sq6qqdukaKxQKXH755ZW2O/X19TQ0NNDb2zvmNTbyeq6pqRm1zZFc1+Vb3/oWt99+O01NTRx33HFcffXVlWBnqKVLl446lpHX3Zo1a7jjjjtGvT8nnXQSMHg9rF27lubmZmpra7dbtl0x8voG6O7u5rOf/SxNTU1Eo1EaGhoq6433Z1N749BtjrQ3JMdxOPzwwzn88MPZa6+9uOCCC7jxxhuH/VI1TXPM125vuepv0xCGISeffDLd3d18+ctfZvny5cTjcVpaWjj//PNHNTydTEN/Re9pA8f5wQ9+kPPOO2/MdQ444ACgnLVZtWoVt912G3fccQc333wzP/rRj7j88sv56le/CsDZZ5/Nsccey5/+9Cf+/ve/c8011/Ctb32LP/7xj5x66qmV/V1zzTUcdNBBY+4vkUhQKpX2yPGNde56e3s5/vjjSaVSfO1rX2PJkiVEIhGefvppvvzlL49671/rNQblNkTXXXcdl1xyCUcffTRVVVUIITj33HPHvMZ2ZZtjueSSSzj99NO55ZZbuPPOO/nKV77CVVddxb333svBBx+8w9eOJKXk5JNP5ktf+tKYzw8EU3vKWO/R2WefzSOPPMIXv/hFDjroIBKJBFJK3vGOd0ypz6Y2tengSHvDO+ywwwDYunXrHtne888/z+rVq/nlL3/Jhz/84cryu+66a49sf2daW1tHdVtevXo1wLBqwrEsWLAAgFWrVvG2t71t2HOrVq2qPL948WIAXnjhhe1uq6GhgWQySRiGlczAjsTjcc455xzOOeccPM/jPe95D1//+te57LLLKlV8s2fP5qKLLuKiiy6ivb2dQw45hK9//euceuqplca4qVRqh/sb6Fk3kGkaeYyvxz/+8Q+6urr44x//yHHHHVdZvn79+te13bHcdNNNnHfeeXz729+uLCsWi/T29u7xfS1ZsoTPf/7zfP7zn2fNmjUcdNBBfPvb3+Y3v/lNZZ1XX30VpdSw7NHI627JkiVks9mdXg9LlizhzjvvpLu7e4fZo91tPN3T08M999zDV7/6VS6//PLK8rGuBU3bEV2tpr1h3HfffWP+Sv7b3/4G7F6Vyo4M/EIfui+l1IQNNBkEwbBu6Z7n8ZOf/ISGhgYOPfTQHb72sMMOo7GxkWuvvXZYhuX222/n5Zdf5rTTTgPKAcZxxx3HL37xCzZt2jRsGwPHbZom733ve7n55pvHDKKGdiMf2Y3acRz23XdflFL4vk8YhqOqPBobG2lubq6U89BDD2XJkiX893//N9lsdrv7M02TU045hVtuuWVY2V9++WXuvPPOHZ6fnRnrvfc8jx/96Eeva7vb29fI6/n73//+qCEDXo98Pk+xWBy2bMmSJSSTyVEZuNbWVv70pz9VHqfTaX71q19x0EEHMWvWLKCctXn00UfHPM+9vb0EQQCU2/UppSpZw6GGHnM8Ht+tYHCs9wcY1ktO03aFzhxpbxif/vSnyefznHnmmSxfvhzP83jkkUe44YYbWLhw4ZiNa1+L5cuXs2TJEr7whS/Q0tJCKpXi5ptv3mmD1h0Z+OU9ss3QWJqbm/nWt77Fhg0b2GuvvbjhhhtYuXIlP/3pT7Fte4evtW2bb33rW1xwwQUcf/zxvP/976905V+4cCGf+9znKut+73vf4y1veQuHHHIIH//4x1m0aBEbNmzgr3/9KytXrgTgm9/8Jvfddx9HHnkkH/vYx9h3333p7u7m6aef5u6776a7uxuAt7/97cyaNYs3v/nNNDU18fLLL/ODH/yA0047jWQySW9vL3PnzuV973sfBx54IIlEgrvvvpsVK1ZUMieGYfDzn/+cU089lf32248LLriAOXPm0NLSwn333UcqleIvf/kLAF/96le54447OPbYY7nooosIgqAyztJzzz23m+/OoGOOOYaamhrOO+88PvOZzyCE4Ne//vVOq65ei3e+8538+te/pqqqin333ZdHH32Uu+++m7q6uj22j9WrV3PiiSdy9tlns++++2JZFn/6059oa2sb1pAcylViH/nIR1ixYgVNTU384he/oK2tjeuuu66yzhe/+EVuvfVW3vnOd3L++edz6KGHksvleP7557npppvYsGED9fX1vPWtb+VDH/oQ3/ve91izZk2lyuvBBx/krW99K5/61KeAckB899138z//8z80NzezaNGiYQ3ZR0qlUpV2U77vM2fOHP7+97+PS2ZPe4Ob6O5xmjZebr/9dnXhhReq5cuXq0QioRzHUUuXLlWf/vSnVVtb27B1gVHdxtevXz9mt+aBbvE33nhjZdlLL72kTjrpJJVIJFR9fb362Mc+pp599tlR3bF3tSt/fX29Ouqoo3Z6jMcff7zab7/91JNPPqmOPvpoFYlE1IIFC9QPfvCDnZZ5qBtuuEEdfPDBynVdVVtbq/75n/9ZbdmyZdR6L7zwgjrzzDNVdXW1ikQiau+991Zf+cpXhq3T1tamLr74YjVv3jxl27aaNWuWOvHEE9VPf/rTyjo/+clP1HHHHafq6uqU67pqyZIl6otf/KLq6+tTSpWHI/jiF7+oDjzwQJVMJlU8HlcHHnig+tGPfjSqTM8884x6z3veU9nWggUL1Nlnn63uueeeYevdf//96tBDD1WO46jFixera6+9dsz3Y0fneSwPP/ywOuqoo1Q0GlXNzc2VISMAdd999+10GwsWLFCnnXbaqOUjr8menh51wQUXqPr6epVIJNQpp5yiXnnllVHXz0BX/hUrVgzb3sA1MLRMI3V2dqqLL75YLV++XMXjcVVVVaWOPPJI9Yc//GHMMt95553qgAMOUK7rquXLl495fWUyGXXZZZeppUuXKsdxVH19vTrmmGPUf//3fw8bViMIAnXNNdeo5cuXK8dxVENDgzr11FPVU089VVnnlVdeUccdd5yKRqMKqBz3wPvY0dExav9btmypXLNVVVXqrLPOUq2trQpQV1xxxXbPhaYNJZQah588mqbtspdeeon99tuP2267rVKttT0nnHACnZ2dO2wLpGl72sKFC9l///257bbbJrsomjYhdJsjTZtk9913H0cfffROAyNN0zRtYujgSNMm2cUXX8wjjzwy2cXQNE3T+ungSNM0TdM0bQjd5kjTNE3TNG0InTnSNE3TNE0bYkaPcySlpLW1lWQyudsjsWqapmmaNjmUUmQyGZqbmzGMPZ/nmdHBUWtr66gJIDVN0zRNmx42b97M3Llz9/h2Z3RwlEwmgfLJTaVSk1waTdM0TdN2RTqdZt68eZX7+J42o4Ojgaq0VCqlgyNN0zRNm2bGq0mMbpCtaZqmaZo2hA6ONE3TNE3ThtDBkaZpmqZp2hA6ONK0KayQ9/G9cLKLoWmaNqPo4EjTpqi+7hyPX/pDHvjM9ya7KJqmaTOKDo40bYq6/we/5Kmeu1nZc89kF0XTNG1G0cGRpk1Rhfb1lb+llJNYEk3TtJlFB0eaNkWFvlf5O5vOTWJJNE3TZhYdHGnaFGX4xcrf7du2TmJJNE3TZhYdHGnaFLXeVpW/173w/CSWRNM0bWbRwZGmTVF5YzA42vjys5NYEk3TtJlFB0eaNkUV7VLl765c5ySWRNM0bWbRwZGmTVEhgxMqZpW3gzU1TdO0PUkHR5o2RUWLgwFRCd2VX9M0baLo4EjTpqimnnTl70AHR5qmaRPGmuwCaJo2tojyWZg6mkKQpTXQXfk1TdMmig6ONG2KqnabOKTuJACe8b4zuYXRNE2bQXS1mqZNUaaVrPztCGcSS6Jpmjaz6OBI06YoWw72VoubqUksiaZp2syigyNNm6JMM1r5OxnqzJGmadpE0W2ONG2KMk2b1cZWothElA6ONE3TJooOjjRtisq7Jo85LwGwOK92sramaZq2p+hqNU2botLu4MfTUjo40jRNmyg6ONK0KWpIe2zMIVOJaJqmaeNLB0eaNkWpIQGRIXVwpGmaNlF0cKRpU5QxJDgSOjbSNE2bMDo40rQpSuiPp6Zp2qTQ376aNmUNpot0c2xN07SJo4MjTZuqhlSlSZXc/nqapmnaHqWDI02bopQY/HgqPSSZpmnahNHBkaZNUWpY9/1w0soxWbp++zItVz5CkC5NdlE0TZthdHCkaVOUGtpFbQb2Vis834kqhvT8YfVkF0XTtBlGB0eaNlWJoQ2yZ+5HVXkzL2umadrkmrnfuJo2xc30zJGmadpk0cGRpk1RQ7vv6zGPNE3TJo7+xtW0KWpY5mgmp470IE+apk0wHRxp2hSlhsVDMzg40jRNm2A6ONK0KWpYwkRPrqZpmjZhpmxw9MADD3D66afT3NyMEIJbbrll2PNKKS6//HJmz55NNBrlpJNOYs2aNZNTWE0bBzpz1G8GH7qmaZNjygZHuVyOAw88kB/+8IdjPn/11Vfzve99j2uvvZbHH3+ceDzOKaecQrFYnOCSatpEmMERgm5zpGnaBJuycxKceuqpnHrqqWM+p5TiO9/5Dv/xH//Bu9/9bgB+9atf0dTUxC233MK55547kUXVtHExPCaYwcGRpmnaBJuymaMdWb9+Pdu2beOkk06qLKuqquLII4/k0Ucf3e7rSqUS6XR62D9Nm6qUjoc0TdMmxbQMjrZt2wZAU1PTsOVNTU2V58Zy1VVXUVVVVfk3b968cS2npr0eukG2pmna5JiWwdFrddlll9HX11f5t3nz5skukqZtl84caZqmTY5pGRzNmjULgLa2tmHL29raKs+NxXVdUqnUsH+aNlUp3RJZ0zRtUkzL4GjRokXMmjWLe+65p7IsnU7z+OOPc/TRR09iyTRtzxkaGildraZpmjZhpmxvtWw2y6uvvlp5vH79elauXEltbS3z58/nkksu4b/+679YtmwZixYt4itf+QrNzc2cccYZk1doTdM0TdOmvSkbHD355JO89a1vrTy+9NJLATjvvPO4/vrr+dKXvkQul+PjH/84vb29vOUtb+GOO+4gEolMVpE1bY+SYjB3pHRXfk3TtAkzZYOjE044AaW23+ZCCMHXvvY1vva1r01gqTRt4gzvrTZZpdA0TZt5pmWbI02bCXSDbE3TtMmhgyNNm4KUksO68uswSdM0beLo4EjTpiDfKw7PHOlqNU3TtAmjgyNNm4Kyne0zem41KeVkF0HTtBlMB0eaNgV1bt0yLHM046rVhsRGuu2VpmkTTQdHmjYFtW5eP6wr/wxLHEGgM0eapk0eHRxp2hS0ad3qmZ0v0bGRpmmTSAdHmjYFbW2f2dVqQ9sciRmXNtM0bbLp4EjTpqBspntmt7XRbY40TZtEOjjStCnIExI5k7vy695qmqZNIh0cadoUZCpzRlerEc64I9Y0bQrRwZGmTUGGEMNHyBYzK3WkpA6ONE2bPDo40rQpyJphwdBIw4IjHSdpmjbBdHCkaVOQaeiPpqZp2mTR38CaNgWZIzJHaqYlkuR2/p4EUkq8fHpyC6Fp2oTSwZGmTUHmqGhoptUtDa1Wm9xjf/qv/86Djx1My7P3TWo5NE2bODo40rQpyDTsYY9nWmg07IAn+eDv2LieFf93OHc88L3JLYimaRPGmuwCaJo2mjni8YyrVhuSLVKTnDmKPpQFBZkV7qSWQ9O0iaMzR5o2FRkjw6MZZgqlyhrdDBcuWcFiZ8tkF0XTtAmiM0eaNhWNyJZMoVhhQgw7/Eke8+iMeS+wNm5wivvKpJZD07SJozNHmjYFmWLER3MGV6tNdmR4U12UDzXP4mt1tZNbEE3TJowOjjRtCjJGfDRnWuZoWJujST7679ZUA3BrMjGp5dA0beLo4EjTpiIx04OjIX9P8jhHURnnvPZ3MafUOLkF0TRtwug2R5o2BZmjoqGZFR6pKdSV/3OtH+SY7EGckD5scguiadqE0ZkjTZuClM4cbe/BhArDkGOyBwEwy6+ftHJomjaxdHCkaVOQGBEPzORxjiYzMiyW8pO3c03TJo0OjjRtChIje6vNNGpqTB+SSfdN2r41TZs8M/wbWNOmJjGqt9oMq1ibGrERXe2twx77xeIklUTTtImkgyNNm4pG1KPNtGq1KdLkiLb2DcMed3Z0Tk5BNE2bUDo40rQpaURwNEmlmDRyanRXa+tcO+zxqy8/M0kl0TRtIungSNOmIDFqSOwZFx4NmsRD72zZNOzx6hefnKSSaJo2kXRwpGlT0vCJZ2dcaDQ1Ekd4vT3DHve1b9rOmpqmvZHo4EjTpqSZ3iB7akRHRslDoegUGUIkKshMWlk0TZs4eoRsTZuShgdHUkAQBFjWDPnIDp1bbRLjQhODJ621PGtt5MBgIZYIJq8wmqZNGJ050rQpaKw2R725GTQg4dRIHGEJxbPWRgBeMjdjz5DYVNNmOh0cadpUpEZkjoC+7Ayq0pkiffnNITGqL0JsU39latpMoD/pmjYVifJd2egf4Eih6OrpnswSTagpEhthGGLEY/2VqWkzgf6ka9qUVP5omv3/VULRsm3rZBZoYsmpMbeaoeSwx/ZMn9ZF02YI/UnXtCmpnLEw+6vXFLB+/epJLM/EUpPZCnsISwwfUmHGz3mnaTOEbl6oaVOS0f//Q6rVWtZNZoEmzyQGSuaI349CmdtZU9O0NxL9M0jTpiAx0OZoSHAkM22TWaSJNTUSRxjGiN+PYoZNcqdpM9S0DY6uvPJKhBDD/i1fvnyyi6Vpe4RieINsCSg1g8bYmSJd+Ud+RRpSZ440bSaY1tVq++23H3fffXfl8YwZIE+bAfqr1QZ6qwlFYM2gG/PQQSAnsRjGiCEVhNSZI02bCaZ1NGFZFrNmzZrsYmjaHleuVlODvdVQKHNaf1x3zxTJHCkx/JwLZlCAqmkz2LStVgNYs2YNzc3NLF68mH/+539m06YdTwpZKpVIp9PD/mnaVDRQrSb6AwOJYkZ1lJoqAx2NaICtwhkUoGraDDZtv26PPPJIrr/+eu644w5+/OMfs379eo499lgyme2PInzVVVdRVVVV+Tdv3rwJLLGm7b7BBtkgTGdyCzOhpsY4R2pEcl2oafuVqWnabpi2n/RTTz2Vs846iwMOOIBTTjmFv/3tb/T29vKHP/xhu6+57LLL6Ovrq/zbvHnzBJZY03aDGNHmCMU0rwXfLVNlnCPU8DZGIpx+1WoP/+5WXn7k6ckuhqZNK2+Yb9vq6mr22msvXn311e2u47ourutOYKk07bUZrFYb6K2mQLxhPq47N1VioxGZIiWnV/bu1adeIPzBb9gUqWWfe6+d7OJo2rQxbTNHI2WzWdauXcvs2bMnuyiatscMfEAVCmsmDUA4RRpkM6IBtqGm14+rdY+vY+UBH2HNsvdy763PTHZxdpnXmqX3b+uQxfEbvqJUyLH2xQeQUu58ZW3GmbbB0Re+8AXuv/9+NmzYwCOPPMKZZ56JaZq8//3vn+yiadrrNlCbM9AgGwFCj7Ez4YQcmTmaXtm79q0KExshTJ66d81kF2eXtX/vGbIPtNB72/iNCv/IPf/Ohm3nc++fvjRu+9Cmr2kbHG3ZsoX3v//97L333px99tnU1dXx2GOP0dDQMNlF07Q9oD86GpI1scNp+3HdfXKKpI7EyOlDpldw1N3VUfnbLvVMYkleG78lO27b9oy/cei9OfZd+XtkGI7bfrTpaXp90of4v//7v8kugqaNHzG8Kz+ANX1/y+w2NUViI0Zk60b2XpvqsipLVf/foZuf1LK8FkqOz5uf6Wmn+/4jeay4N29O/YJXbv4V+559wbjsS5ueptcnXdNmiEpt2pAowZpJP26nSm+1kRPPTrNBIAPlDf49HYPrcboO+npb6e67gG5gS2Y2s5+8RQdH2jDT8NOiaTOAGF2tNpMyR1M1OBrZQHuqC4zBxsaBjE5iSV6jcWor3dvbWfl7Y2QJ6eL0el+18TeDvm01bfoYzBwNLrPGqYphKpoysdGoQR+n11fmtlRd5e+CnZrEkrw241Wt9oeHVqGQ5GObMVQfm2qWjct+tOlLV6tp2hQmoH94bDCm2Y15j5nUEbJHtjmaXu9BwYpX/vacxCSW5DUap+Cop9cjGdtKLrUeoSAXax6X/WjT1/T6pGvaDFEZmFkNTiFiTJVsykSYMsc6orpFiLFXm6IUTnnSYkJEMD0GsMwGIb9Y5NAaEeMWHPUGMXynr/xAQKy7e1z2o01fOnOkaVOQ7K9PEwoEAlCYanrdmF+XKVOvZgKDLeHVNAuODBx6U/cTugore8RkF2eXvG/lWlbu5fJilcH/vjo+vRBKYQxptg1ZUBqX/WjTl84cadoUNNAOtRwclRkzadLTKRIbKYYHQ9MtOLKkIIgZKNPElasmuzi7ZGWmPOTA/U32uAXJQRAlNAYDIiPwx2U/2vQ1g75tNW36kAMjZPf/r/y3NtHUiEEgp0jMtstcv1D521AepaK3g7WnFksq1Dj1VhOBjTIGpyZRgJxBHR60ndPBkaZNQQPVakqpyuSzMytzNFVuVMNDUjnNMkfRYHCEaVOFtLdtncTS7B4B49bmyAnFsK6gBoJiMJMGEtN2ZgZ922ra9CCDcLBaDVH5kIqZlDuaIrHRyGq06dbsK+HlKn/HbZvVq6fP/GpiHK+ByMgBlIQiV9LBkTZIB0eaNsV0dndXMkdSqUpQZEy3O/PrMUUyRyPbHMnxvGOPg+SQICA0Ja+s2ziJpdk943W1e55PlOGBkDIEBU8HR9ogHRxp2hTz9GMPDlarMXiTENOsSuf1mCohyMjMkZxGb0Gx6OGYg8GRMhVbunI7eMXUIhTjciF0dKdxRTBsmTIE2ZJulK0N0sGRpk0xrzz/BJKBNkei0uZIzKg2R5NdgLKBYMjs/0NOlYLtgvVrtmGYQ4YhMKA7nD7XUPmM7/nz3bKll8jI4Miy2PLyy3t8X9r0NX0+KZo2Q2TSHYPVakNaGk2jpMXrN+KeKINx6ra002KUz7rVH6AqoVBycsqyu1565EXUkLnVQqEoqukxECSM381p85Y2HMpZolj/+RC2w7OP3D1Oe9SmIx0cadoUI4WqZCjCmdUMe9DINkeTFI8MNPMaGIAzFIpSqTg5hdlNr7a0IIdkjqShUHIajfs7TtVq29avxxbl9zChypPxSsMg37Flz+9Mm7Z0cKRpU4xlmJXMUQiVajXEDPq4jrwpTlK2ZrBarf8xiu7Ozu2/YArZYgjCIZmjQEiEtAcf+yGrV2yjkJ2aYx+N19We3taKQTk4SvYHR6EBETMyTnvUpqMZ9G2radODOeTXvo9RmVttRpuszFH/f43+8XakULRs3Dw5hdlNaTuKbw2vVjPCwbniHrl1LX+47gX+9qPnJqN4OyUYn06LWcMEo1ytllTlgCgQChV39/zOtGlLB0eaNsUYarCxaGDYQyacnUFB0shatUnIHGX7eiqZo4HgKETy7MoXJrwsr0UgbbyhDbIF2OFgtdr3H9/Az1Ml7toyNSddLSdPxyE6CpZVRsdO9WeOEKBGTjKszWg6ONK0Kcbqn+dJKCiaVqVabbrN6/W6jGpzNPG9xNaven5wAuCwHJyFQtG+ad2El+W1CEvGqKEHrCELVvRnT+6I+ZSm4OjQAjUusZFSMVR/0BhXkcr4YcF0GqdBG3c6ONK0Kad8RzAwyBnmjBwhW02B4Oipx1YQiHJQJMLyzVQiceWOxwpSgaT3r+soresd7yJuV8bLoorlcxZTLo4qZ4yccHgXdkNJUIrv3TP1Rs42xuktN6RE9rfFiigbh/K5CadJL0RtYujgSNOmGCMs3xUsDIpCVKZRmFGZo5HCiQ+OOta3EfSPpKz6MyuhUMR3Mt5U5qEWsg+20PHT53d5X1kvxzee+wsvdr/62gs8xPVrHiQuyrPOJ1UEu7/KKBKWG193ZErEvQLX//3rfPnJ33L789v2yH73pPG62p1gRHDUHzgaMtjRy7QZRgdHmjbFDEwwa2AQmHIG5YuGGBELhZNQ7ZNC4IvhwVFAiMDe0ct4ft3zbGt4ErUbrcj/95F78H6T5NJbOl57gYdYs9Yn7m4Cyt3VBzNH5YDprpfaOKHlGRoKfZzQspKtvYXR2bqpYByKZClZibxcbNz+91PIqVe1qE0eHRxp2hQjVPnLutxLTQ7OqTajoqThd8Xrv/owD/5h9YSWoMay8PszR0FYbp8TIlEiut3XtJd8NtV8m76Df8Dzc/+O2sWMl3lXjIa05F1PFF53uUulEhta15IQ5eq/ahnD7q86silnjlp68zRnB4ckMPNZevJTa/oMYxwaZEspMVX5PbWUiS8LlcBR6DZH2hA6ONK0KcboH89IKEHUdir3hxlVrTbinthXt5IXHpzYQfrsiCTsb3M00B4lFBLf2H7mKAhDGqs2ANA1626Uv2vZiHjP4Hv7envmbWjdyoZ4DxFZrkqrVvFKAGCLACkluWLAe9Y+QG/VEgqROuqKfbT0vP7AbE8aj6v9/idexOqfOiSCTUb2VdocGdNpgExt3OngSNOmGDHwSxZobqjHGKjumEHB0cganlCF+P1VQhPFMAcHR/TkkG7exva/Nns3D7YzKoUWahdneh/ai+xXf3hkN0o52t3taRb1tIBZ3mYydLD6z6drKEqFPGF7O1vr9+dbZ9Xw03cdT0Ohj5be/Ova766SUpLtTe90vfGYeHZ9SyeiPzhylU1BdVQCR3Mn1aXazKKDI02bYsSQ8VaWzJs1JFKYOcHR0Jvid8nzc38/OsTEjuQs+9sMGUpQNIfMSbaDeOfF++6o/F3lZVClnQdHvd3ZYY9z//BY8bf1/Oii+1jxt/W7V2jgjy9upiZQKKOcfXRCMPqHIrAMRW9nJ+6m9dxwzCzWNqzk4SW3cng6zZYJyhzd9qn/YO0xb+aZv90/6jk5JCoej6t9a1sG1T+EQUTZ+EZfZfRzy9DjHGmDdHCkaVNO+UtaAMsWN1MZHnoGZY4GAkKF4mYVABZ/T0xMZmNAySy/D5YyKJoWVqWh/Pa1b3oBZ/VbqbrzOyT69qOvfefBzRXfK2eKosZgQPDEretRUrHyrt0fjbs9U2Jp65uA8iCHJUJEf08sw4RtrR0kt22iUNNSec380JuwarVl9/4JRwYU/v1Lo54LRgZHezhz1NaWRQ4ER9goMw/9DbEtw0BNwpAR2tSkgyNNm2pUf3CkBPVNSVDl4GgmtTkaaMicVpIPZ1w+kY4QmeDj9/r3Z2FQcCwGRpza0XhT6ahk0YbzmCWqqd7wYZ5bOTo7MlJXqUCDJTi6KmDfaHnbEoUCwmD32x81dAc4fnk71SpOYGSgvws/hmLNs+upbttMlTXYADvTHKN14/h2589n8/z5/M9y+6JDufTEz9MVqR61TjAkNhmPcY68UoA0yvOqucomcAqogbGfTBO/d8djWGkzhw6ONG2KGVqtlqqNDlarvVFjo3X/gL9+HrwhmaH+RsnPkadBGsSVYJ/ixDaYlf13aksZSFdiDmSO5Pa/NmOGQRGf581NJAybh1c/ucN9rF63hW0lh4Z4mhvcR1iVeBaF5N6Iz7akwfVviRLsxvg7Kgg4vf05DKcc+NSoOG5jK8hycKSMkI1PvUp1TxvKGpw2xIr2UFi7Z8ZY2p4Hf/xb7ixF+d6B7+fl5GyuP+x8PnjDPTz07CuVdeQ4DycQSIkU5QxZRNn4dgnVPyK9NAUtz708rvvXpg8dHGnaVDOkQbblmJXxct6omSP1y3eTfbSV0u3XV5aVSiX6zCwrnA6UCAnNAk5sYid8NYrl8y0U1M6rx+wfUmFHEwEnSjFuch/lcXsNL9kbyXqxHe7juttXUCUFLVY7AFvNXnKpNZxUdJidkSzeGvJM564PYSCLJZqsNNIt3/CrZZz2eAdKlhuzS6FIm4pEoY+04/OOnjezpDiX6ugarJ4OvEDyUmua57f07fI+d9XDXQX+tuDYyuMXFtTxuC/4wObBfY2qVtvDQgWyf3DMCDaB8FH9wWdowIoHHx+HvWrTkQ6ONG2KESOrbyrVapNVovFVkMfSG1xEx6Nvqiz7fM9VXDjv35ByGz11T9Ndv4IoEzyCcTgQpAoW7rU3Zv/7scO3QVkURTkw6TT6qLGdHa1Ne6ZElTRQYvDYCrG2yt9RT+0wGBtJBh5EPPKWh1Dgt63m75GNKFXOlgSGomi7xGSafQtH8dlt/8x/bfo0rr2N7gX1/P6JTXz+il/TdfqpfOvr1+3yfnfFIw0NADQbfbzZ2sA7tuT40DObOOy+lyrrDK1WE+OQRAqEjTLKWTRXOfhCVYKjQEie7ti053eqTUs6ONK0KWf4x7KSORqP4YInWRiEvBy+d9Tyhc92cfZ9c4gHHqFVAAHuBAeHqn8wTgE0NVRj9He3N3YUpYaDz7nYpETb9tcFuju6mYVPpr8dTGUzZgHfygzd3C7JezlaI0kAqlSM9blVxNwiocj3F0+iiLBhQZKl+X0BqA6TWDGb7uY6fvf4Jr758LU0Fnp416+v3r2d78CGB57EauvCJOTtzmqWWR3UVD+LTG5gHyfLhkI5mxMqheEHLLhzJYlnXtxj+x+gcJBGuQF2BJu8FASqHMx6hiRtJ1/3Pto3beXu715H4OvpSKYzHRxp2hRTyRxVYqH+nltvwMxRV1cHEdXMK2YLASFBqXyTrEuXMy4ps6uyrjmBja7uuPcXoAYH42xIJSstwXZUipDBdlEF4VGrdnyD3IbLfCXoFcMbAvfUPU1v/TNEil0ob9fHdyrlM1giBUBEWlDXySFdNYj+4CgQEt+t4tED92VJejktRjc+AS9asyjFYqxqy7By+X6c9MPf8vcj3rLL+90RpRS3/fgacnI+H4o8Pep52+3iPbc/Wy6fUsx+ZR1tNLA+V4tUe3Yy2EjooIbMq9bnxQn7M31SKCKvY6ij5zue551/fCf/74oPMOfHV3P7F/5zTxRZmyQ6ONK0KWdE9U1/kCTHo55hkr367FOsefkXzLn5q/zBeZFVT68CoCGdwzUy3DHv2cGVxcT8Es9mumm45BqUGnwfls+dgzEwosIOwiOlBhvTl4RPykjscF+e6RI1S3giGFaNpPqzGwl/Gxsf2/VGwq+2byQiy9ObiMAn2ZBjvqgi1h8ceSLExqW5r5cN9mZud57hcetVon4jgRsH4OoPfQIFXHXBxbu83x1ZcfPNtBkW7wqzYz5vBBHSXv/0LEohhky50ibze3TOtwXFyEBnUKLKYfZebyYkqDS2t4V8Tft7obWTD/zlY2zMbOS3x/XxhfMtGv7xlz1Wbm3i6eBI06aYwZtv+b9KvXGr1Z556FEaN62iOxHj9Bt/zJ3PPwdAfsFZnLHgv3hv90mVdYWamBGy832dxLzBBvACqIokEbsyx10w+JVawscy4jvcl2k6+E65QXJDMHrdhNHKhnU9u1z2Td1bsIL+cvsBvljIsg9eibDKmSklFKmCh4PNs+5aAF6xWrDDJqzAoDrIsGTTWr507Vd4/63X7/J+d+Tb69qozcTx3a4xn1ciJNXWie/5hAqMIZMMt8kiuzF/7w5lswVS+CAEljKJ4nDKGe8gwCdKOVOplEIVdj8I/8CfPwNmjrA4i+yaf+cV76P89tTD90zBtUmhgyNNA1av2MYvvvggrz7VPtlFgZHVav1/yDdgcFTq7uKV/Q6l6a1fJ3bS1+haV24Q+/bqfQA4I3Mc7y6VbzKuMTFd+Ytd/b3iBjJHSmAYg82id9RrUA6pVvNFiJA7zhzZZhTXLTeWjpfGjgI6e3d9Qtg1mzdVymcGEuHMJl5dB1YWtzK/mqLoziKmBhuL1xdncXzLBvYPtvDhW3+FNARzW19/134ZhpyavRO/aT5epBwcJdprqOrcn0TfMgCU6TN3wzYe/OtTFDwPqzA4EnpaerAHBmbs2Zbjhm88Xm6/RnlwzFD5JJJJfMLKuTAJyO3mBLybezcinVXMTdexrHA4yAhhfim9jqC3bWIHLtX2HB0caTOeUorr/99PuT5+K1f86Q+TXZyKwVtwf3D0BqxWs4Xk4LqTiJhxzHgD9ZSrhIa2L6qEJcbEtDnqbu0fOXpEEDRw+nf8Lgx/jQp23JX/0KxNtyhXNxnFsQcgFCMaa+/ImrY+/P76vwA44cyPAZBzQ6L9AYBr+iizCUMNfv1nA8ne6dU0mRmKwuaZ1AHkzOgu73d72lpb2OIvJD+nnI1xsgZ03UW+734eoA4jiAAQiwoufLyLj151G5l0edlC3+Ahy90j1Wp3/uwFit2S0CwHK+WRw/vbYSGJKhcoX4/Z3QyO/u1vFyLWXMyqrrN5aevRvD/jcEpBccxjraS7dHA0XengSJvx0p05tizYSKJ5JZub7p7s4iDEyN5qA5mjNx7fMqlzmyuPnf5u1dn+gKHV6OF5q5xNmqjM2ZYNrRiLjmNeZCnAkErOnQ/GKeTw+bm8ncz0vr8PPUY5KDLXjj3GjiV2PTgS6eyQ4Mhizl6LAOhzXSL9ZXONgMb0/hSHzFW32eohKrexrbGBP+x9Kg/XHcMdc07b5f1uz6qXnwVSlcd269MIIOKt5/jWH2B3bwCg3uh/v0WKjJVkkW9wVs5lST61RzJHXS3lcxxY5SrMOpmkz+gsL8OrZI5cGaXk79pkwQMihSLhgj8SX/Rj5tot1LltLFdF2hrjPHDbfa+77Nrk0MGRNuOteO5enGSOn667nH9Jv3WyizNYnVN5PJA5euOFR5YhMIYEg35/t2o3LHcb2mJ08apZntZCIpGvYTqN3dXdniF+4AcrwVglYbdL9+jhkVMgd9z9qRhrBaAqjFKVHXum+nhpx1VzQzUGPr4o39yLho1hlM9tkThu2F9da3g4YRfBkOtJIDBtyX2HHcPq5FLe76xkqfP6sx4tTz5B4JYDRCcbwwiHt+cxs+Wqtjoji0CRkgJTwRm5crASCdkjwZHf/+b5TgaARlWFYWwBIOt0EOkftsFU0JPevQEwjypFMWMbAXh33yyyqVfpq32BltkxCht2fQBPbWrRwZE24z2x8kY+3PFuAI7NHDLJpRliRC+1N2KbI3NEPsyRWcIwxEPysPUKm/t/3UP5+Av58Z8ctb2zfHMcyNhVMkcDk+EKQSYYO7swsidbqHb8FVvob6S8sFRF1Bu7OsfdyUCSQ1WLzJDgyK0sNzJx3P7AUhoFpNHfOLr/kvIJMYRFKpvhrcYWHCNgsf36298FHYPztTktD4963igVIAwRhuSEIMcn0hE+3RfBGlqpvAeCIwVIw0NaPihokCmC8Pbyc6GFO5DxE5JVzz+269tViueyDgszC1nSu5TQHLw+9y2dRl9ODyo5XengSJvxMn2ShYVZk12MioFqtUoD4P4A4o0YHAlghbWWn0fu4XlzE7b06Ovt4QlnHS9bLZUqJyhnjh584J5xL5PpFfr3N9DIaEQ7IgE3tY3dg0yo3QuOYqJ8UzbCgIg/dnBkhLveS88yFR7l4CgwB6+XecnDcIOBaTI8pFX+u9YvB1ChkOBZzGtLM08OBn5huHtVTCNtU/1trpSC/u0u3TY4p5sA7Ey5Sm1xZAMKhT0ywPReXxmklAjAt8uZuRoVx/f66HbK596e1YjTP8CnMhUbnrtrl7f9/KrneaY6y6Gdh3JQz4FkqldVnuureQ6zadezftrUooMjbcZzu0sYE9QT6rUYGLTujdggW0iLZ60NADxur8EIFX/5459pN0dXMSkBf/vzL8e9THP7vxUHM0cD1Wv9mSPgmdu31zZteJsjfydtyAPK7X5C6SGdsb+OTd8bc/lYbMNC9V8nRmnwHC46+M1E+geTDMyQwCoHHElPVEb8VqHLSc+3IozB17Vs7djlfY9F9VeTijDAEhbHJ09kH2MBB25s44hOk3fNu5j98rUIaRFaBXynHHR6TjfpqleQwmfLph2PMr4zt/3lbmwEvt1fpSaryPvd9InyD6J/OvytlXnzAhNUPLXdbY30t3tupLZYO/aTAsQbdD7EmWDaB0c//OEPWbhwIZFIhCOPPJInnnhisoukTTPNYrBXTt4fu93HRBo5QvZAb503YubIYHhQKoDHH/oz4Xaanzv2+N9sDEuQo8jmEVVPlf8KmN0y9sCMI+PXYCcB7cB72pXfwvNzlo65jil3PXMiZKRSDuENZrcalywlUuoFoGSB7D+PTsnDkeXrTfkLEDJJaA2W+Y8/v2WX9z1mefqzMzEjzrvnXcys+sOIHXkRc3qzNDceRdRKcFjtCbiZ8j7z8RaKkXb6al+gFG0nl1zPw4+8vslgH7z9GRSSUqQc6DWqKnKqi0IwH4CDjv8nFIOTzxbFrgdHmU0rqSnVbH8FS2eOpqtpHRzdcMMNXHrppVxxxRU8/fTTHHjggZxyyim0t0+FsWq06cISUVZYr/KA9TJyCvzQG3k7Dfsbzm4vYJjW1IjgSNg01tThb2eS2Vrn9c99tTOBYXCT+xhbzXJwMbK3mhSwPLedLvojehr6OwmOwv7nTduEk9839krGrr/vlioH+jYmeycHL+b66gSm3wuqPIdYu1PuARcUA6JB+T3wDZuiqCEYsr91a2/Z5X2PJRmWsyoODrYZqSw3quaiEvWVx3XpNlDguz1kql+pLC9FOnlh9WBV1WvR45j01D2DtIo4ocHCsIGc2UP9vgcCYFoR+syecmArQPjmjjc4RMlMMStXnlA3qhxqZJx3eAfRKKvK2w53fVva1CLUnhybfYIdeeSRHH744fzgBz8AynXL8+bN49Of/jT/+q//utPXp9Npqqqq6OvrI5Xa9V8Lu+J/vviZwa6/O/Fa34A9+caNta1pe2HspllegrU15bYX+wfz2VJ6ZlLLk2Qum+MFGr04PcV1JESUnmT5+qzKde/ydTUdJIMaNlcNBhSL+gz6rAzd8bFHlq5LZwiN4dVMI8+G2u4z/UYFwGrYc3MKEV6uGwzCZhfjdHrrmCXmszlZot6Pkyv24hqjs4ypsIlNqcHArj5IEJQ2jl0OIB2rRwrF3O48W60MYapp1Dpz0xZZc9eqlhJBjC1VUVxlodJbUUN6pL2pr8S25gNpNQczSntvyJJuqGFr3Ke5VEOhr5qexvWV56tyvSjCYaeoP4YYlVAbauAUV8lGtqRCamWC071Dt1vu57of4JWUTyExuno70VvCsseeemRX9JmzUJFy9d5ehRqOFgfwHH/mhVKxMpbVAreZjU554M5kOo8yC4PHqIZfMkP/Lhk5SrFyBuqc0jGVXm93OCtpM/qYXYiQlS2VnzViyD9G/P1GtTa9ge//ZM9PpTKe92+YxsGR53nEYjFuuukmzjjjjMry8847j97eXv785z+Pek2pVKJUGmzcmE6nmTdv3h4/uVdeeeUe25amaZqmTWvbXubKa2/Yo5sc7+Bo2lardXZ2EoYhTU3Df2k1NTWxbdu2MV9z1VVXUVVVVfk3b968iSiqpmmaps1YoZp+1YtTt4vOOLjsssu49NJLK48HMkd72pVXXsk1n//UqMaZ2tRUYiG1+b1QysIXHn5s8kfJDi0DPxgchC8ITRLmjgcUnK6UgJIq4hgOhhwypUWYA9Mst5JFkDDt7VSUDVT0jGVXKi2Gr5MjxvNqISUBy0Qrdao8UGOgJFSVq1CaS4J0aeyeXNKQeGEJgYErnB2WITQMioZABHkMFMjyjcQ0QgJpEjNNjN38DTtwPkey3SLHFd/GbHcxAN3P/5Ynq7ohvh+tc4bvY05YS1vwCm5pcECJ7e5v2KPhx+paNl7K5azsqQB8fM5XWFZayBc7PzJqOw+1/YnO4mZOnfsx3P6pS3pEhrtKt1P+Hb+zL9Sxn3+bOo46t2nYGFQvqO+w0h9s87RkfRsH7y3JyyqeLDqkrfiIY1GokVPDAI2B4tjYezEx8Pwijl1uV9Vz11fwDcFz+y+gt2ZH7eTe+BVrTz31OL+/f8VkF2O3TdvgqL6+HtM0aWsbXhff1tbGrFljj1njui6u64753J72xW//YEL2o71+//L131KdT4CAHsvkyv/R792UodSoOc7G24v3reT6O8vzq332uAM4+Z+OAeDpJx/m1tvKY+D0+S188X9++rr31dFxFy2t/8c+y7+J6za87u3tyG+uvwqx8RWsQnnC1+jah0gd9w6eNupolAWyQ+Zwaw1eZcnizXzwY6+vrchD3/kJn0ldS7a3RK+V4WPeWub6aykZHyIuozwRe4oj8uW2SCc0DW+Q/vU5P2NNZD1//dBduJHIWJvfJY99/ofYzKk8DmWRp5dv5fILb6ksu/P4o4k9to2EqYi+7e18/N9/uEvb/tmlFxPc+w0CYSL7NuM17Y9IzsYLisRLOeYmjuSj/3PNay67NnmmbbWa4zgceuih3HPP4KBwUkruuecejj766EksmTbdzIoOBsxhJDOJJdFGmYRxYvY6ZDnvweYsHN520hGV5fsfcBjR1o24fb10B7s+9tCONDSczEEH/r9xD4wADn/nJyjueyvehgcpPP4jAJa85QjajSqWysEflKYySJktLKg7Ynub2mV7nfF2bCH4Y9093Fv1BHL9FayIRLhyzo+5o+kXGAf9aruvfSj5DPlIz+sKjAAanGXDHgdBmjn+8OYYvhDktkXItERZcMBBu77x+kXIdAuybxOgeL4xzVVHb+Hfj3svtx18LEef+5nXVXZt8kzb4Ajg0ksv5Wc/+xm//OUvefnll/mXf/kXcrkcF1xwwWQXTZtGZlUPBkfz1J5v2KdNL3ZVhP98zwF89ZwDMZ3B5LrjuPjJFKqUpWXO9KsKWVpXQ96JUVr5a4KtKwE44Jz3sC1mcVCwkNlhDUvCWey3pcBL8UaOOPz8173PxoWLKInBkb9rrb3Y0nYJZrvgtDPPJ5no46Wm7Yx6LiC3B0avaHPWDXusLIFKDZ8mKPe2g9lSk2Tl/EaW7rfrUwgd+67T6Zo3F4BX95rHisYWPnNbB7+IHMEHF3yQ6NLtDBCpTXnTtloN4JxzzqGjo4PLL7+cbdu2cdBBB3HHHXeMaqStaTuysLaaVyl/gdeLXZ/HSnvjih8xdtX8Y4vWUl+sJ2fnxnx+KjOFYMPfv8YivghAV00t+7guZ8xfxYOrA5ZLg6e6/ko7iqMLh2JVV++R/S61Pswrwa+QxWYO/68jue9rD3JM9M3MWnAcvY/9Kz+N/5V9OXHYa+6segQAuQfa49w+63qSubfygc5/AqAU8zn5iNOGrXPCRy/gNy+Wh1ywnLGHkRjL/MWLOOGyq7ECn2M2beWyZ++i/j3vhC4bI+XgNO36trSpZVoHRwCf+tSn+NSnPjXZxdCmsePffhRr7/gHChM7Oe0/Eto42pjcyMbkRk7OLtv5ylNQr2vz0vLlzN+0iVvf9g7eArzrjPdz1q1dvO+xm1EoErOrWBtvwUzumQE3G8XbePLVZggSVCdifOPqyyvP7XPuxwhufIJ09SukepezydnGrxv+worECwDY4vV/HreIep5suA1bWZzefQJ/nf87vrDgj8PWqWvcn5qlfYSeSXXjnO1sabRYzOGmXJTerXlO/MDbiX703Ugpyd6/hdgB419Vqo0ffSfQZrxIzGbhQXWYGzIsPHN63vS0ibGgy6WlpsTHT/y3yS7Ka9Lz1iR3NV5A+uRuPnlGuQdZ8/x9qc+dh5M4D6VCXln4B3L77LlqwyBUEFRv9/nvn/UzrrttH0oZi5+XDAIkAxOmNMVf/4TQCa8Oohv5ReMtRNf/kdtlNV+yhnctt6wIp3/uSsIgh+PsXlXYW05fPuyxYRik3jr/dZdbm1w6ONI04J8+uevtDLSZ6/fn30l3ZysL9nrTZBflNYksn8+vEzFgPr+bM9j8oHXW89zt3o9nFElVvcj/O3HPDWdx6dv34v7VHXzkLYu2u05JvQez8BfOuXMuCPi/kzqQrs/Vx139uvcfZmtptlK87WmfRasyHHbk2J/1hvoTx1yuzUzTdoTsPWG8R9jUNE2bSrYUPU5csYpzZtXytWWD1Uc3rb6Jqx79Jv9sncsn3/URYskdTKb6GpSCENfa/kCAT7U9xfm3n09zZ4T5/gGsW7iaP73nr6Tc1/+9vGFdD/f96D6Wbvk9d747xRVnX4v9Bh0zbCbR04eMIx0caZo20wRSYRmjq82kkhhicjowt2RbeMfN7wDgtjNuoyHWQMzezuS+msb43791tZqmadoMMlZgBExaYAQwJzGHk+afhBCCBVULJq0cmjZAB0eapmnapPvft/7vZBdB0yqm9SCQmqZpmqZpe5oOjjRN0zRN04bQwZGmaZqmadoQOjjSNE3TNE0bYkY3yB4YxSCdTk9ySTRN0zRN21UD9+3xGo1oRgdHmUwGgHnz5k1ySTRN0zRN212ZTIaqqqo9vt0ZPQiklJLW1laSySRC7Lm5hPaUdDrNvHnz2Lx584wdpHKmn4OZfvygz8FMP37Q5wD0ORh5/EopMpkMzc3NGMaebyE0ozNHhmEwd+7cyS7GTqVSqRn5YRhqpp+DmX78oM/BTD9+0OcA9DkYevzjkTEaoBtka5qmaZqmDaGDI03TNE3TtCF0cDSFua7LFVdcgeu6k12USTPTz8FMP37Q52CmHz/ocwD6HEz08c/oBtmapmmapmkj6cyRpmmapmnaEDo40jRN0zRNG0IHR5qmaZqmaUPo4EjTNE3TNG0IHRxpmqZpmqYNoYOjCXbVVVdx+OGHk0wmaWxs5IwzzmDVqlXD1jnhhBMQQgz798lPfnLYOps2beK0004jFovR2NjIF7/4RYIgmMhDec2uvPLKUce3fPnyyvPFYpGLL76Yuro6EokE733ve2lraxu2jel8/AsXLhx1/EIILr74YuCN+f4/8MADnH766TQ3NyOE4JZbbhn2vFKKyy+/nNmzZxONRjnppJNYs2bNsHW6u7v553/+Z1KpFNXV1XzkIx8hm80OW+e5557j2GOPJRKJMG/ePK6++urxPrRdsqPj932fL3/5y7zpTW8iHo/T3NzMhz/8YVpbW4dtY6zr5pvf/Oawdabq8cPOr4Hzzz9/1PG94x3vGLbOdL4GYOfnYKzvBSEE11xzTWWd6Xwd7Mr9b099///jH//gkEMOwXVd/n979xrTZvXHAfxbNsogym2FFjZpuEzUcXHDWOuFJdIMmMmIeyFDonibOl2c2ZwEjVncCyVZsr0wSvZiYyYz85LskkycgQHu1qEQulk3m1E7iKYdhllggQnI1xf++6QP9/kvl9bfJyEp55zn6fn1/DjnQDmQkZGBgwcP3l5nKeZUYWEha2trabfbabPZuG7dOqakpPDmzZtKmzVr1nDTpk10u93KR29vr1I/MjLCrKwsWiwWtre3s66ujjqdjlVVVfMR0m3buXMnV65cqYrv999/V+pfffVV3nXXXTx16hRbW1v50EMP8eGHH1bqgz3+7u5uVez19fUEwKamJpKhOf51dXV89913eeTIEQLg0aNHVfXV1dWMiYnhsWPHePHiRa5fv56pqakcHBxU2hQVFTE3N5cXLlzgmTNnmJGRwbKyMqW+t7eXer2e5eXltNvtPHz4MCMjI7lv3765CnNSU8Xv9XppsVj4xRdf8Oeff6bVauWDDz7IvLw81T2MRiN37dqlygv/eWMhx09OnwMVFRUsKipSxXfjxg1Vm2DOAXL618A/drfbzQMHDlCj0dDpdCptgjkPZrL+BWL+/+WXXxgVFcVt27bx8uXL/Oijj7ho0SKePHlyxn2VzdE86+7uJgB+9913StmaNWu4devWSa+pq6tjWFgYPR6PUlZTU8Po6Gj++eefs9ndgNi5cydzc3MnrPN6vQwPD+dXX32llF25coUAaLVaSQZ//GNt3bqV6enpHB0dJRn64z92URgdHaXBYODu3buVMq/Xy4iICB4+fJgkefnyZQLgDz/8oLT55ptvqNFo+Ntvv5EkP/nkE8bFxaleg8rKSmZmZs5yRLdnokVxrO+//54A2NnZqZQZjUbu3bt30muCJX5y4tegoqKCJSUlk14TSjlAziwPSkpK+Pjjj6vKQikPxq5/gZr/3377ba5cuVL1XKWlpSwsLJxx3+RttXnW29sLAIiPj1eVf/bZZ9DpdMjKykJVVRUGBgaUOqvViuzsbOj1eqWssLAQfX19+Omnn+am4/+nq1evIjk5GWlpaSgvL0dXVxcAoK2tDcPDw7BYLErbe+65BykpKbBarQBCI36foaEhHDp0CC+88AI0Go1SHurj78/lcsHj8ajGPCYmBiaTSTXmsbGxeOCBB5Q2FosFYWFhaGlpUdrk5+dDq9UqbQoLC+FwOPDHH3/MUTSB0dvbC41Gg9jYWFV5dXU1li5dilWrVmH37t2qtxJCIf7m5mYkJiYiMzMTmzdvRk9Pj1L3X8uB69ev4+uvv8aLL744ri5U8mDs+heo+d9qtaru4Wvju8dMLP53IYlAGB0dxZtvvolHHnkEWVlZSvnTTz8No9GI5ORkXLp0CZWVlXA4HDhy5AgAwOPxqBIDgPK5x+OZuwD+JZPJhIMHDyIzMxNutxvvv/8+HnvsMdjtdng8Hmi12nGLgl6vV2IL9vj9HTt2DF6vF88995xSFurjP5avzxPF5D/miYmJqvrFixcjPj5e1SY1NXXcPXx1cXFxs9L/QLt16xYqKytRVlam+u/rb7zxBlavXo34+HicP38eVVVVcLvd2LNnD4Dgj7+oqAgbNmxAamoqnE4n3nnnHRQXF8NqtWLRokX/qRwAgE8//RR33nknNmzYoCoPlTyYaP0L1Pw/WZu+vj4MDg4iMjJy2v7J5mgevf7667Db7Th79qyq/OWXX1YeZ2dnIykpCQUFBXA6nUhPT5/rbgZccXGx8jgnJwcmkwlGoxFffvnljJI2lOzfvx/FxcVITk5WykJ9/MXkhoeH8dRTT4EkampqVHXbtm1THufk5ECr1eKVV17Bhx9+GBL/b2vjxo3K4+zsbOTk5CA9PR3Nzc0oKCiYx57NjwMHDqC8vBxLlixRlYdKHky2/i0U8rbaPNmyZQtOnDiBpqYmLF++fMq2JpMJANDR0QEAMBgM43573/e5wWCYhd7OrtjYWNx9993o6OiAwWDA0NAQvF6vqs3169eV2EIl/s7OTjQ0NOCll16asl2oj7+vzxPF5D/m3d3dqvqRkRHcuHEjZPLCtzHq7OxEfX296qdGEzGZTBgZGcG1a9cABH/8Y6WlpUGn06nyPtRzwOfMmTNwOBzTzg1AcObBZOtfoOb/ydpER0fP+Btw2RzNMZLYsmULjh49isbGxnE//pyIzWYDACQlJQEAzGYzfvzxR9VE4ZtM77vvvlnp92y6efMmnE4nkpKSkJeXh/DwcJw6dUqpdzgc6OrqgtlsBhA68dfW1iIxMRFPPPHElO1CffxTU1NhMBhUY97X14eWlhbVmHu9XrS1tSltGhsbMTo6qmwezWYzTp8+jeHhYaVNfX09MjMzF8xbCZPxbYyuXr2KhoYGLF26dNprbDYbwsLClLeagjn+ifz666/o6elR5X0o54C//fv3Iy8vD7m5udO2DaY8mG79C9T8bzabVffwtfHdY6adFXNo8+bNjImJYXNzs+oo5sDAAEmyo6ODu3btYmtrK10uF48fP860tDTm5+cr9/AdZVy7di1tNhtPnjzJhISEBX2U29/27dvZ3NxMl8vFc+fO0WKxUKfTsbu7m+Q/RzlTUlLY2NjI1tZWms1mms1m5fpgj58k//rrL6akpLCyslJVHqrj39/fz/b2dra3txMA9+zZw/b2duU0VnV1NWNjY3n8+HFeunSJJSUlEx7lX7VqFVtaWnj27FmuWLFCdYzb6/VSr9fzmWeeod1u5+eff86oqKgFcYR5qviHhoa4fv16Ll++nDabTTUv+E7fnD9/nnv37qXNZqPT6eShQ4eYkJDAZ599VnmOhRw/OfVr0N/fz7feeotWq5Uul4sNDQ1cvXo1V6xYwVu3bin3COYcIKf/OiD/OYofFRXFmpqacdcHex5Mt/6RgZn/fUf5d+zYwStXrvDjjz+Wo/wLHYAJP2pra0mSXV1dzM/PZ3x8PCMiIpiRkcEdO3ao/s4NSV67do3FxcWMjIykTqfj9u3bOTw8PA8R3b7S0lImJSVRq9Vy2bJlLC0tZUdHh1I/ODjI1157jXFxcYyKiuKTTz5Jt9utukcwx0+S3377LQHQ4XCoykN1/JuamibM+4qKCpL/HOd/7733qNfrGRERwYKCgnGvTU9PD8vKynjHHXcwOjqazz//PPv7+1VtLl68yEcffZQRERFctmwZq6ur5yrEKU0Vv8vlmnRe8P3tq7a2NppMJsbExHDJkiW89957+cEHH6g2DuTCjZ+c+jUYGBjg2rVrmZCQwPDwcBqNRm7atEl1XJsM7hwgp/86IMl9+/YxMjKSXq933PXBngfTrX9k4Ob/pqYm3n///dRqtUxLS1M9x0xo/tdhIYQQQggB+Z0jIYQQQggV2RwJIYQQQviRzZEQQgghhB/ZHAkhhBBC+JHNkRBCCCGEH9kcCSGEEEL4kc2REEIIIYQf2RwJIYQQQviRzZEQQgghhB/ZHAkhhBBC+JHNkRBCCCGEn78BKKjeUoNJyPUAAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, axs = plt.subplots(2, sharex=True)\n", "axs[0].plot(experiments_train.columns.astype(int), experiments_train.transpose())\n", "axs[0].set_title('Unprocessed raman spectra')\n", "axs[1].plot(X_train_small_big.columns.astype(int), X_train_small_big.transpose())\n", "_ = axs[1].set_title('Small, processed raman spectra')\n", "plt.savefig('../images/random_forest/dropped_features.svg', format='svg', dpi=1200)" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-05-01T10:54:54.876576100Z", "start_time": "2024-05-01T10:54:53.142807400Z" } }, "id": "12ab796f1aa7dd9c", "execution_count": 59 }, { "cell_type": "code", "outputs": [ { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAGzCAYAAAAlqLNlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXwU19eHn1nfjbsRYkgIFtyKtFCkVKBKlVL3Unfq7a+lrlSpG22hQou7u5MQCCHuslnfnZn3j002WRK0FHk7z+dDu3vnzp0zs5uZ75577jmCLMsyCgoKCgoKCgoKAKhOtQEKCgoKCgoKCqcTijhSUFBQUFBQUGiGIo4UFBQUFBQUFJqhiCMFBQUFBQUFhWYo4khBQUFBQUFBoRmKOFJQUFBQUFBQaIYijhQUFBQUFBQUmqGIIwUFBQUFBQWFZijiSEFBQUFBQUGhGYo4UlBQOCN45plnEAThVJuhoKDwH0ARRwoKzWh8AFdWVra6vUuXLgwbNuzkGqWgcAby0ksvMWvWrFNthoLCcaGIIwUFBQWFE44ijhTOZBRxpKBwBuBwOJAk6VSbccZis9lOtQkKh8FqtZ5qExQU/FDEkYLCP2DJkiUIgsBPP/3Eiy++SJs2bTAYDAwfPpy9e/f69R02bBhdunRh48aNDBw4EKPRSEpKCtOmTWt1zB9++IEnn3yShIQETCYTZrMZgBkzZtCrVy+MRiORkZFcc801FBUVtbAtKyuLyy+/nKioKIxGIx07duSJJ57w61NUVMQNN9xATEwMer2ezp078/nnn7cY691336Vz586YTCbCwsLo3bs33333nW97fX09kydPJjk5Gb1eT3R0NOeeey6bNm3yG2ft2rWMHj2akJAQTCYTQ4cOZeXKlS2Ot2LFCvr06YPBYCAtLY2PPvroCJ9E69d5yJAhmEwmHn/8cQB+++03xo4dS3x8PHq9nrS0NJ5//nlEUWx1jG3btjF06FBMJhPt2rXj559/BmDp0qX069fPd10XLFjgt/+BAwe444476NixI0ajkYiICC677DLy8vL8+n3xxRcIgsDKlSu5//77iYqKIiAggPHjx1NRUXHEcy0tLWXSpEm0adMGvV5PXFwcF110kd9xkpOTOf/885k3bx6ZmZkYDAYyMjL49ddfW4xXW1vL5MmTSUxMRK/X065dO1555ZUWwlySJN5++226du2KwWAgKiqK0aNHs2HDBgAEQcBqtfLll18iCAKCIHD99dcDTVPXu3bt4qqrriIsLIyzzjoLgG3btnH99deTmpqKwWAgNjaWG264gaqqqiNeCwWFE4nmVBugoPD/gf/973+oVCoefPBB6urqePXVV7n66qtZu3atX7+amhrOO+88Lr/8cq688kp++uknbr/9dnQ6HTfccINf3+effx6dTseDDz6I0+lEp9PxxRdfMGnSJPr06cPLL79MWVkZb7/9NitXrmTz5s2EhoYC3ofM4MGD0Wq13HLLLSQnJ7Nv3z7++OMPXnzxRQDKysro378/giBw1113ERUVxd9//82NN96I2Wxm8uTJAHzyySfcc889XHrppdx77704HA62bdvG2rVrueqqqwC47bbb+Pnnn7nrrrvIyMigqqqKFStWsHv3bnr27AnAokWLGDNmDL169eLpp59GpVIxffp0zjnnHJYvX07fvn0B2L59OyNHjiQqKopnnnkGj8fD008/TUxMzFF/HlVVVYwZM4YJEyZwzTXX+Pb94osvCAwM5P777ycwMJBFixYxZcoUzGYzU6dObfFZnX/++UyYMIHLLruMDz/8kAkTJvDtt98yefJkbrvtNq666iqmTp3KpZdeSkFBAUFBQQCsX7+eVatWMWHCBNq0aUNeXh4ffvghw4YNY9euXZhMJr9j3X333YSFhfH000+Tl5fHW2+9xV133cWPP/542PO85JJL2LlzJ3fffTfJycmUl5czf/588vPzSU5O9vXLycnhiiuu4LbbbmPixIlMnz6dyy67jDlz5nDuuecCXu/a0KFDKSoq4tZbb6Vt27asWrWKxx57jJKSEt566y3feDfeeCNffPEFY8aM4aabbsLj8bB8+XLWrFlD7969+frrr7npppvo27cvt9xyCwBpaWl+tl922WW0b9+el156CVmWAZg/fz65ublMmjSJ2NhYdu7cyccff8zOnTtZs2aNEpCvcPKQFRQUfDz99NMyIFdUVLS6vXPnzvLQoUN97xcvXiwDcqdOnWSn0+lrf/vtt2VA3r59u69t6NChMiC//vrrvjan0ylnZmbK0dHRssvl8hszNTVVttlsvr4ul0uOjo6Wu3TpItvtdl/7n3/+KQPylClTfG1DhgyRg4KC5AMHDvjZL0mS7/WNN94ox8XFyZWVlX59JkyYIIeEhPiOfdFFF8mdO3c+9EWTZTkkJES+8847D7ldkiS5ffv28qhRo/xssNlsckpKinzuuef62saNGycbDAY/23ft2iWr1Wr5aG5Zjdd52rRpLbY1v56N3HrrrbLJZJIdDkeLMb777jtfW1ZWlgzIKpVKXrNmja997ty5MiBPnz79sMdZvXq1DMhfffWVr2369OkyII8YMcLvutx3332yWq2Wa2trD3meNTU1MiBPnTr1kH1kWZaTkpJkQP7ll198bXV1dXJcXJzco0cPX9vzzz8vBwQEyHv27PHb/9FHH5XVarWcn58vy7IsL1q0SAbke+65p8Wxmp9DQECAPHHixBZ9Gv/GrrzyyhbbWrtu33//vQzIy5YtO+x5KiicSJRpNQWFE8CkSZPQ6XS+94MHDwYgNzfXr59Go+HWW2/1vdfpdNx6662Ul5ezceNGv74TJ07EaDT63m/YsIHy8nLuuOMODAaDr33s2LGkp6cze/ZsACoqKli2bBk33HADbdu29Ruz8Ze3LMv88ssvXHDBBciyTGVlpe/fqFGjqKur802JhYaGUlhYyPr16w95/qGhoaxdu5bi4uJWt2/ZsoWcnByuuuoqqqqqfMeyWq0MHz6cZcuWIUkSoigyd+5cxo0b52d7p06dGDVq1CGPfzB6vZ5Jkya1aG9+Pevr66msrGTw4MHYbDaysrL8+gYGBjJhwgTf+44dOxIaGkqnTp3o16+fr73xdfPPuvlx3G43VVVVtGvXjtDQ0BZTjQC33HKLn1dk8ODBiKLIgQMHDnmORqMRnU7HkiVLqKmpOWQ/gPj4eMaPH+97HxwczHXXXcfmzZspLS0FvNO1gwcPJiwszO/7MGLECERRZNmyZQD88ssvCILA008/3eI4x+LZue2221o9p0YcDgeVlZX0798foNXrpqDwb6GIIwWFY6S1B8DBIiQsLAygxUMrPj6egIAAv7YOHToAtIhHSUlJ8Xvf+KDs2LFji+Onp6f7tjc+pLt06XLIc6ioqKC2tpaPP/6YqKgov3+NoqK8vByARx55hMDAQPr27Uv79u258847W8QJvfrqq+zYsYPExET69u3LM8884ycWcnJyAK/gO/h4n376KU6nk7q6OioqKrDb7bRv376Fza2d96FISEjwE6uN7Ny5k/HjxxMSEkJwcDBRUVFcc801ANTV1fn1bdOmTYvPOiQkhMTExBZt4P9Z2+12pkyZ4ovdiYyMJCoqitra2hbHgaP//jRHr9fzyiuv8PfffxMTE8OQIUN49dVXfWKnOe3atWtxLgd/73JycpgzZ06Lz2fEiBFA0/dh3759xMfHEx4efkjbjoaDv98A1dXV3HvvvcTExGA0GomKivL1a+26KSj8WygxRwoKzWj0yNjt9la322w2P69NI2q1utX+ckMsxfHQ/Ff0iaYxwPaaa65h4sSJrfbp1q0b4PXaZGdn8+effzJnzhx++eUXPvjgA6ZMmcKzzz4LwOWXX87gwYOZOXMm8+bNY+rUqbzyyiv8+uuvjBkzxne8qVOnkpmZ2erxAgMDcTqdJ+T8Wrt2tbW1DB06lODgYJ577jnS0tIwGAxs2rSJRx55pEXQ8aE+06P5rO+++26mT5/O5MmTGTBgACEhIQiCwIQJE1pddXi835/JkydzwQUXMGvWLObOnctTTz3Fyy+/zKJFi+jRo8dh9z0YSZI499xzefjhh1vd3iimThStfUaXX345q1at4qGHHiIzM5PAwEAkSWL06NHKak2Fk4oijhQUmpGUlARAdnZ2Cw+BzWajoKCAkSNHHvf4xcXFWK1WP+/Rnj17APwCaI9k2znnnOO3LTs727c9NTUVgB07dhxyrKioKIKCghBF0ecZOBwBAQFcccUVXHHFFbhcLi6++GJefPFFHnvsMZ9YjIuL44477uCOO+6gvLycnj178uKLLzJmzBhfMG5wcPBhj9e4sq7R03TwOf4TlixZQlVVFb/++itDhgzxte/fv/8fjdsaP//8MxMnTuT111/3tTkcDmpra0/4sdLS0njggQd44IEHyMnJITMzk9dff51vvvnG12fv3r3IsuznPTr4e5eWlobFYjni9yEtLY25c+dSXV19WO/RsQZP19TUsHDhQp599lmmTJnia2/tu6Cg8G+jTKspKDRj+PDh6HQ6Pvzwwxa/VD/++GM8Hg9jxow57vE9Ho/fsnSXy8VHH31EVFQUvXr1Ouy+vXv3Jjo6mmnTpvl5WP7++292797N2LFjAa/AGDJkCJ9//jn5+fl+YzR6ItRqNZdccgm//PJLqyKq+TLyg5dR63Q6MjIykGUZt9uNKIotpjyio6OJj4/32dmrVy/S0tJ47bXXsFgshzyeWq1m1KhRzJo1y8/23bt3M3fu3MNenyPR6J1p7o1xuVx88MEH/2jcQx3rYK/Pu+++2yJlwD/BZrPhcDj82tLS0ggKCmrhgSsuLmbmzJm+92azma+++orMzExiY2MBr9dm9erVrV7n2tpaPB4P4F0hJ8uyz2vYnObnHBAQcExisLXPB/BbJaegcLJQPEcKCs2Ijo5mypQpPPnkkwwZMoQLL7wQk8nEqlWr+P777xk5ciQXXHDBcY8fHx/PK6+8Ql5eHh06dODHH39ky5YtfPzxx2i12sPuq9VqeeWVV5g0aRJDhw7lyiuv9C3lT05O5r777vP1feeddzjrrLPo2bMnt9xyCykpKeTl5TF79my2bNkCeNMPLF68mH79+nHzzTeTkZFBdXU1mzZtYsGCBVRXVwMwcuRIYmNjGTRoEDExMezevZv33nuPsWPHEhQURG1tLW3atOHSSy+le/fuBAYGsmDBAtavX+/znKhUKj799FPGjBlD586dmTRpEgkJCRQVFbF48WKCg4P5448/AHj22WeZM2cOgwcP5o477sDj8fjyLG3btu24r/3AgQMJCwtj4sSJ3HPPPQiCwNdff/2Ppj4Pxfnnn8/XX39NSEgIGRkZrF69mgULFhAREXHCjrFnzx6GDx/O5ZdfTkZGBhqNhpkzZ1JWVuYXSA7eKbEbb7yR9evXExMTw+eff05ZWRnTp0/39XnooYf4/fffOf/887n++uvp1asXVquV7du38/PPP5OXl0dkZCRnn3021157Le+88w45OTm+Ka/ly5dz9tlnc9dddwFeQbxgwQLeeOMN4uPjSUlJ8QtkP5jg4GBf3JTb7SYhIYF58+b9K549BYUjciqWyCkonO588803cv/+/eWAgABZr9fL6enp8rPPPuu33FuWm5bdz5gxw699//79LZZ3Dx06VO7cubO8YcMGecCAAbLBYJCTkpLk995776jGbOTHH3+Ue/ToIev1ejk8PFy++uqr5cLCwhb9duzYIY8fP14ODQ2VDQaD3LFjR/mpp57y61NWVibfeeedcmJioqzVauXY2Fh5+PDh8scff+zr89FHH8lDhgyRIyIiZL1eL6elpckPPfSQXFdXJ8uyNx3BQw89JHfv3l0OCgqSAwIC5O7du8sffPBBC5s2b94sX3zxxb6xkpKS5Msvv1xeuHChX7+lS5fKvXr1knU6nZyamipPmzbNtwT8SDRe59ZYuXKl3L9/f9loNMrx8fHyww8/7FuKv3jx4iOOkZSUJI8dO7ZFO+CXyqCmpkaeNGmSHBkZKQcGBsqjRo2Ss7Ky5KSkJL/l7Y1L+devX+83XuN3oLlNB1NZWSnfeeedcnp6uhwQECCHhITI/fr1k3/66adWbZ47d67crVs33/e5te9XfX29/Nhjj8nt2rWTdTqdHBkZKQ8cOFB+7bXXfKkmZFmWPR6PPHXqVDk9PV3W6XRyVFSUPGbMGHnjxo2+PllZWfKQIUNko9EoA77zPly6jMLCQt93NiQkRL7sssvk4uJiGZCffvrpQ14LBYUTjSDL/8LPJgUFhRYMGzaMysrKw8YCKSicaJKTk+nSpQt//vnnqTZFQeGMQYk5UlBQUFBQUFBohiKOFBQUFBQUFBSaoYgjBQUFBQUFBYVmKDFHCgoKCgoKCgrNUDxHCgoKCgoKCgrNUMSRgoKCgoKCgkIz/tNJICVJori4mKCgoGNOda+goKCgoKBwapBlmfr6euLj41GpTryf5z8tjoqLi1vUz1JQUFBQUFA4MygoKKBNmzYnfNz/tDgKCgoCvBc3ODj4FFujoKCgoKCgcDSYzWYSExN9z/ETzX9aHDVOpQUHByviSEFBQUFB4Qzj3wqJUQKyFRQUFBQUFBSaoYgjBQUFBQUFBYVmKOJIQUFBQUFBQaEZijhSUFBQOAy2ygI2/3071fvWn2pTFBQUThL/6YBsBQUFhSOxae11OI352LL2MCht4ak2R0FB4SSgeI4UFBQUDoPTmA+Aw5h3ag1RUFA4aSjiSEFBQUFBQUGhGYo4UlBQUDgckvpUW6CgoHCSUcSRgoKCwmEQaEoyJ7qdp9ASBQWFk4UijhQUFBQOh9wkjtzWulNoiIKCwslCEUcKCgoKh0ASRUSVhz01qbhELW5bzak2SUFB4SSgLOVXUFBQOAQeRz1rSnrz2Y5r6RSeTb9U86k2SUFB4SSgeI4UFBQUDoHHXs+m8m4A7K7uiMuueI4UFP4LKOJIQUFB4RC4HWYsrkDfe6ddiTlSUPgvoIgjBYXTmPrlhdi2VZxqM/6zeBz1SHLTbbKmvvbUGaOgoHDSUGKOFBROU9zlNupm7wfA2DUSQRCOsIfCicbt9BdHFVYl5khB4b+A4jlSUDhNkd1S02u75xRa8t9FdNTjEPW+9zV2+ym0RkFB4WRxzOKoqKiIa665hoiICIxGI127dmXDhg2+7bIsM2XKFOLi4jAajYwYMYKcnBy/Maqrq7n66qsJDg4mNDSUG2+8EYvF4tdn27ZtDB48GIPBQGJiIq+++moLW2bMmEF6ejoGg4GuXbvy119/HevpKCicvjRzFIlm16mz4z+M223G4WkSR3VOxym0RkFB4WRxTOKopqaGQYMGodVq+fvvv9m1axevv/46YWFhvj6vvvoq77zzDtOmTWPt2rUEBAQwatQoHI6mm8rVV1/Nzp07mT9/Pn/++SfLli3jlltu8W03m82MHDmSpKQkNm7cyNSpU3nmmWf4+OOPfX1WrVrFlVdeyY033sjmzZsZN24c48aNY8eOHf/keigonD6Isu+lZFM8R6cCj8vfc1TnFk+hNQoKCicLQZZl+cjdvDz66KOsXLmS5cuXt7pdlmXi4+N54IEHePDBBwGoq6sjJiaGL774ggkTJrB7924yMjJYv349vXv3BmDOnDmcd955FBYWEh8fz4cffsgTTzxBaWkpOp3Od+xZs2aRlZUFwBVXXIHVauXPP//0Hb9///5kZmYybdq0Vu1zOp04nU3p/81mM4mJidTV1REcHHy0l0FB4aTg3F9HxUfbAIi4vjPG9PBTbNF/j90LX2Lsgi5Isre+2vWpy3nmlv+dYqsUFBTMZjMhISH/2vP7mDxHv//+O7179+ayyy4jOjqaHj168Mknn/i279+/n9LSUkaMGOFrCwkJoV+/fqxevRqA1atXExoa6hNGACNGjEClUrF27VpfnyFDhviEEcCoUaPIzs6mpqbG16f5cRr7NB6nNV5++WVCQkJ8/xITE4/l9BUUTiqy2CzmyKF4jk4FVqfVJ4wArIrjSEHhP8ExiaPc3Fw+/PBD2rdvz9y5c7n99tu55557+PLLLwEoLS0FICYmxm+/mJgY37bS0lKio6P9tms0GsLDw/36tDZG82Mcqk/j9tZ47LHHqKur8/0rKCg4ltNXUDipyJ5m02pO5al8KjC7bH7vbaKyhuX/E5IkHbmTwn+SY1rKL0kSvXv35qWXXgKgR48e7Nixg2nTpjFx4sR/xcATiV6vR6/XH7mjgsLpgKeZ50gRR6eEeo9/ALZDUsTR/xec5krWr7gYQdbR95yZaI1Bp9okhdOIY/pLj4uLIyMjw6+tU6dO5OfnAxAbGwtAWVmZX5+ysjLfttjYWMrLy/22ezweqqur/fq0NkbzYxyqT+N2BYUzHblZQHbzZf0KJw+rx3860y5pT5ElCieaom0/4zQU4TDup3zX/FNtzv9LzmTP3DGJo0GDBpGdne3XtmfPHpKSkgBISUkhNjaWhQsX+rabzWbWrl3LgAEDABgwYAC1tbVs3LjR12fRokVIkkS/fv18fZYtW4bb7fb1mT9/Ph07dvStjBswYIDfcRr7NB5HQeFMR27uOZKOet2EwgnEKrr93tslLaLHfYjepyeW8lyq960/1Wacdpjrm1Y219dlnUJLzhzq8ndQX5R95I4NbJlzM9vnPoituuhftOrf4Zim1e677z4GDhzISy+9xOWXX866dev4+OOPfUvsBUFg8uTJvPDCC7Rv356UlBSeeuop4uPjGTduHOD1NI0ePZqbb76ZadOm4Xa7ueuuu5gwYQLx8fEAXHXVVTz77LPceOONPPLII+zYsYO3336bN99802fLvffey9ChQ3n99dcZO3YsP/zwAxs2bPBb7q+gcCZjLTvQ9EYRR6eEeslDO1Q8h5EvcZHvMeAyV2AMjz/Vph0VkiSxacM1uA1l9NL8SmhS91Nt0mmDVWp6yNsc+06hJWcGdQU72Jh9KbLaTcfSV2nT6xJve/4OqgtWU1A3HUltw+hJxWLc6t3JAMgCba3XQ3jCKbP9eDgmcdSnTx9mzpzJY489xnPPPUdKSgpvvfUWV199ta/Pww8/jNVq5ZZbbqG2tpazzjqLOXPmYDAYfH2+/fZb7rrrLoYPH45KpeKSSy7hnXfe8W0PCQlh3rx53HnnnfTq1YvIyEimTJnilwtp4MCBfPfddzz55JM8/vjjtG/fnlmzZtGlS5d/cj0UFE4b3NZawAiA5FKSQJ5sJEnCKsuMR0db1DyFkWs8BpzmsjNGHJnzt+E2eMMPinNmKeKoAdFlx6Fv+vFhlw8cpvd/m7KdC9ib9xIO4wFoWLiZXfcwFX/NJSXjDjbmekUSDY94i3ar3/4hjgGEJJ55z+VjynP0/41/O0+CgsI/ofD7ObA1AABDrxAiL+t2ii36b2Epz+OF2c/RL/ta+jT8jrzEtJffLk4gtsvIU2zd0bFj3uOUaX4EINjehz5jfzjFFp0eVO1dy5b8q5oaJDVn9V2JPjjq1Bl1mrJy9jleYXQchNgH0XXIW+iDTnyOtn/7+a0UnlVQOE0RXXbUBDS8VspWnGzMxduxuk00X99qdxtw2SpOmU3HSo1nqe8ub9XsRpIkVCplxV1d6WYAAm1dcakqcRlKKN09h6R+155iy04PnPXVbFl6MxbTlkbnNQDJ2vsxBMRTXjqHasMCv306hrxCSFw3guI7IHrcqDVn9uIFRRwpKJym1FjsRDa8dioFT086VaVLsHlMfqtWPG4TdmvuKbPpWKgv2YvL0JT3TdRaqC/OIqRN04rjusJdGEPj0QWGngILTx3m+h2ghwBdBgbJRiV/YKnbfarNOi3wOKysXTEWt6lpVXmkcyzJXW7xTY/FusawY+FDVOq99UzTQ18joed4X/8zXRiBIo4UFE5bHK6mZeQVdXbankJb/ovUSmuxukcAEnrVJpxSZ/RoqbYUH3Y/0WWnau9qItoNQK0zHrbvv4Uketix8V4web0jEh5spt3UFKz1iaP8td+QY30anSOegSPmnTJbTwVm2btaOiyiN1bzXpDB6TlzPIInEltlIeay3QSEtmXv1jep1i0CfVNetQBbBl3HvIlK3ZQpXq0z0H3Mu9iqH0W0WwhK6HgqTP9XUcSRgsJpiqdZ+RC7SykfcjKpL87GZSjB5jaRpF5ClPYd7GIfjO77qXBUHnI/0WVn7fzx2I05hOWdQ8/zPjlk338LSZJY+/eF2EzZIKlJSrqNypKl2NhNXe1GYBIARZXfgRFchmIKN/1MUv//xpRSffEe3IZykNREpZ+De7sZbOCSyo+88xmM6Hai1jZNEpfumMuBAx81rSwrwxdU3Ui3Nl8S1eGsQ45pOsNWoB0LyuSzgsJpitgsCaRTSQJ5UinbOxeAWns4SerfADCq12NCoEayHHK/3NUfYzfmAFCjW4rLUvPvG3sQNbnrvcIISNbfR2zX0YRGeGtZ1kve3D5uez02wx7fPgdq3jvpdp4qagq9OZ+MzlR0AaEER3UGwGrcSV3hzlNp2r+CJElsnH0DS5ZnsH72VdTs38zG2dezs/yOJmHUCj1Tfj6sMPr/jiKOFBROUySxyY0tK9ropFJe/zcA1Y5QBJouvgkwy65WM/9Kokix7ZumBpVIefbCFv3+bWpLNgBgsnUkbfDtAESkeJPjOg2FuCw1mIt2giCD5P2OufWVOGr/f3tOGjHXbgcgQO2dCgpP64PBngSCTPWBVafStGNGElt6lF2WGoo2/orLUsPuBc+z/q+LqTUuBcBsXMum/ZdSa1zeYr8EbqRz1PsY7Kmk6B8mLKXHv27/6YwyraagcJoiN6vjJcjCKbTkv0VF9jLsxj04RS0W0YBK3fQ5hOHCImlxmisxhvoX0K7MXopHX43KYyLUM4hqw3xqqzbRhkuPeEx7bTm5698hOmn0P/61Xm/ZBXoI0ff2tRnD49E6onEbyqnKXYPT6g3UDnB0wqkuwaOvor4sC8NB5/T/EasrCzQQHNSUeydQ1QUHB7DbC49rzKq9a9iT9QJaIZTQoH60G3L3iTK3BZIksWfxy9TYV2Ez5ICqKT7IYE/FYfQuGMhah9f9YWp9HJ0jnjDNWUiSndQe9xAYkwpAbNfR/5rtZxKKOFJQOE2R5SbPkfCfzUb27yN63LjqqzCGxVJXsIMdB24HDRRX9AAEVDRd/EgsWFwBbFtxOzIe2sRdh0qtI7bbWIoP/AJ6CPUMIiioC9Xu+djd+494fEmS2LriRqymXZQWfs+AyGX/KJbDKnmny4LCvA//rxduJqu4hvHhnamjnIriuahURtCASZOCIKqxUIWlMouojkMAb1yO6HYQmvT/K7eW6HFj0+0FICQ209duMqWCCOWeP0gz39Ui39HB8Tqiyw4qDcgSOcteo0j43CdC6jyrObDoLQLtPYgMPpu4ThdhimxzTHZW7V1DfUUWyQOu9x1v78q3KZQ+9d4MBFoVPY3CqDWC7X1J6/Qg5XlzCY3pQ2znc4/Jpv8aijhSUDhdkZqLo/+u56gqZzUOSxlx3c5HpT7+W1ZVzipy97yLQyjAZSgBQO9IwKWtQFa5ifFcQpn2Z9CAxhVGkXM8akDA6RsjWqgn3xmCxbQC8GYKBiid8zu1Wm9bQvJlSKILKsAhHNkTUZWzEqtpl+/9+rXjGDrm+GqhiW4nTr23EHhofCYWm4On5ntX10V0Hkz3hMVUquegcYeBBgIC2qN2BGFhK9W1q0jhFlyWWtbvvBBQMSBkSQsP2ZlM/rovkTR21O5AQpObpo2iU0eQv+c9RF0dKzb0x2BPIT7sSgyB8WSVPIyktRErXkn7gQ+yf900CsXPUXsCkFUeJI2t1WNZjJuxuDeTt+0NOoY0lds4EiVb/2RX1b0AlP85G4thG7KqYfrsKG4DofbBBJo6IcsipsAk6mt3Ikp2uox+DZVaTXhqr6Oy47+OIo4UFE5ThOaeo6O5K/4/ojp3I1p9INqAMLbm3YCsdlE+9296nPfRcY+Zk/0KVtMOvzanoakgZpn2Z9/rzqnvcuvScvSAIDTlmIoTatjsaJntt8awCACtI5rI9LOxVeRBBbh0ZS28DgeTv/czv0R7Hn01TnMFotOONjAcrTHwqM+xrmAHssqDymMiILYdf69vqh+2piyUntFBiNp63OpyBFFPbNfzcdQWUVrwHXW6dTjNFaxbMQ7Z4C2uW7VvGW16+U8Lim4n+1a8jdNVTnLXWwiK73DU9p0qJEmicOOP7Le+DmqI1V6JSq3hpvf/YkeZk1mTh5NqfJRcx8sAOIz7yXW8BA6gIWVPqfp7KpbPRtSZQYX3/82Ido2jbcYkNuy9qMXxs+sepmbuWjqf+79Wk3DWHthKdeEadIYIsuse8bXXmza1ej6h9sEkJF1JSf5MElKuIKLdQJz1lbjM5X6iT+H4UcSRgsJpitDMc6T6D3mObNVFbNl3NbLa+4BurOdUrVuEs776uEoRVOWsaiGMANTuQESt/+ozo70d0za5cMgaIhBQ0SSOIoUaSuu6AhDlupCQsJ5UVM6lzrgagLiACSzaso/HZ+3gnLbncm7qfEp3ziUh88JW7cpdMc0XHNs+8HlyLE8BsGJDfwACbd3pd/6vR32e5XnzATC526NSqdiS15S7Z3e1THrCVHYXT0bSOGirv42AqCSMEYnocxJwGorYtHwiLmNT4sg91VOIto5AFxAKeEXGtgWTqdbPAy1U7vib/sYFGMPijtrGk4GlPBe3tQ59YAR7N75BvbjTO+WkBiQVSb2uZ2deCQsKZEDH90t3cO9FN2BfVECJ6puWA0oqUEktBBFAjOcKOp3zrC/x4fC2+3BZaina9isB4akU7/+ZKv3flGt/oXzJLwiilkjxPKxiFh6hHllw4dY3pIdwthgeQdQiCxI6VwyZ3T8lIDbN50GN7TLK188UnvD/emn9yUYRRwoKpyl+nqP/kDiqyFnUJIyao5Ioy5pL2z5XHvVYtXlbKN470/fAC7EPoPdY/4dffcle1u+4EJWoJ7PTFwQlZPDYi38COkx4EIQmW8KFeiodQZw9dI8vKV6idDXlO+eh1pmI6jiEK56cSbVHxy/7RjM8ZQE15atIwF8cVeduIHvXFN+Se6O9PW3PuQrH4kIK5CbvmMW0lVWzR9K97ycERCUd9lxFj5ti8UtQQ2SwN54kq8RM41xMvaSlzNiZPpl/YKvcT2T62dRZ7IQEGokLupI892vYjNl+Y8pqJzkrX6XzyJcAKN0+2yuMGpA0DrasvIm+o2cdV1Zkl82MRh/gl2DwWKnet569u6eiV8fikcz+K7EkNehEv/4hzn4Yw2L5a+EKX9vm/BpUKhUZI54lg2cB2Pr33VTq/0LjDKdP71/YtvZubPpsouVxhEX0BbWGyNSB6IMjORhdYCgpA28AIDp9GNvm3EeF7ncAZLWbiob0EK0hiDqSDPdgCIgjLLmPInhOEYo4UlA4TVE3E0eq/6dZNyRJImfpVDweM+lnP4Nao6Wmeg3NC5oZ7KloCMJi3Mre2mcxZrchquPg1scTRar2rsIQHEfulneo1M/2JSxReYxk9Hu5xT5Bce0YaFyCSqNDFxhKZa2FfLv3Qf/W6DawpKlvsGDBKmlwiRKGhge6SqXyrfDZvLeQao8OALesJa+uLarQGZQtmoHKY6JT/GtEpA1kZ9Z9uExNmbZ7D/0egHZD7ke3Phq3s4Z80Zt7yG7cx5rt59A3/W8CYlJbxF2JHjfO2lL2bngdWecCQBfbn4enL2B5qb+o/nvTPh69bDCB0an8sGQrj84pYFAMfH7LVeStftO38qlr7CcU5H1NrWEZpZofCds6AENgLLurJgMQ6bqAkNBM9tmex2bKIn/tdFIG3dLi2ooeN1mLnsbpKSfA2J5S5wyQBSS1nWB3b2qNy4mTriFjxLOtfp5Hw57dL2A17aC+tY0qf2EU6TyPdn0fBGD53ioaH4FZVa4Wu3YZ8Rr7ViYTnXEupqi29D//t+OuGZY+5FnEJXaqDfNbbAu1D0Yl6DAakolOHklwfCc0hoBjPobCiUURRwoKpynNxVHz1/+fKNsxl0L5Y1BD6bIf6NdpHrXCGgDSw98kIfNCdh8oo/DAbrSWhxAN1ezOfRBZfBmtMQxjWAL15XuIaDcQlUpF1uLnvF6iIvwEFpKKQQOXU+lQUVpcicmgIzY82FeItfkS9m+XbENGIETtIkbv/3A1CVZkBPYVV9I5ueVU0rT52/3e76lNIzXUW9Fc0tjYWX4HlOOXiTjN+BS6wDAAVGoNyf2vByDJMomsFc/6PA7rssZAlncJdrh2CBXSbPTuNthMDTXBvJoMwRnKhV/mUdMg0vSCh97RalaWCWwvrPMd9/fN+YCKlWXw9IwNXNfmakr4inDHuUSmDyMorhOrNnvTCuyumgxVDTvKAmnd7yYwLo36Odsp180i1/kK0gqRlAE34zRXUpW7kpLSn3FR6Z3O0kCNvNhnI0CtxuvhKVF9Q0fXY6h1B6VnPgKiy0HOijdanS5tJMDWhVDTAMqdv5Ge9CLRGecAkFdazfbapr+pCpeWKrOViOAmUaLW6ukw7AG/8Y63ZpjOFEyP86b5tUmSBLL8j7xmCv8eijhSUDgNET1u1LJAmOZtPHIsKmn8kXc6AykumOEXjLx290jfAzSq3RDqLHYunrYGu6xhQNRj3NTjIdz6SraX3uzt1LBSPjRnKBpVoNdT1Ixgex906hii4kbw7rxdvLuutoUNHYPc9E4MZmjnNlTX23l7TRWg4uyUAOrLDvj1NTbEH+0pqsIjynhEkV4dEgGwOVwsy3cBGmJ0LspcOgqreqOO39AiVkUQdaQFP47WEEps17EAWB0ujDqNL2BXFxhKt9FvsnOekVLNj759XYZiSvkB1GDT+hdLNdiT8CR8RI3Hu5z/vGQ1913QlwVbcllZVsn+2qYpwvw6D40X+7dsCy9c/RjxxeMJTuyCSqXCGBaHzhHrV7wWINXwMIFxaQDEtB1LeeksAA7Y36Zkzk84jfmNF+uoWba4D91SPyKi/UC/dkvJPrZvvAenphitGEb3np8QGJeGJElsnn+TL9Yr0nUB7Xs/gLl0F9GdRuC21aENCPVdy3Qe9Rt3xc4DyAiEa1x4ZAGzqGXx1lwuHdz16I3+h7QWmK1w+qCIIwWF0xDRaSWQYgI0Xje81jHqCHucebgstdTpVre6zVlzDpO/WcP8PBfuhtvU6go9N5svQg5uGa/RmAG4EaO9HfERV5J8zvW+tp9/nYmf66KB7Hot2bvsfLsrp6FFRZzexROXDqXkZ//VcfoGcXTfHweAA2gRuSR9D4M7xVNUbcEuazAJHsZ3jWTaRjMVjhiGjd4MQHnWEvL2vo9bqCWlzT3Ed7/AN+6X8zfx7MIi0gJF5j85zu+YnUe+RGrtZPatexOzewt2Y1PZD50jjkjdSDyiGa0mjORBN/PuAu/2FJOLD27zimqz1QHLKylzavB4RDySRImj6fZvlzUUVllIPiivUWaPLynfO59a8xpkJJLa3eI3pRmdcQ69TD+zOfs6JK2tSRg1I8jei7CAAVRY55HR5X+YolKwle/DUrUPS20WRcJ0JK2Nbbm30ds0g9qSreSXfYTDmOcdoCGfj4iZtbtHkrz3flQqrU8YBdg6kz50CvqgcEyRXqF6pKD9bfleN1hSsAoQ2FwNq/aUnlRxdKZhc7h4/891XNSvAx0SD53eoc5iR6USCDIZeO+PNXSID2dEj3ZnnBhUxJGCwmmI6LRhEqy+98GqIycTPNMo2vYLstrVUBV+PlsX3IlbqiYw5GKu2xxAlUfEt1Stgcrw6xnX8ykObPyKIvtXiLpawDvV5DJ4Y3jSQ6aScM7Fvn0Wb9nLC39sp8TpFUbdwzy0CdXTIymSL9cUUODwF0wdgtzMfGAsAQYdJfUlfts0zVauAbhR80OWg1nZe4g1SoCOYUl6UmNCADPVzqYEktHpw4hOH9bqtfhk5QEkdORYVMzbuIeRvfyXxxtDo+ky0hsvZavIJ3v9i0THjiahZ0uP4q4Sb46k1PCmecVuqfGo2IKIij1FFZTXWhFRoUPEoJYwi1o27ysmOdZfVATFtSMorh1we6t2A4Qm96BD1bNk1T0EQIRzNGFh/UnocSnVuWsIT+mLxhBAe+7z7aNL7kFocg8kSSJgU3v2mB9H0lpZl31ewwk3ja9xhWIU21Fv9JZFyXO/4dsW6bqA7ue/dUjbDkVWmRXQ0D7KO422udrJgWr74Xf6D+Nwubnzk/ksLoL3N6wn1eTihUt6MLBzMh6PyF/rs6mxOPhi9QH22w7+AVLFh5LEmD7pp8T240URRwoKpyGi046m2bpeg1B1mN5nJmXVv4MJ1Izhjd830CXpIcb0SWfKt4up8ngT66mQEIAgtYdaUcejfx3grM5JtB96L+2597Dj78wr4c6v1pBn09HoMRoQLfH9/U15aG4a3Zv9JVU88PVKNlWrubSDjhevGYle540t0Tj8C8ceLI4accga8hpyAd56bjfcoggUUO9R++KaDsVvq3ZS2Eyg3f/LLpakxRMZ2np+I1NU28Pme9pf4wJ0ZMSH+Nq0GjURWg8Vbh2/r8tB21ASJd4kolcLmOthZ0EVxzt5G9djHNZl+1GrDaSdc6evPbrT2YfdT6VSkdj7CoILu7BhT8t0BzGeK+gy2rtSrjZvMxtz/XMute048Zht9XhE9jSEXg3uFE9xtQWyKyi2iIff8T/Klr1FXPLpJsRmi0JybTru+G4z064RmPBl85ivlp5ZgHN7tP+XrTzxKOJIQeE0RHTb0eDwvdcL1afQmhOPpSwXq2kHbknDY6s7UO6ugw11vGJzsXRvLaBjdJKKt28cidsjMn/zXu774wASKka9vpg3L+3MiJ4tb7gWm4N3/lyH0y3y5XYbzW/WAjIvThjQYp+UuAh+fbj1PERa0ZsDSZSDUQtm1IKd3JfGMH3+JiKCjHy2bC9lNolKlwYJFakBLrqnxVNnsQMybtQs2rKvVVsb+XZ1LqAiTOPC4lFjkbR8t3Q791zU0tYj4fGIFNu83ra+7f0Dxke2D+HbXXambTQjIAMCKWE6tGoV2fUSOeVN+Z7e+2MNNRYnT1059KiOq1KpWgQvHwshbTrTR5hN4a7vCArNIKxNH19cUyOhyT3orfmD3G3vUKNdQpR0/nEVR122Yz8OWYMWkXN7tie3pIqXl1VQ6mwZlP1fpqLWQlZBOZO+3YHY4MHVIeJqeF0r6g4SRk2okYg3eCh1qHl5bAoazZkXdK6IIwWF05CDxZG62esznep968nf8wXoYfm+Cyh3N82hvDgvF7PoFTT3nNcDvU6LXqdl/KAuaNQq7pmVS72k5aaf9tDhr53ceU57hmemYbY7qTbbOP+jjbRWYyHJ6GL2Q2MINB3biiid5HUHiXI4asGMCjsqlYobR3mLuo4b2BmAvUUV/LhiN1cOzgAgJNBIl1CRHbUaflyd06o4Kq6sY8ybi6kTvV6qR89NY+HOIublS7yxupq3V//BqGQtl/ZvxzmZ7Y7K3q25xbhQo0aib8dEv23ndk/i211ZAMgN1ygjLgS1WmBefi37qr3L2QsranhtpddTOaBj67b/GwQnpJOR8Nxh+4S0yaBHm2mH7XMk5m/1BtmnBUkYdFoykmIJUbupE7X8vX4P1wz/72aYzi4oJ8ikZ09hJdd/n9XQ6v0+3d0/gjvP78fu/DKmL9rBzL3+uci6h3l48qIefLlsN09fPoioQ3g+zxQUcaSgcBoium2om02rqfCcQmtODCXb/ia34DVvoG1DOMz8Im+dpyitiwq3DnODUEgLcJGRFOu3/wX9M1AJAvfM3OuNnbFouff3PPg9r1kvf2E0KEZmyqV9iQkLOmZhBKCVvZ+BJHunqFRYkSUJ4aBpsnYJUTxxhX+x0mHtI9mxvpYlBR7ySqv94nnW7D7Q8Kvbe77ROhcXDegEwLz8AgBEVPyVJ/JXXjY/m/T07uAvdlrjzw37AIg3enxTg41kpsUDWb73/aMlbhjZg/IaC++s3UCRQ0teaTWTv1pO46PhUMIOoKzGjFpQHXL673Rle7EF0JCZEORry4hQs7oclmaV/OfEkSRJrNmdT43Fzj0zvUV5dYJEc3nw0eXpvu9Bt9R43kyNZ9Dy7Tz79z4EAb6/uZ8vtUWf9LYn/Rz+DRRxpKBwGuJyWAmg6ZeZcIaII0mSsJbk+JU4AO/KtKzSB5GMTR6w2toOlLuCEZB56ryO3PObN+i8a6iHT24Z3ur4Y/t1Iik6lKU7DrAku5z1lS3d9SMSBT68dRTaE+DK1zZ47OSGxESCIFFfX0tQyJFLmJzdtS3vra/BjZqRb68gziDSJzGQQR3jGla7NTHnwZEYdFrO69OBp+bk4Toor9Wln2/j48vsLQK1m1NcVcf0bd4g/rPbhbbYHhpo5O6+oSzLqWT67SMIb5g+iggO8InT8e8t9eVHAlhe6MbjEf2mRarMViZ+sICdtWp0gsjiB4cRHxHS4ninK/vrvUHyAzo0ie9B7aNYXV7F9rJW6nccAUmSeOb7pfy6sw4ZGJCgY9KwTgQa9HRPiz9RZv8jqs1Wnv9pJTef240Ag47EKG+ag+Xbc7n22+bpILyi3y57/69G4rMrMxjWPa3FmJcO7srFgzqfcavQjhZBlmX5yN3+f2I2mwkJCaGuro7g4OBTbY6Cgo+clb8Q/dciQrTeUhf1nvMIeuH7U2zVkdk5/wlK1T8Q7RpH19GvA+BxWFm5eBgefVPclNYez1Mb7uWA3Uii0cXyp8fz4o/LKK618erEcwgwtB7YeTB5pdW8/ecGFu23IcrwwLBEJo08cVXHa57pRxhZWKw9CDBtRxA8lFy3jrjUjke1/9uzVvHOmiq/YNaDeeP8JC4+q4vvvcXmQAaCTAbe/X01b6+qwIMaFRISKsI1Lib1jaVrUrTfQ2v8q7+xudorSBfd04/U+JZlLQ7Fh7PX8srySr82ARkZge5hHn57xBvELkkS5738O1n1TV6pLiEe/nysZbHV1vhp2TY25VZw30V9iAk7+ffc3QfKGPPhBgRkNj85nNBAo187wLVdTDw9YYhPEL73xxpeW1nF+HZa3rxppG+syloLb/6xjl921eOQW/czxOhcfHPrWbRPiGp1+4lg9a4D/LUpl4cvHoCxwVu4Pa+EHu3aIEkS3y/ZxhPzio4wShNaRAa30fD0Zf1Jijn2OoYni3/7+a2II0UcKZyGbF7wDWlLlhCsmQGAxTMS47M/oD6Ns+l6HFaWrmrKkxMnXUedYz1OTYlvyX2y7kEi2vRnxm4PLy4tB7wPo+evOfyqplOF9ZnOBFBIwbJw4gbY0Wjt7BvzB2n9hhz1GJ/N3cAbSwuxSv7TXDd0D2R0jxT6HmEaorLWwpjX51PhbikYwzQuukbpWFPSFCg7IlHg0zvPO2r7wOt1Gji1qdbYa2Pb8sfmfJY2VDj5+YZu9O6QyMd/r+elhs9NjdQg+mQW3N2PdocQAGU1Zt75YwN5VTZWlvlPe6qReHBwNLeP7XdM9h4PewrKuXTaKsyilkSDi+XPNK3NkySJ4S/85rcMvXnwcSND4sAlSpydHsPLyyr8tl2UpqG83sXq8oOFsMz/RicyYVj3f2T/lG8XU2VxMnXiOXyzeCtuj0jf9vFc9kVTVnaD4MEjC3g4tvtE42c5JA4+v3P0GRFArYijfxFFHCmcrqz84zO6rV1CkMZbOsIqno3m0W/RB5y+K2kavUaHIsp1EV1GvoZKpeLqN//0PSiX3jfgtPyFKksS4nPxaLCz768oEgbWYAj1sKv3NDLOP/rit42s2pnHG39tIzpIx+OX9KNNVNhR77vrQClXfrzGF7x9KKK1LtY8e9FxTXU88dUivt1lZ2CMxHf3XYDbI5L+5F8+r1ekxkVlw5Tb2Qkw/e6xdHrsN+yyhqHx8OU9Y1uM6fGIDH7+d1+OqUOxY8rw44oJaw1JknB7RF/M1YY9BWzaV+oTdQCPDYni1vP6+u2XV1rN2HeWtRCxR8OTw2K4aXRvJEliW24Jj/20nt1m/3G0iPx2e98WsXQHU1Bew5bcEmxOD3U2J/N3llBhExtSUpwY9IKHEcl6YoONPHrZWSdkCvpk828/v5WYIwWF0xCH04XQLCBbwEO9uf60FUceh5Vy2Zu5Ok66jnLxV0Rt09Lw9JCp2GIHc/Frf7C/TqKuYUXaE0OjT0thBFCcl00CdmQJ3BYNHrsaQj1IlQeOvHMrDOyczMDOyce1b0ZSLFtfHIfD5eZAWQ2XT1tFnailQ6CbcJMah0ciWK9hyqVnHXcMyIvXncNDFrtvqkmrUXNr7zA+2OBNCtQojARkHr6wDwCXdg7m6x02lhbDs98t4emrhgEwZ30Wb83Laph+a9qvQ5CHjBhTi5VON0+bz/f3X8Dx8tuqnewrq+WrDeXUNny3tIjoVRKWg8TO6CQVN4/u3WKM5Nhw1k05j4paC7d9tsw3dXhRmobkyCDeXlvTYp/eESKThrRnbD9vML1KpSKzXQKzH43jywWb2ZhXyZ+53nhBN2pu/2I1S58ez7u/r8bhEumRGuMLdC6uquPN39czI/vguCc1BydDPRwaRD/PUadgN32TQnjssrP4bfVudhdV8+Tlg88I79CpRBFHCgqnIQ6nC0FoLo7c2CzWw+xxajmw/gskjR3JHkNx7ASGdn2c3JWvYzAlENf1InSmYC565Te21jTdcgyCh0sGZZxCqw9PwZpfSADs1UZkScDj8IoOwdyyRMbJwqDT0jExmq0vjvtXxm8URo08fOlZnNerhAs+2oiMQKjaxTU9o+mUFAPA5Av7sjBnHsVOHd9uMxOgX8nyvZUNn3OTKLmvfxj3jmuqmzZi7W4q6+0s2FHM8lKBteVez9WUCYPR67S4PSJWh4sflm1n0e4y1lWoSDS6+O2+kb5AcvB6pp7+finf7mxMztnkXXGjxi01CYBgtZs3Lmk9P1YjAQYdAbHhzHliHIAvgackSUjyamxOD5cM7MjPq7K5aWTmIQPRVSoVk0b2YhKQ3hCzBHDAriP50Wb1/zbUwU97Wgia5ugQCdWKlLt1GAUPY9ubGN+vHZHBAbg9IqIk882yXfRMieKys7r4RI/T5aagotZvuvOKod1aPYZCS5RpNWVaTeE0ZOb01xiduwCj2ls/yiH24sAlb9Ex8/S7uYkuBysXDsWtr+T9dY+yqTae9CA3vz00Fq1GzWdzN7Isu4zlpf7xJhO7mnj26tMz1ghg6/9G0N2xnvJtUVTt0hLV3UxkJwt7DWfT7tFZp9q8k8rcDdkEmwwMyEhqsc3jEen/zO8+z9LBvD8+1edZORibw8XQF2f74ql6R4g8elEP7vpmA6WuluM1j0+zOlwMf2m2r59J8GA7KDC6S4iHqEANw9LjuGxwF0xHGeh/oimtNtP/1eVH7KcXPCQFyCB4y79c1DuFszonE3SCphz/P6FMqyko/AdxeUS/aTVwY7effrWfqnJWs33fXYj6Wjz2SDbVenOdZNVr6ThlHgEqd0MMR5MwGhIH53aJ58rT+Fes2+WkvX0bCGCt8HpAPHav58joqjzcrqcd+3etp77sAN3OvvTInQ/BqN6HXp2n0aj56uYBPPHjWips3oK2AWqRaVdlHnEa0WTQMfOeYUz6aCk5Fi0bqtRc+vk2Gj1ARsGDXiX5psq+3mGj58odqATBm+OqoV+4xsXaZy5EaLDndCM2PJjl9w/kie9XsavShc2jIlgrEW4U0KkF4oL1tIsO4qaRPQk5yHuncGpQxJGCwmmI2yOCZPGFGgiCC4f99MmSXZWzmj3ZL2Iz7fbNZOytu4ODkzA2D27tFyXx8AWZ9DqKZIanmpxNi8kQnIhyMI5Kb6kN0eH9MEyS+bD7OmwWKor30ya1c4tkkScbl9NB0E+XkkItm90Oeoy85l85TkZSLDMf9i7n93hEHC73UQdYt4kKY+7jFzL0ud/8igAPipH57M7zMOi0ZBeUM+6D1dhlTYscUelBbl6+os9pH1ScGB3GV/e2DFpXOD35/5m9SUHhDEcUZQSpKcZIwI3LfuwJ6k40kuhh77J32FJwjVcYNRAj38GHO7zxF8PbCLQLdPm2GQQP13U18e295x2XMKqrKmPdzHeoLj/6XC3/FNeytwBweHqA7BV8jZ4jA/WH3E+WJPa/OZLEb85izSeHL4x7Mti17FciqfW+2fLdSTmmRqM+5pVnKpWK5c+M587e3u/QuHZavr3vfAwNK846Jkaz+KGzMQr+yVAv7aBjzhPj6NGuzYkxXkGhAcVzpKBwGuKRvd6iRgTZicN1asVRfXE22zffi92Y42uLdo8nudttfL2xCotUiUnw8Pr1Iwk2eeuDHM3KKWduLfVLCwkc0gZDWqiv3eN2YbPWk/fpNfS1ryNnx5eEPbH+uL0xsiSRn7ONhNQMqsoKqMzPpn7rbySOmkxCalNMTHnRfjJt3lgvs30U4D1fj6Ox+Kal1RIiANuXzaSbeycAXYpn4HG/jkZ7auJcADzbfva9jrNlnzI7jpaHLj2Lhw4x+xcbHszsuwexbk8RM9Yf4PzuCSc04aeCQnMUcaSgcBoiiYKfOAI3Lpf7kP3/bQo3/kJ23cPQLBwiXppIp1FTcHtEPlq9HdAxItXQYsXT4ZBFiarvs5HqXbiKLMQ93g+nw0r11MHEy7kEA42p89qLe9mzZTkdeh5dpfiDWfPZ/Qwomg5ATMM/AL76gTXt76fXZY+iVmuonn4l0YBLisXlbFrp47aqkWUBteCivOQA0QkpLY7h2tTknQkS7GRtWkJ6v5Et+p0MNsz+hN71C33vY6mkuryI8OiEU2LPiSA1PpLU+Mh/nFCxkR3Lf8NWmU+fi+485VOgCqcXijhSUDgNkWQVquaeI1y4nCc/5shlM5O39iMK5KZK6G3Vd9O2xzXogyMprKjhrNdXATpv/ptxfQ89WCvYd1Uh1XvPU7K4ce6rZe+O3+ki57baX/r7ceTM5cf8ICsv2k+vwq8PDony0T/nDfL+NwOPoCNd9BZvrfXcDu6mIHhZEvC4AtHq6yn67i5KJBeJk77wiQ1JFEk1r/PuKwcQKlip3bsGToE4ctgspK73VrivkoOwCCaSKKNgx0rCz7ncZ++G399H9rjpe8l9/zlxUJqfQ5eF1wGwMyaNzgOPLau4wv9vFHGkoHAaIkpqBKF54Vk3dufJnVYr2vI7OWVP+SVz7JX6C6HJmSzYlMOHC1exsaopCDYzXDqmrM8Ajt1VhGg+Qa/ahVtKwrbvZQKy/vLrI8tq7NJATOrlpLt3sP6PafS56I6jGr+uuoKsb+6nX/XvIMA+dSo1Pe8gJCEd0eWgds9K+u99E4BkqcC3X4XQF5fUC4e8ym88t8OEVl9PD2tDqY0PMljX9Rkyz7+dXStmkYkZh6xFalBhmrJtR30tPG7XCZmCkyWJrdPvpR/ewPEbuz3PVWV/kVQ+D9v+dYBXHG387T36bpsCwJaweDJHHHvW7zOZA2tm0Zir2rxnGSjiSKEZ/+inwv/+9z8EQWDy5Mm+NofDwZ133klERASBgYFccskllJWV+e2Xn5/P2LFjMZlMREdH89BDD+Hx+AfaLVmyhJ49e6LX62nXrh1ffPFFi+O///77JCcnYzAY6NevH+vWrfsnp6OgcFogSRKyqEJQNf1NCIILu9NzmL1OvA15RW/5hJHR3p5E1R2EJmfyxsyV3PTTHj9hFK11MeXinsd8HGfOTII0v6FT5RCgWYB1y3QSHUsBsKiGIcsa3HIiVs9w3z59Nj9GVVlhq+PlbFnOureuZMPsT7A+HUPIO+28wqgB25Cn6D3yWtp37U96nxH0v+YZ5Ck1rM14go2BwyglijUxV6J29QDAJeX5jW+tbJnNu+/2Z9j32tkkLX8IAA0ewgXvdYuq392if2us+eopNC9GsWbaHciSdFT7HIrda+fSr8IbazQr8FzWhPdgc7A32WZg+QZfP0P2LN/rwNVT/9Exz0R0eYt8r41lm0+hJQqnI8ftOVq/fj0fffQR3br55yq57777mD17NjNmzCAkJIS77rqLiy++mJUrVwIgiiJjx44lNjaWVatWUVJSwnXXXYdWq+Wll14CYP/+/YwdO5bbbruNb7/9loULF3LTTTcRFxfHqFGjAPjxxx+5//77mTZtGv369eOtt95i1KhRZGdnEx0dfbynpaBwynGZK1GJKgS/KSARp+efPTSPhMdpx1FdzL4tb1Opn+2LLxqQuQxTeAL1NgfnPD+TXGuTdyNA5ebus+K57bxjm04DqKsoJ8r1kd9UV6LjAxBAko0YxB0IggedkIdOtY9S50fE6m8FIOLDzmzX9yTIXUmIVEN29HkQFEv/fW97B1r/V4sptM3tbicz/xtYPKmpMbIDwuAH6XfZQyA8DEDslu8omuGdwtR4/JeN2yqNVLe9G1H7LfvDBpJcs4poqunk3gWAS1ajE0Rf/zZSERZzDYHBh/ao2Sx1dNn3CQjQv/Rb1r5vpd/dXx7TtWxO3R6vV6ucMGa29cZnLQ/zCteOju1YzDUYTUGkOHb7rlE7cR92az3GgKDjPu6ZhOjx0M62xfe+rX3XIYPsFY6N+qpK6spKMQYHk79zG3qjidRefTEEBJ5q046J4xJHFouFq6++mk8++YQXXnjB115XV8dnn33Gd999xznnnAPA9OnT6dSpE2vWrKF///7MmzePXbt2sWDBAmJiYsjMzOT555/nkUce4ZlnnkGn0zFt2jRSUlJ4/fXXAejUqRMrVqzgzTff9ImjN954g5tvvplJk7w3umnTpjF79mw+//xzHn300X90URQUTiWO2mI0on+bSiXidv17niOXpYa1yy7EZSgGfVN7qH0opvAEJEnivumL/ITR+aka3rvl+PO27J/9CZlCDS4pHnPHkUTmfOHbZhHPI1jzC7LGhCjZ0AT8CfWDcYjdMKi9U1VdnZt8/fuX/wjlBx8BKgnlQGAmuh6X03XzJ9TUDEZFEiARrPkeVeUemHkLzLoNrp0Ju/9EXvcZbulXNECAswALsDMihXa1hRjdDmziKGL76onqfR6i5x5y6yHy53EEY8MqGLg083+sC+nG3uWjCZTs7F0/l8zhEw55Hbb/9TH9hKbYpn5Vs/6RUNFXeK/PbiGRBZHekh17jW3JM8ST7Chm5+rfCY7vSJpgxyIYEVERIlsp2ruNdt0HHdcxzzTydm8gDRtOQYtalgjHTFHebhJSO59q005rti+ax7yP36XzkHMYcfNdaLRar6dTENixeD6b5/xBxYH9Lfa78Z1P/xvi6M4772Ts2LGMGDHCTxxt3LgRt9vNiBEjfG3p6em0bduW1atX079/f1avXk3Xrl2JifGtFWHUqFHcfvvt7Ny5kx49erB69Wq/MRr7NE7fuVwuNm7cyGOPPebbrlKpGDFiBKtXrz6k3U6nE2ezuA2z+fDJ3BQUTgV2cwn6VqZWJPHEe45clhp2LnuMasN8OCg1jcptIq3z3Xy9cDPPzC/0VWef3D+Myc3qZB0vEfl/e22QMojM+YJ690WIRGARLyRC+xLF+hAqYtVUJpkw2Tx0XfcNla7nUblrIHAZIe7fCBC8NatcsgZdsxw4q9veQo8rnyFSbyCyej/MfZyq6pHYpcG+PhbxUnRCFoGaWZjUK+CrhiSGchs0sga7CoJdNXzV7nw+7XIBF+9dyt0V8wEQN/6BZvNrqIHUDuex76LvyJ3zEgcCg7l4f3smSDYWhQ3iwqoFOPYshkOIo+wNi+i3y3sPXS13ZYCwHYAtM14kLGM4yV0GYDAd20Ml1pIFwLtdr0cU1HQ3Z1GhC2dOxCBuK5oBW3+goqw3acDasG4Eemz0M2+nNn8H/EfEUeWuJaQBq0O7E+Kx0KM+i7LsdYo4aoWy3L1UFxcSHt+GeR+9A8DOpQvZuXQhQRFR1FdVHHb/hPQMQqJjDtvndOSYxdEPP/zApk2bWL9+fYttpaWl6HQ6QkND/dpjYmIoLS319WkujBq3N247XB+z2YzdbqempgZRFFvtk5WVdUjbX375ZZ599tmjO1EFhVOEw1JCQIM4kkUQGrNk/4NYFEdtOflbvkaW3VTY5qKWjTi0hUhaq58oCrR3p23izcR0GQWyzIs/reCzrRYawxNHJ6m458L+x21HI1nr5pMubfdrC9T8gUgEodrPEVWwp3cEolpgNQNZbDqX2zO+Zdi2jTikvmC5mBouxiyUYry4L3a9mRprIeExaQQ6guifGgqlm2D2/UjlB3BIfbFLLe12yelUux9FI9yNTrUfq6AnS/sIMS4oDHDSyS3waRdvtfhf2w3lziJv0VCLkIiehrxBe/4izW1FdG/lT/1nXF/kFWm7IrsBC2hTvsTPEyRLEvnZm6n+c0pTYDeQwV42ie3oqd7LgLwPIe9Dqv8KZnPbCXS55DGCQlrGOx1MXXUF8Q0utO2BHQC4vnAFefqufBt3PrcVzaCbdTXqXG+g+cLw/nS07qefeTuegg2Ad9pyy4LvcdVX0PvCO1GpT+/M08eDunANAGtDupFkL6ZHfRbO0qOLD/sv4bTZ+Om5x3AdonRRa8IoLC4BndFIt+Gj6Tp8FIJwiCWipznHJI4KCgq49957mT9/PgbDmVcI77HHHuP+++/3vTebzSQmnv6lDBT+WzhsRRhlNQggulVo1F5RpJaOr0a0JEnkrH2Vcu1Mb0MraYhC7INI7/McgdHJvrZHv1jID1ne2JswjYspY9ozflCX47KhOUW5u7Et+8D3XqMqoCpUQ0StBw3em+36NilsULenA1m8JzwAwBvRRs4NuY0AS0+q3N5VVqIci+WXfADajk3HNXcHtQdCG3NCA6/5HdtuqOWjsxaxzXwNj+220r7ee+Mud71LhPYJvkq8hAtyvfmL6gLXILlVGN0O7Frv/U5yez+DAm1fPktIxCg5mFj8O8H7l7IyNJN4WyTgFUeRNu84beRSSqdmsmfIi7TrM5rdH99A7/qFNC/h+lvwEO7IfJrLSuYi5vxFVzkbg+AmHDMD8j9mw2f76X3/zxyJvC0L6Q7kGeKp0wZxW8EPDC4ZzGBPPDsCDKwN7EI/yw4AXIKGP6KGUqELY2LJ78RVrESWJPKyNtJt+e2oBJl1QN/x9xzxuGcSsiSRZNkCwAZTBq6Gx6Cq6vRPknmycNpsLP7iYwp2bfMTRnEd0hl9+31sXzSXDX/86tc+8ua7iGybfAqs/Xc4JnG0ceNGysvL6dmzaVWKKIosW7aM9957j7lz5+JyuaitrfXzHpWVlREb6100GRsb22JVWeNqtuZ9Dl7hVlZWRnBwMEajEbVajVqtbrVP4xitodfr0ev1h9yuoHA6YHPlEtDw6PR4VKglCUEFelHCZalFFxh62P0lScJjq8NVX03Jnt/J97wP2iZhZbAnocKARzDj0dQSq7qcTmOn+LZv3VfM1Z+tw9JQF61DkJu/HrnwHxf0rCw+wL6fn6Rf9e80piGscd+MHD6dLd1C6bDXQnyJhm3JRq5OfBer4B9zkyu059de3Tl/3Q7iVNdR574em3SOb3vt7ELg0NdmaUId7yTHc0A9EcLgygFBvLzVwbllXjFT5X6RCxrSK62MVDPcMgO7W0AtN3nsXG4BI6BxDuLjhAAsWoEXU2/jx20P8FXchdyQ1RQsFmpPZm1UV/qZtxNLJbHLboVl0LuZTfWykYrgDB7r8gCioOGH+LG41DqmdsukMjyd/d8/SJ+6OfQ2z2f1x3fT6eInCI1s/R5nMdeQssz7429heD+e2fseXeJWgMcbFza22M0tXZ7ls21vEuPM4Yc259HBeoA1wV2xq3QkSUVsWzaT4GVPoxK835fgXd/D/zNxVJy3mwS5BpegwW0VqcMEQKJ1x38uKLuuvIzfX38Jt8tJu979OLBtCzUlRbgPyqkWHBVDcvcetO3ZmYDwMAZfNZFOZw0jIDQMp81KeHxT+Za6mkr0egMGUyClBXuJiktGrTnzsgYdk8XDhw9n+3Z/V/ikSZNIT0/nkUceITExEa1Wy8KFC7nkkksAyM7OJj8/nwEDBgAwYMAAXnzxRcrLy32ryubPn09wcDAZGRm+Pn/95Z/rZP78+b4xdDodvXr1YuHChYwbNw7wPhAWLlzIXXfddYyXQEHh9MImHcBIPAB5pjjaCmWYcKGVBWyVeegCM/36S6JIZc5yDuz7GK0qDJuUi924p6lDg1db7Q5k0JAVaI2tB/q+/NMyft5WRZ1HjQevMNIhMvuRC45aGJXm51D57U0AJN0xk6CQcDxuF1v+/pzkTS/Tr5lPxyUlo6KWtXHtWEQv3O0WYjPWMzNhWAth1Mg3quvpnPY0kbuqCde9QajwHm6SqLI/jeQTRhJG1XLccntEwYMkxbM8WsUDXfzrb0XY6vikXZBPHDWyJVSNRVpAhDuPA64Iv21m2YhOZSbUHcySRRYuOSuAAwEqruj2OoFumWdtTTmhdLLAw2kv82nxB0SVLSOUpm0uWY351s1E7P2VWbs3Uq0N9W37NeZcnpk5nujoFCKv/YjNn1voYVvBgOKv4L2vEGWBTT28cUopfS8gMt4rpPd8fB098dbj+zzhYh4teh88cU3n6xIp00fydp97kRz1LDSk8Xjux1jUJr6LHcuNxTPptuQGv/NNd+9ix4rf6XLWhb62uuoKdv35DobSDbgC4ul1y4entETKsVK0eQEJwOagToz1rKNAH4ND0BEvV5K7ewOpnY995eXpjiSK7F2/mvgOnRA9HmpKi/E4nfz2WlPM8PrfW6bHiE1rT1pmOkF7vyGpcDaBRXZq/ggiO2o04QOuITo5lYDQMPbvWk/ZljkYC5bT3b4WgA3B59LbPJ8CIR7X+M9I6/bP4xRPJsckjoKCgujSxd+tHhAQQEREhK/9xhtv5P777yc8PJzg4GDuvvtuBgwYQP/+3vn+kSNHkpGRwbXXXsurr75KaWkpTz75JHfeeafPq3Pbbbfx3nvv8fDDD3PDDTewaNEifvrpJ2bPnu077v3338/EiRPp3bs3ffv25a233sJqtfpWrykonImILjuVqjrS8CaAtKPHiQ4TLnSSRF3pdkKTM339izbNIqvWO+3U2nRZI3Hi1bTtcT2C1vsr2epwEWDwPtAqay1c+s588mw6oOkhF6V1MWVsx6Oudi5LEuXf3U435xYA1nz3OJ2ueJ6902+md/1iXz+H2AO71A+bOAJ78EvcFfsKZiGUjXJfHk54geUM856Oy4FdZ0ArSdyQU8PHHcLZKXTjs6irCW7/OR33WlHJLlSavUTq7kaFAQk1uXEaZqcmME8TxErVUPSijLPBGdA7bxepFSWE2eoRgIioKB5PCaAgIYokcwBFxiD09l28d0CNADjtGmyaJm9zvc5EG9VXIHl/hH23ysz/MgKYHa9hUEWDyBKsqKlBlNsQ5jJSplfR/pki6qrKKMhah61wFx26DyRS68C57DW+6P4WABnOLHbp0wHoNnAms7bcTb/3etMlrD1rjePpV+WdFlULMn22POE9VuP/gUZ//rSEy9hnakuSZh92a5OfKtlqB4KYTzQYohFkiVFVKyjWR/F+4lXcWDzT13dO8CiMzjqGOtegW/I88sDzEVQqJFGk+MOLGNBQPw4brPszk77j7z7q74gkSexePZt2vUdgMAYc1X4nEmGvt6TK2pBunF2zDiG4K0vDezOqahVlc94mtfO3J92mE433OosIgoqa0mJmPPc41tqao94/Nq093UaMoes5I9n50mA6u7b5fmSFUU//ihnw+ww2LRxMrG0PKXIZBxfT6W32Ll4Ik2oQEzucoDM7eZxwX9ebb76JSqXikksuwel0MmrUKD74oCm+QK1W8+eff3L77bczYMAAAgICmDhxIs8995yvT0pKCrNnz+a+++7j7bffpk2bNnz66ae+ZfwAV1xxBRUVFUyZMoXS0lIyMzOZM2dOiyBtBYUzier966lyBtO5URzJOlyC989UL8uUV80hiWsBqMha2iSMGjDZMtAIQcREX4BabUCtDySq/WDUOgMf/bWO15btwI1X7CQZXagE2H+QKLqlZxD3jxvgq4h+tGxd/BOZjqaFGv3Lvod3vqexNGgFl+F0XAno0KgKCNW+xzWZd2AWQgHYLmRyLU1xNd9HRxJrCEH+8U3ayl/R23YnN/cYw2/CpfyWcCndY7dwt/U9dgR1IMZeTbu6Ij6NncBcwT+9gFPtvasP2buJW1OT6HvJBZjQI9ndaKJN2Gw2PvroI9RqNeOSkkjp1JXwPT8hy2BxmZBUTeLQrAtA515Obfp9BGS70Utqnt7hoL3DSoJVBRgJVP2NR26LKLch3i6xVBXLWT9eQ4gxnJCBd8PaRxF3/4/vYkfzXo9p5JoS0UtOHnC/SpajC1NDvFNj4zLfJcRdzxVlf/NkmyDqe+5n/4eX083RcjFMI39EXsQz7e6ivfUAsslJQE7TPTPAoyfKWUuF3nu9L6pYTHhNBcPF5XyRMJ5Xkybx8IHprAjsyW3dHiDEbWb12qvp4NnD6k/uJeOyKWQt/JJ+jcKogcjtnyIfoTaZw25ly6y36JT9PiFY6QLQUPZtbafH6HfFyUm/IksSbRzemKtsUxJ3FXxHtTaEb+LOZ1TVKjrVLGL1jO9AJWAIDCIqMZnq4kJcDjs9Rl9wyOmh3WvnEjLnboq630tK/wsJj4r/VwPZ3U4HgkqNpbqKXcsWkb1qGdEpadSWlWAKCSV349EnRO59wcX0GH0+O5csJCwunvRBTbULd63+2yuMGnAJGnRyk6e1p3V5q2OuCumOTZDoY87i9Ziu9LUUcH5Y5HGc6alDkGX5+KI8/x9gNpsJCQmhrq6O4ODgU22OggJ7Fr/KzJK1XJEdT7LwFQvFHnQQCklUVfCb+3EMZ39KrGcsiR2uYWvODd7VZkCs5wradp5IUEJHv/HqLHZW7z7Az+tyWVBw+D/1tAAXP959LpGhx56PRBJFil7oQqJcTL1nPAbVOrSqIt/2UtX5eGy3eW3V3YRGVcrWwPaM6vUpgiyRaZXZHOh9mAiyzIVFbp7a6UDAToLBW+7CI8Vwds9PyQk5tr9VlSwytGAd1xna0KumLa48/xQeho5haJOCCBrcBkGtwrzkAAHLB4Ddwaq5Hblu1FO+vk+v+ZyLuizHcPsuBJVA1Zfe5I+SICILImpJR6T2CexSf6ziBXybJPBmeiAv5bxJR2seXS05/BJzLo+1v883plr28ELVC8QG5aDT2qko7cTk+Bf9bIx1VrC09ANCLvsUyRDKhlnvYoxKIW7RPURSi0dWkTViOrdaDezTx/Lo/k9IM2wjY8sE9KqmRL0lka/yS2xPAkQ7dxZ8T1GlEbUgce/ZL7E9qAM6yYVL1SSUn93zHreWzGhxTRe2f4BVXcbz0MxzMOBiTfv76X/10y36yZLEhlnv0mHbK4Q0TPm1hvvxcrS6fz8edM13z9N/z2vYVAamJl3P0/un4RI09O33PUvXTyJEtDC3uD1F9mBqXKbmZ0JU2xSufP41tM0WI8mSRPaGhbSdfTUmwb+8z+aB79Nj5DXHZafLbsNpsxEYHgGyjMftYvfyJaz7bQZ15WVH3L81Unv2QWswUl9VyeAJ1xHXweulVKlU5GdvJiY5HYMxgJqKEko/voROB4ngJ9Lu5vvQeIy1PxKjbs+iPf7fiwFJbbAKAmGSRPVBwvCzMT/RN7rTcdl9KP7t5/eZFyWloPD/mFrrBirt4WhlNwjgQIuzIf7HiIs6VzAawx9U5v0BWlB5TPTvMw9jWFyLsXYfKOOqT1ZR4/GPB+kW6iEjNpB6p5tdZXYCdSqeGteDvultj9vu9TNepZ9cjCQHYPZcST0Xo1dvpCq0kIh6Ex6HNwYxVPMBGpU3ZccP7by/UAfWVfHWWgO/tdWwObiYYcVOxpnnEmSY5XcMjaqMDxwyb5nqqXCUsC7I66rXSm5EQYXUkPMgyZFPcL2d9MJ8zu/cjZycHLp16EL77XpMNS9j0gh45HjUQhWSHEB99uU4smuQbSKugno0hT+j0dqoq9dj0Zr8bDDrAtDYBKp+mItan0bQiLbYNpRBrRNkNQL16FU7cMveSYYOFgsQyOPNxNDBfJr3ILrkAnbsuICktquIit3Ntzl3kU8aT7a7G1HQUKqPYmzU9bz34RhS7YX07XwBVOcg3/Y3DocFV10hK/bvZV/ICMLcdVxVOYv5SVeiF/wfGt3M1fSxvOV7v9ERhdHk4u3slzmn93SfMHoydxoftJnAM+3vIBgdFxT/SmBDosoyVTh3Rw2lulokos0l3FH4Pf1z3mDb/5YTMv41SjbNRnbWYyjfSg/bKvoc4rwrCSWyIQZt24Jv6HXejYe8RkfCYbdSV1VKTJu0VoOqK0vzyf3hEfrXemNZP0m4hLOr9lDifhNV4DzGVizny/iLuKfgW0bF5wBQbAtCQqDOZSAlsIZa11Z+uHUHocFaHCEdSeqZScDuL+js3t5qQeMeq+6kZNUz6O9Y6itOfCRkSWL1L9+z+ufvmxoFAY7Bh6HR6/E05POLSW1PxpBzyBg8jOK8XSR2yESr07N2xmuU5Cyj/aCLCX2vI0mAVTZQKgQSSyXN87nv1YczJSqGzaq1BFR7/3YrpLUMS0xgiN2ORpb5NSgQsWHJ/sHCCDjhwuhkoIgjBYXThPqibOqNm8ivvxatlAsqqJdNWATvL1UTDsrrxoNhOgAh9gFEtLufG6ZvoMzqocIucE6Kkd6p0Tw1v7hhVH9h9NTZMdw4qjcnEofNQs/dU0EAqzgcARdqoQK7OAJTFdgBAStBmp8JUP+FhIpdCVH8EuwN8h1dXoQq+ifGF17LdeeeRX3RVII0s1o9VnrWRF6/dBmhXQbzW3EFO3Zn0dlagzEyip219SQKEmdl9kEURSIjL8JgMDBy5Ehqft6DruZJAjXzWowZov2GEudnWFZAoPo3QrWfAJDnMlKv9Q/kqteZ8DhVGHTzEGxdsCzoijqqabogQPsngiCiUnl/3afaWs8PA14B0idkLpZkFXZ7EJdd+iAL171KkDAb2pWQZi1l29bZvBZ1B9MTLmavKYnRvT727R/sqSd0Ux75xnggFUJSAbim5A/qjaCZXwSR3sSWGqEYjxyPxR2LXu+dVipzBFAWaSClXR0ZeQWMKF/JguhBnFW6lrsKvidAtPNY+/u4r8MtBAy+ndh5LxFoz+HhTpOp1oYA8FzqrYS765hQ9pd3uu/7oX4pCgA8sordhkzk/neSkNGfiBhvYHwksPrT+xhQ+Dm91t3PmqoD9Lv6mWNeLVa4dwfidxNIkgooEOJJlL3f/bWRFyPpQ4gtWUyKlEfjp7QmuCtvtL2Ojcu+wiG2R6xrzzWqyYzsPY2zajfRs6EeXrypHoA2Jq+n0aRxc21KYw22dbDtaz87rLKeEkcQIYKNKIMNgDgq4IMMtjvTEEa9jM4YSPu+AxEEgZqSIizVVYTGxVNdVEje1k2U7t1D4e4d/ifoE0YyQsN/A8MjGHDpVSR1zUSSRCry9hPZNpnweK8IK96fxYH5H2BI7gXU4XgtndRmCwL6Nb7Y3JRIOUBwEEDTKrW/guL4NUBinUGHLFjRePw9f1UaNTODWnqZ1YIao8aIxe093ri0cS36nAko02rKtJrCaYC9upj1ay/BrS/n8eVP8bdzNuG6eXzsGUuGkMdZ6p1s9NzIX50v4r5zEpFFD0HxHbhk6u9+BWAPJlLr4p0JPchMi8flEQkNPEzU9nGw4c+Pidj0PikNBVqLHd8QqJlJgHoh1e77cUo9EbARrXsQQVVAeaSeovBgJse+yD6hA6n2EuZtm0igw4lLbaLC+hXRpuvRSt4b674kE3ajmuB6N22LvDfuOvd1aC56AlOPKAStGneZFXeJFWPXKNzlNixLC1AF6/FU2HDm1iE7RUzqBYRr3/LZbTGpCbSJB5+Oj6owLasWR1Fe15nn+zUt8rgiewEPqmYQ1dX74BTlYCpdU3DL6YCHOP0NeHQ1VAS1g+I3kVU2Ng58kqXmcfQx78CqNjI/YiA3F/2IJn0fklpAFDWYbfcztv2llMll7Cy8HIO2SVQNXFtFuRDDXelPsj6k6xE/k2UbryZr77n0DPV66xBqMag34vAMJ9c8nzamrxCAv2vT6NPLht5UTrf9ldhVOr5SD+dC60ridGacgpb0QX9iV3vFebhWTbXbe806WPfTwXaAP6OGoZE8fL77dUZW/tXClkIhlrzBL1DT5VwS9Fqm5nk9Dwl6HRMTInA7bIR9eA4pkreG3ZqYK+l90ztkrZ2Do6YEw47viHQWocFNgSmD5EmfExbV5CVd9/ZV9K2Z3eK4h2KJqQc39XiRbuZsPtuUjVU8H4Ao3f1c0uNedgWlcnb1egRDOLdmf0Yf62ZmRw5mX0A77jjwJRr8E7F6JBXzxW7cMnQqbq0OtceNqNFiFB08kP0pd1U0TT3Vugz8VpiBFNEeWRaoKy9FElv/DmpVHgwqkWCtg+S2Bso0nejuWUCyqohSogiXq9EJImva30/4/j/p4PGuTj2gSkRC7ft7PBaWG00MtntF3bMR4fwc7C98ko0xnF+UTUeVkc9Te7K5ehcgE6ANYlzaBTyccgmqyDRQqb2CLncxzLgezn0euk8AzYmdNv23n9+KOFLEkcIpYt/y9ymwfYwseJA03ge/pT6Je1c/wDbVBwTrVvCa+zI6q/IYo17PLvFq7tWPZP6T4wC4/7P5/JrjOuT4E9IN/O/64YfcfrzUVZVRV1VC7Lfn+BVZtXjOpdZzL1G629CpChEENR4xGkFwoRKqeKPHhbwTdAdOoUmgbdxwLQnWfN97u5CKUc7FoxZYNiAcWeV11TurdZy3w+sRcBNBmeNT4EgB4y5UOIjQvYBetcvXunhQBJLaO1XRa2sdoWb/pfwWk5o1qSHEPK1nYUJf3up5hW/beftXMcX6NbG96/z2qXQ+RoD+J4zsIz/ORJ02jLA97wFa9g98HIO5BFlQEeR04goQKQ8zoNJ4b73FznEM3NuGgOJIBJyU949hh+ptogOaalT121BDgE1kr7Et+cY4Pk24hLUhXYlw1RHnquDKqqXUySpinZW0tW4lvPIJNCrvtGNV2pfElupxWydQK65gbr63CHj//nsYVOf1cNUGaQitb1m775eo4byWeD37g/ynXNdvmIhTFcFZPd/wtX1mqiZ8yy8EV23HoQ9n1wWv8q0ZttTbDvspXaGzcN2a1+jVbEXjoTigSiThsU1otDrMtVUEv5Xaaj8XarSyiAzs0yZQGBjPi0k3sSM0HY3oZu7mW4ipuRaH5J30C9F8xrrIYq7u/qr/QLJMYwXoAZY9PJb9BSVxfalB4KfAduSYkqjXHDpGr0/ddt7c9iLtpBJfW71bx4LSdnQJ8V77EnsQdlFLqM5ORCgEqu3ENpTF+TcwqwRmBwRQoNXQxemiVKPmvbBQ3IKAIMtEiSLlDYHnCYFtiDVE8Lm6Lao175NLIkYcxFGB1Pd2GP0SKkctfDAALKUtjrWfNkRQQ/CNsyDxxKZIUGKOFBT+H1K89Q/y3G/4Pd9VHiPb67xLxNWyVyxpCcAje+Ne9NjJsWgZ9txMrumb6BNGCXoXy5++CJVKxR9rdlFndXLN8B7/it0Fe7cT8s1I2mLzi7OwyB2pF6+gWl/NTWc9wEP5n3NWwW70qhJqdDqe63w33wdf6jfWTUVrSbDmIwMlMXriy5wYZW8WxspwnU8Y2aarabcefhoby8WhZWjFKtoYxlPvGYtdPIcgzQwcUg9s4nBM6gUEa75FkkPQqlrmbVnVJ8wrjAAEgQ3dQ4iocdN1dz0aUaYyXMu2TsEUL9WRIArUBIX57V+vNVHv0BEQoKYiQkdqvtfDE6l/2ddn7Z5gorZLRHZYhhg4HFN1BrVtiwGRejSABhVeYVRmTyEzcDgBxbV4ZG+2/tg1W+ny/Dy+mncLbQxewbAqI45BG8tpb8+nvT2f4dVrW/183GqBeeZORKu9wsiR/AiVaWWEVA9BY4XgQBMdLt6PLEPHsmrfftVhWowOCb3b6xlZF5hCeFkdl7CQYUWruCf+AYgJRBBkBlZtItGaB+QxNetVHkp/GIAbbeHces7jfFRYQahGTW3R4UVRIz+6Asm49CM8vz9Mv6pZftvWRF9OYPcLMWcvY2D+xyRJBfBiFJtNA+lhW+XrtyK0B1d0e41etTvZFNIZj0pDT/NO6tUB5AQk+/oJssTkfV/T2ZpLsdC0stkhdeKc2pksXHED0Wld+bvDRH5RJbK2rmkqaXVgBy7s9VKr59BJ42baujvZ0ud+dsUN5ofSKuo8EutDunLW4B/oYM3j9813EipaCNK6GJ/YJNbbBx+/ELIIKgIbkpT+EugVPAkekQhR5K2wUGI9HoIliXqVimy9DqMkUag99I8KWRCo0YdyR7ebuLnLRDS1BTDtLCSXhQUMYgVegXMW6xiy7hN06z5s2heoJ4DNdGYXHSgjyrftJiGeNgcf7DRH8RwpniOFfxnR5X2ACho91tIccra8Rp16rW+lGUCArQvpXZ7lgi/3U23XsUH1PEbdbqpd96NV5RCk+YMi6TwGuVqufvnr9l5kJB06M/yJQBJF1n39FB3zviKMel/7xsBhpF/6CTXTvKUXXumkZ0ZbHYIscUXdLM4tW8+fab2YqfEKo1h3Gc8bAzk7uiP1Mx8gzjGLmiA9a7pEMWJ9EVqPjEsjsLJXJFUl4DqgoseP3mlDa6CM8d56Ou+ztDTwCNSEaMlNMlEb2vqDwVtYXPbVgRJf0pNYKPPmsJuYF5qOSWPD5jGRWbmHl7dOo/gVr5dFJcr031CD0el9QBUF6KmaHoFWAl1kCPqzpmKNqGZzxhtEGZvEWp12Muf2nkigLpDSZ99DdPmL2eAJqegyIthbvJvc7IkEaK3U1cbg2ZbEhSzAQOsew6UxbQjYnUCs6SkQ6skecRdFm+NJ2h9CauAjqDSFZA1/CmSZwStrcLuGoxbKcYXsJLeticxdZorCAsjqakRwQN9VdQRq3BTbg/i9oBNdw8sYFOmdAqt369DpZJ5rczOfpV7Rqj0Acc5yopzVhHvqmLrtf1QEx/Bl/EWk2Ar5IXwkeaHeKKXpXZLpWJZNZc5aDGEJdB48jlpR5tYd+1lRZ+XJPR9zV0nLHERPp97BR4mHPn4j46V8Xlh9F26Plhi5knzXz6hl75ShRZNPuuYOtpBOJg31OXvfgHvgPWhXvUt2RSHXpT3MAbHJnyAA50cGc1vlXHotPSgVgS6I6jFv8nbgQD4tqkCUvasmX98zlStL/z6snd9E9MYp2JlQvY8/wrszNVRLsn0vFWo1NSqVz5N1vMiCHp0uGtldiValom1wWz4a8SERxmYJT0u2QvYcPEteYRU9WUNPbJhajJXKAUqIxo4BARmZ1uPFnnrqKdQnOLWB4jlSUDiDKd3+N7vKJiOrmk1ZNKwE1jgj6D9oNvpg7y+szXsLKbAX0RYBFd5f3bvUtcTiIQjQ4+DRIVG8tbwEh6xBi8hb49ufFGG089UR9Hdu8rWt6fAgyWdNoJfGQt2vvwLeauY/J3rFhyyo+CH0Yn4Ivdi3Tx9PLt/3PRddPZS/v4WACG+OlH1hUei0Dpb0jCOizkGJSU3kVBWxxf430wCLQLZswJGuo2N+3SFjhkQV7O4QhDlIAzI4DSqkBi+UpVxAbZBJz3iYkLBUdm57ClGowBsD3DCFZ4XkIgkQKAv2ZiqPMlVywNyWeoMJ6gXcLtDqQFILbO8URNoBG6JKYM3mWDIkb44qd20dOlnCVB3CFSMXs71wE5t3f0LH1AkMTz8bgNIvVqL1uBEBt7AGrexNlqv++S7qBk2h84huWJ3vYim6gZDQMhhSxgJnHNKeBCpq2uBETya7MBNIQaQR+/pazgvzPihEfSlOSyidv67C5KzC03cLuvh0PB4twQ4HbvdQajz3Ah6izbdQHS6y1ZRCRRdvgkzZAKUmIylOD/HGem7r0JQ7Z3l5MvstoVyetJ0XCz4gcH8pP2RehsYgUGyKIchl5ext8zm/cCFthEp6hDVMuQiQWF9Nz2xv0PM9Bd8yJHM6e0NSmLQjj87GIHpnjGdBeTVFy/yrMbzQ/maSbAcYVrORAMGBSpC5qPs7rA3tDsCz857DGhmG1RSBXu9kvymRTNterrTv4IDdQWfLXswEEiCb2acJx+BsWpIvSFFUqVQYJBdu1GgRYcPnaDd8jgRsDgrkg8qryb50Dn0NEllFWyksn8cFs35EK8MdMZFsMBiwq1Qgy2iAbmsfx60PZGa/p1gh6Xl7fy6Pp92NVvIwsmoVwaKVb2LHMD2yG+W6UNyqANyeA5jqvHFKbwVFAyUgwh7dkTOQe7RtUbsLQJ+GQbbwSM9bKHNY2V+zi07hHbip201NnZtNFyLLsG8hrP0IcpeCKQJHfSVzGcJmmkrHqFQq+nZOpaKkgH2V3tVwuc3C7+WGv5+wsDCioqLYs2cP3dhNtyEXoEYCzqwCxoo4UlD4l6jau4Zdpfcjq1vGcgTb+9F96Ae+OmllNWYe/mEDoKWrUULl8oqjHHU9Niy0AzQ4ue28vlx2lpWiyjo6tolCf4yJGo8Fp8PGlllvE7PnO7pK3rigbYY+BF/0P/pHhyFt/o2qRQ7s0mAAXsjQIQsCL9rWskUoYaZhLB5BiyBLXB5g43lnH2r/twUAMWwGYVbvdEJumQrWB6Lub0WVqEL+DYKLW7+Rhn2pofpRD2ujw5BlGZ2kQ2ez03GfheI4A+YgDXaD2jcl15yK1Wq6f+0d12Z4E7sbYkSBnZekEzl8PyJOZBlcv4YiyDa0gR6sahPIEG1sEEf6QECgfr+G4CQJjUGiPkjLlq4hmIv1JG1ocsTLHpAsxaiD2lD29ia6PtCLbim9kT0SdXPzqF9cQLD6U8zSRADWluTQO9KAQZOJSDQxa4exevatJI2/hvnOobQxLAXAqLdC1z0E4A3CtUlQuTkS8/IoQEtgdBgewG0qJ2/hQFKcDdkWq1Ygx/cgdcezoF6HXWxcXq7BJfXCZF9NZe96v1XppV21pG30n1yod+vIiE8gJq0bmizv53mf8Dvxv+dR6fTPeN0mpqpJGDVQYA0hMcAbs6VC5vM9TzOkz1cA7LS72GlvOc3UZ8tydnTsyc2Z3vxP4e5arGojTpWeMebtTN98F+iB+oZ/B9EVsGBklXYIvaQ5vBCRzgtWsKrsBEhGAiQjd0Qn82RVKXdqxhMRVU6n2k2kuN28HR5OdsPf2YA55/KK0YDUICzeb9vKZJEg4AE2GQ2AhxvXe/M/BQMebQKPRSXySOw1hJkX4xR2gnUnWL0z7If7a04IbEOdy84FKaO4q+ed1LhcOIVAjNZ9JATGIxpC0aoEcJhh3yJIOhsM3lWF5K+Bd3uB2w7mpvxjZFwEu37HjQoBmMdgDPVO8hhEfsNEmBY3E4zLSVaVot7ujZOqjx3AZ6WdqCUELW7SInUMjaxBF9eZ8P2/IZTnw8ALYdVcWDYHOnWDuG6cSSjiSEHhX6B0+xx2VtwJalC7QgmWMomMHI7FnENU4jlEdRyMJEnc/fFctpXYOGDX0XhrHJUSiSrHK44cDeVDwCuOACKCA4gI/vfLLux87wr6WZY1nRORpNz+E0FaML/2MmZbU72tJTH1/NYmjgSpkJErOjA6qit9Os/FpItgcN9JaP/Ox7wxDxAJ1PxKqP1LAPaqQun8tRuVJOBcraHgKTdtNnhd89GZdXgcapBBpZGp3BlEdJGKzXM1xJznQRAE3Go37iANmzJDD3suDgtk/Nr02Nc6ml53/iUX0xoH27v3xLjlAB2LvdOdgal23A26oMLkXSFVr/EGkyd/qqMsIJC89AiEYAsR6bXUzQkl3VWGSiehNYk4a7UY6r/EHfQEnko7xc+uRpccjDOrBg1bCNMuotZ9C6DF7imlxF7GXnMwXcIzMXuuQSscoGfYF8z9fhmRaRdTndCJ2sI5GAQr+hAXHruG2twg7JVNAe56lRu9OhKPCPVqkbDKZpXm672vg2r3EyAWUied13R9pB4EWFdgDfA+EqyGR6H+XQiwUhqtJ668KcGhQ6/j78wQEkwzqDSGM2BLNQa1h4mpm5hxoAvtg6qINlqINzaplB210QRpnehVHkwaNz8d6EK80Uzn0Ao6cIClS67kOc1VFMe0xRwYSlFcEr22rSLdlktVQASTi79libM3/+s3GcBXi+7c0hV8mv0kpUSijUilvqoIKyYqjGl0tq/DgJUXYgfQSYwnryKcm9w/8FhsBEa311trEA7gEeLRyMHYhGiuauMBvB6yPyPCW3yPVpsOvdozSJSoVx8+DYHGXYTG7RUnzkPMjmlVGp7oeR9LSzdwRdxZDKrIoySsLXFlu8FRB5pYeH8gwXUFfvupItqB5IGaPP8BI9pB1V4kBGRgK53R4kGDhy27JOxcRiGxSK14dgRk7olcSVDlVv9zLV3NZFYjpQ1HtW8hVOL9l9Ws06p3G07aCDH+ZcfOBBRxpKBwgslb8xX7bM8CoHIHMGDgHN/UWXPenLWaP3I9NM9FdEP3QIYkxKDa5xVHVow48S6B1cgOZLkpLubfQJYk1s14lY6736VnQ16U1W1vIeXcW4mNT8I960WqNmqxS43CyMYXKQW818GbO+nusvUI8gjkcpFzyr1JHt1z1+MG5PDpJNp+aXYsqF+gxyB5z0fvEGj3hPdaCCqZ7VHnUejuRKT0I5YqLZ3xBhD3nAf7+0noIg79IJIlEKQQYoLSEXO2of3EiWD1768xingcKpAFbEUG0oqagmSDk2zk9mqLrVoAAfYEZqCjBrugRxRUBFo9BFprSawxszkxhrz8BDqWe+0LjHUgqMFZq0Vt345KtRmn1APZIeLMKsKo+hO7dDk17kyvrXIVc4t+IrbvPurqaxBt56FWaalyP4GKakbGvcaqA9+TtSUeMGI+VBE9QabL4Aw8hd6pwAqriq5Z+dAQB+Kpt6NFxCjloFdng9j0vXNJXdCVd8ATWYjddgF9l3emqM0YzCk/szypHRcV5KDXuyg1BbA5M4gEjVdA2INVVERoia7yTiVelnRQjh5AkqFzSLlfqMzlB/XrKBTzrfgaO3ZFU2oPJlpfT7vQakSVjsXO/qgDTLR1WHlxz9s80eFeAO7O+5pLDiziCdVt5IZup69VYmNoByoM1ZQZdgKBIAQCufxFLgTCLw1xM5fbvIH2gXIZbrR4CCbKHU6eoZjWUMmyz1sE0K2qG4XB+YiqaiaY67mivp5IUcIhCIh4S/38HBRIlFvgs5CuqCmiWOem4qDyI7Ei3KVvy0VBaTgK1mAXVISV74Z9d3MJIPEVFozEYcODGjcaqvkLAZkqOhKIFSsm5jCMlKp8UslHpjNryUREjRYPKVUF5NGHYo5t+n1EnJmzSj7zip4G3E49gkpCbRAQRJdXGB0Bd2Q/tMeYu+p0QBFHCgonCNFlZ9uCyVQbFvja2kU82aow+uivdby7rtb33iB4uKVvJPePH0TxD0sIFWQ8sgarEIC14WGoFqqR3RKC7sTP3a+f9T5xW9+ljVzSlCAOb56aATdMBYcZ+esJlGfdiEyQb/vws6Op03lX/Vwgz6R7fTmWjvegLb8OfU1TsklLm+9Iq/3V914SYL0UT3AlgExkl3oqdzQFVQZ0dLCpvASZUspVUQSlWSjDQMxOB7JLRcfX1TgfvpYK517EPAkiKtFlWCjfJyPNlsjYVgfYMYSvxVGtAzSotBK6AU62WOMosgfjCgsgv1snHpz3DfX7moJNwzPqWRN/B3LCGsw13geiHNQ04WEOCiTM7E0MqHNL9MstoSrYQLDdGyQdkOCmqLYDKsqorTGQpPmIWs/NOKVegAm7dLnftV9SOpfwsN1kfiJSGVzJ3hvfJmz/WKLphEQ4le6XGBT9MOkhW/k+rzvNlwkaQ0IYdu1NpPTojcqqwvnuvVilOEAifMtPqG0qUMkgCXjsatSevbhV6WjwTmvZDLkEOOKRCCa2ykBCxDIsCxcQob2B6HwPq+JkIoxl/DbwCs4XOjOXRbTRbKLGGYlNakuCcRM7ksM5u6rMZ5XsZyE0znB6RBVWIQOPaOOAIZ7OrrXo1W6/a9EltBx9qIkkqtB5Jwe5sKEIW1eymVEygvyS4QiCTJ4Qwu0xyZSZvHmOdoc0H+nQPyAEWWa46O2sVpUjS3o8chpjtIGIdgfjLFaG2ezMCArkw7AQxtVbeKqqhgXGQP4IDOTu2irS3IWozJLvKGYCsMkSJUIC7eS9AFxZ7/1xMcKxii+4lL3EURe2hMfrsvg/9t47TK+q3Pv/7Pr0Or2XZCZt0ntC6E2aIqKICthF0QN4VFQ8drCLHY8icFSKYkEMPRCSkN4nySSTZHpvT2+7/v54JjMZEjCeo+/reX/5XhcXmf2svfbaa++91nfd63vfd0K0qTeM8Qm4C42tHGQmOgoDXMI+ZuMmQ4q8hThMBBOJGK8vPG5mFs2cGom6nzfON1oQ8PC2VdN5ftshRsfGWFTpYlXuFdT+/aeUVRzjFsTXyP0sU0SUrFPKAygD68msvR/XlR95w3b8q+Gst9pZb7Wz+AfAMk2an/83Rhx5T5Rg5hwWXv4rHnh+N/+5uYd3LCimbThBx1gWy4bDifxkW6RobPrCVSiyhDi+uuq+75dURT/JkF3MT4V3ESbKJ3gQy1axbu9CDv3PAjnqWg5JkkklY+QyKfoeupl52V2nLdtRcz21yT0YIxEi+r+Rs/K53/9zmspva1VScn56uMb+Azf3HWZRz4u4shZZVaR9zm0UjF5PLPcoFbH7cWfzg+dzi6uRPWkyj0hM2yThrcqwuaKCC2KdZEZUCpsSPMN0+g0fgmhTsnCEcGOckYNB5uxLoO4EM3sqQRQVC0t/nRWqYHO4KUSHdylu33lYloUkeVhy1Rye8GnMffDDBMQs3z3vg8wZqmVJYhuad5iv9V+IG5vr6wp5rivCgGnxFWUDNxr/iaUJDO71k+ydfB6CZGFePpvRIT9FO7YjhQ1aZhdwVcVhRnPng3AFopDERuS4PESPfytieRezvjJJvjZf7GDezfW4ti4m2HsuAE5xO4XqV8iYYVLGtfRkluKd46Zo3iKEpI2jLsDQ2t9TOfJZerK/w9r9GdLd+W2ttkvT1G5wImZFQuefjxm8FlXehJUrxmz5Nopfxqj5BgXKN4not1KofhlJyJOnnmATR+blNUMJzYdbTiGJFuVlj7N936tEvT+lyW2wcEeccOZUDzo9q6DPeD/K6uuRq2YSswyGc8M0hBvQDI1v/eoK3j68mwbdnEJnumWJUsNEAY4qCg8HfDw5Ho3ZaTgJ6076nNE34kC8JZGkV5bZ4ZoUXldrOteFbS4+9BHE1BLc4joEcqSsK4hX/oXy7MMEk5NbiDFRwGe9ng8WmIgMUEYFvaf8ZpgSsjTJIh7jao4wDRuBIjnJsOGlhm6yuBiciN/9P4eIRQFjDFNIWEqTNGXeJr5Ao9XKiHs6UtUS/F4PRrQXteNlBDP3+pVJDrS0A9URP+3PWsaJ6sqe9rcTyKaDOO49jiD9Y20xZ4NA/hNxlhydxT8Kh178Mv1iXlTqTc9j4YUPkzQkVt77Ijn79IOCgM1TH15MU93UvGj9X/oMZdxPizWXx8WLkTG4m/z+/djb9xKeXfd3t6/5lT8y9+V8pGfDFpGFU1d5R+UGRkMLUKefx4KLb2S4dQvFT7yDtLaMqH4r9rgF675GB7+pm9ySucn+JZdazzF7fznl8b0Tx3OqiCELeMa9yhKqg5fm1eB1j6HGTcq+qqCnZKwmk2elRuYF+6l0x9iZKKfsHb0IpzGQ7XugkfPUDgIHDPTE3x5slQqdsaSbnoCP9lABjvANeApjOEJd5KIVpIdmcWKGrZxfSHo4xVhfhurzv82rzW/nMbOYj8oqNxpOIthcTYL3eI9ymf0KAwEXbxtbS//2ANG2/ArfU55lz2VXU1j0V8LfciDIFr3fM9EzIqLTwsxK+IUcmktEln0Y6DQ/HuaS9ZMiZE2Gwe9rlBRdTPpoP1W7PgXolDluRhKmTlKmHSJhvA0BnYDyELpVxVD3BcS35K2Xe1fo3HO+k/sfzRHulPHOL0Koy4uapaOfInowT4IqLi2AQAi/tAEbOCCej46XRr2NbXOWQPFk9OunI5U8n5yMkTTfZbDGY1N3IMaqTJqnvR5+ESxkUIH5RfPpjBzEsjR8Eui2zaBxKtV4SzzJilSGsOXmWR/88Qw1dYptEzRNPhrJewYOyTLviyWmkBkL6JQl6gyTnCKwaWUBM1/6ErZRi0PciSz0kzKvJhfaxLGGFOfqLhzN354I0nkCJzt4AWhZD6rz9ZPpQj5ExMk7Shkc7GQeh2hggCIEwBpvrYRBAVFWezqYldrKKCHcDpl2ZxORWIJG5xi2ZaLoCbKCC09JHZotUzy6FVnPE+FMyRJcgzvPqO/eCGbFGozjzShKFHH8O0yJi3F//nnMu0uRHfrrnjsedglBBD3rgPc9jdL4j01ZBGdd+c/iLP6l0L3zdwwPvcCcNd/E4QvTue3X9A//jpQ7r1cp0q5m3lX3caC9n6t+vpvXfmJVLo3BjIQk2Lxw57lUFk0NMmhbNh6jG2QYs4sBMJBJ2l68QpJo77EzIke2ZXFk98tkXvoOFenDzGVyMjsdMdp37i+Yf+HbaTjpmHfDc/SmfssJF9yDfpFvznZyKJD/+2b7l1zKMygD11HX/DMKvO8EoKWgjFmj/Tg0C4eW32bpDgfYPz2M1zmGO1tK7pkMeiqDKFscK6sgHFpES+9u9veVEWowT0uMAAI1fjZ0ng+1nfgzOaSAhWaLLKeXcDSDlRZxzNAYdbjZZ1SxbtZbWezwYGzPECpNU3XuVxHlqRaOgV3vIta+mp59I9i2hbe8GUewm5ZMKagWdeoA7635FasTC2DoYgbMMAciN2D2FvGgeA0vfsDD9//0EfQhmXjjDJxNGxkZnE9YbME2RHq2FFG5ZgivVEJWHAK1GEVSyGkD7NQWcPHW/LtTuiTKwM4gqgGPH3wT0rwQbynYQJGvE2eihn7je5TKn0E+KXqyJEQmcsEBxJiONZLfDhmdqfHj1aV8sXwQZ6MFnTLmaC9ynQ7IZPvHJp5trq+DF0qXYTt3c1xYzvsG84lyHyj6McuOlPKqUkGXneDllAEnvUsA+zIy+zJA6cnWjzyx2Du8d/xvgZiV///p8Ge/lz+/Jl3F30K9pvN43wDOk9b3pi4ijhvhtKyK6tQQgeq0TWb+p1lf5Ea1fgRGCZLQR0j+KZbtJ2VejpINI1j7cL3jMezrP0vmiW/iOvQNjJyMYflwuiJTrn8yMcpmwiif3EDupYcRfIVY3QfwDPya10ptXORYww7WsGPi2DGhnnAoQHhsPG/beLVlDEEOFuTGdVAnG2hsoL/jlD45Y2I04wpsXUNoexFL8mKkdBAVBFlGE8rw9G5EmjS4kVJX4/lcniBLX+4h/eR90PwXnNYhbFsgW/lOpLrFOC9//5Qn/M/zpf3n4yw5OouzOEMk+lppjX8WnLBrww0oFBJ3beNEbDRveh5NV3yPA+39vOuX2zgxNMwO6BgWfPKyWVy2ZMYbXsNMaDjEfJToE+QIIEYYL0kyXQeBSyaOnyBBkf3PMq3rCfpdDSjn3Ul68y9YEn/xtdWzteSdlJ7/AcY6mpEcHtJdu5GDVSy94Hpo3wg9O8gdXIvc30o09wAnJs/HqhV+0uBAlWJ8yv4xC9iDlg1T0/w1nJFKRP/vcGgaOVmkedTL0YK5FHpS5HwmOb+BouRItWQp+LWTYHRyclVm5XBf20U1v0VPB2h75tMUzp4M9Gfb0LPxExhZP+XLf0XtxTvp2/p+oh3XkgllscwRBNHLRp+IWR9D0U2saD1kUyB4WXQQkNJUrn4Ef9VOBPFUYli6+LeULv4teiYAtoDijjJw+BJalHzZF0MbyNoGfwyvQx26iGjWh7d8H3pqiPTgHFY+b/PCtLuoKOxkqDbDyPO3YucCFFR9i4LOTqr2J4it8ZAy43gkC90c5TfmLazjUv7t0S/gzubF4eK0DMGIQvS4h3+/fx2RIvjOO6/l7TOfYdXuWxDNUgbMhxkt3IQhP8Xi6MGJezjoa2TEhmkjn8RM5KOsp3013CmWkdlzKcd1m7k8jjYsgfw8Dm02yejkzJ3sc1A+z8/HC8Lc3XPBxPGi7Eo+VPsAJ+UsnYBkixSaGiOyhPlGGh9sbAQaHCZ1Dov9aYWB8egW810GkgC70ydNRbaNRN4qlBVFyk2FBzslSoXW8fpgn0OlUdMniFF29Q9xXnLzFH+rkyMDSYALGHr6/czMBrBx4RF/S7IjgTM8htvzCmltHlJgH72jPVQUVOJ6+2exUh9F9gSgr43MD6/A5ZxMA5JL+5HkFDm5Eeen/wTBYtw33D15G5lvkP7mFXiY9PSybQFBmGqRmm63vZZvTsCSPNi6gVA6Gzs4DSF6FHFoH7a7AGHOtbD/95CLnfZc212CEVoIVcvRt/0BLA1RjyCYWRxHnp54YqKZRHUC496wCtGJOlLO8xEa1uC57t8njgmqE/f1d8H1d2EOdWPn0niq3nhc+9+Is+ToLM7iDJAa7mTPvvcw7jhGxnWcDMcB8KbnUl76TspWXcUzO47wsT+1cfKa6T8/cN4pFqLXQ/R4BwVC3uW6i3oYDwY5RDkVdKEOTYokDV1j188/wvKRSQ+w4sw2eHZqtGDTFtjnOxeteD4rbvoqALUzFuXt/fb1sPMBrB8twRzJkLLOI27ehWhPLhuvPNfDmFPn3fyCC3kBO1NASftNeAeXIOt+DCVG0PE4aNCX9HFVvJO+qJftFYUU18SRLRhYW8iitXE4KXGnIFuMvGmynYo7xozrPg+Aliwk3rkcEBgZbKJLtshs+DdmXfE5ylc8QHDaK3St/xSSWJs/OQ1yOoxlW0hqBttScRcdwF+9nUDt1jPqe8WVn2RsG7a0XYwmQ9iRBF3kotGL6PB20CJlSGa8+OY9yqBtUTCwCGN4FqmhRprtUvbpzzM35yclWPT6V1JAJ5UdGT6W+TERdzEr7U3sYyGe9Ai/+dktFOdfIYJzEry1uoxvpKJ4x4+FhuHrP/wTW+fbPHSpzXuPfhgBkYKRc4g7G7i77Pcc8LbgyRWQEDN8oPt9gI0WywIirkoVLdDPwI73I5oa8DhmTmLM8SKtdivzrUlCk40oNGY0QoafZYlJt+ulyTkU6iFGlLzVxGPZ3D4W4bKx60iZ1+ORnkGWnuPeOS5Sygg7UjJzXQZXBXXcImgWDOfmcePlv6drqB1RkqgtzudDS2aS/OWlayhxdXKhM8xR3xpGh1q5p0vEOW0VrmvvnPJ8Mo9/HVdLPvfZgtyk9S/lWIPnkpsn/86mcKmuCQ3fCWxuWUelcz2BnukA5Dp2M7IrhCBZ1Fz1FGnhfBB1Du87j+OhH3DO/CsQPXnhtlxej/yNvJ+6beXfYcd4/TLwh4334c7ez5C2mFkNH2Za2RwKfAV4vrQBc6AD43vn4HAnJoiRaUgIFfMQoh0gCphSAXakF5EckmJiGZC1a3HTkXc2HNqT/49xT8z0KOz45SnvcMp7OZ7kswAI6UGU9LPQ+2x+NBKYyhjfAHrGgX3Do3gWXoRlWRztbeFo705yY98nbi/l+gu/j9vhRiquOrMK/xfirOborOboLMZhGjqCKE0ZVLVkhFjPfg50fRRLzqLkinGaVWjiAB5mUlZzPcWzLkIURR5+YTdfXDe5svz+1TVctXwWinzm3mWHf/k9ZvZ8mbGMn58678QYF8Yu5hhX8xQRu57gF3chiCJbf/pBVgz97rT1DBGmY/4dlDWdR0n1DEZ3HCT74gtIwjBFxn4sPKTdPgqyL5A0ryJu3Hzaeu6fppKe9ihX8hQAjqGlVB58DyCgu4ewF0QpOPI1CqI6ugl9GwtIDzhwF+U41higWw8yzYxQuGtS9OkszxEJOInUqXBV4pTVtKm5OfLsl4lpfkQbnvHodMsWszWJDy/+Cd6yQ1PaaGT8jBy6mvTQDArnPIW/egeng57xkh6ci8+RQfT3kEoWYhkOnCUHGbVNShUb24aWYyv5Xeu76FYszqtppmR0DLeRNw9usqvIpspw1dzPgL8dRbC5xK9TZLl4IeLhvH138FfVQ59scV7S4K51nwE7T0L659u8OqOB2qNtrDqeQ4vnCbS7OMdjbzP5TcCPy7L4yr4E9eudU0TnT15hsmXGNH7S/rnXfXcAxOxhYs9+DwSbge9oDB5/MwePXElSsLll812o6TRV542ixWUG9wQQpuvYvRJkREounEY89G/IppNBXzcyKQoSM8kor1Ij3UtcCBO2UmjWTEb0r09cs0T9CMPcxsvLtlPk3IQ0bp3rySznitXfp8BfhCiKZId3k5MLiEUTFOXKcE4LsrtzG4Pt78ch5cnOaLaEhfMfoKFiFoZp8PT2h0ilewgFGlk07Xz831iN05U3s2gZJ3rV1Thu/ja/23Yf5DZR5OxEFGwGMtMwxOmo1iEETIpcky76s7ZejBV/B+aWD5AezK92KlaPkSz6BcdX3oPmGwbAO7QQKV1FpPJ5pLGLWXnFPbheo4WyLIsnt9yPP/fdKcezhoOoeC3vuODLyJKMnUmS+epq3GrHGz6//xPIZMuQGcGwQ1juSqR0O1zwBaT6+YiFVdjZJHL5tInyv37+U5TLf5xSR0LzIwc/zlUr3gfAy/uexBq9k7TuJqZX4lP6cElpEnqQpD2bm694+B9+H2cF2f9EnCVHZ3ECo8e2sq/jZpy5Gpac9ziZSC/7mj+I7hyaKOPM1NA0/8cEKmefcv7G5jbe/8gBNFtCxeTR9y1kcePfv6rq+Np11Bovsm+okaeKr8cYtxx5hQyfNH+BIJrsda8k5yxi+dhfAGj2vYWiNZ8j0Z/CNauAktoykqkUXZ2dRPb3UtmRxJkuP/O+UAUerlOJqgI9JS18RszHbCo+dBPB8S2XSNMdlI11UjimT5jnD7SWIO2eSgQlpzllkpcWWrzo+QyWPMiMtz6MkfMztPd6sqPT8FbupmTBY3QffAtf7r+A0+FTDNFw/veQ1DNLanoCtiVw9KXPsDtZQ5kpotoQsvIk2MZif9krhGc/ydhYDY17b+OnfgNLgA8teZLo4eAEOdojBmlLTucjcTdHirbT5z9Ka9EObMGmPDadaUdv5WlPXqzqteCukR+yeHsHnEaEDOAMa/zh7Qah6iJqgxFipsBv+gqw4wU80rqdjhfyYSCkoM7XbpIYkiv5cfvncNqnNwFkhu7F2NyOHDbo/IrNzrXf5BeqE1OAz7a8zLlH1iKqFpJsoadlUlfoOA8LSG0yJUt10hUPIDFKgesjCJiMZb+HbtdQ5rgJSYhh2Q76cn+Ycs2A/CtMwYEx/ePI15Xjd+etLXbSQI8OMfzUc1gjEQx1H9W5V1DGwwj0iB/FseZNRKtCdHRei3gSQU7pHjzKVLFzLBdibtND1MRi2PER1EWXsLN7Nx1H/52wc/iM3gPBcDJvw1sxjQoiT30f28w/l4JZCcRZd5LyDXBs+R9Oe64Rb2DpxY8QdAfZePBpegd3YmW3UOY+Ntn/hguXnDnpbyeNc35PY0V+zNBatiP9+jIk9fRu769FWqtBueVXCC4fUmEF2b/8AHvf4whmGkWMIjt0chkPplIBlo5oxjEdxRCsg2AFQqAUwelDbliM4A5gJUZRZ604o2sDrN32EM7UV8+4/OuhZuZappfP/B/XczLOkqN/Is6So7MAGDu+gz2dN0z8XSl8iOH0s+RcXRPHnJkall34JLrgoGc4SmNVXg80Fk+xpaWLLzx1mDFDJSxrbLz7SjzOM7RfvwapLzbiEQb5a/v57KlbjjmeYFSXTO7of4WComaEkwTVcWsece3rnBC6WpikBA3JtnEiIL5ewMDT4A+VCttK93Fd+s+0VoZ5kct4H//Jkl3vwjOa32qJlq4H4WGaIlMno2f6GqltjcGARLbAxpG0EXJTCcGBFUsYct6MICUoanqO8IwX6N76Pnb0L8UCZugSBTVbeXFgEa+4Tj95VBoi7w0coGbV/WeUf9O2ITVaz9DmW/mz6OagOulaHTAFludkGnQJtz1Z2TaHzgaXAQ6JTy57jK49RXiMvMWgVZXYHF/EB+IOfJaAjEBKibGp/nfMSNexKXIO/Sd5OV2iNhN1/JrP/97EkZ3a4OHLNA6WleJxLqJi3tPoqTCSM44oGbQ9+yUajYNMl54m8XQO2xRR3AZly6IcmFbLfnEJzxTN40jxciQb5kdM5sf/yrv+8iDRNg/ZxSpbgt9gnSqwy5G/5/lpg288PzVB6qEr3kT4eA+lR5oJNSaRm26jUL2HXExGkGwS/uVk0p8D5wF8jq9AbgWJbH67a0AZolQvRmKQAtcniec+iuY+F+dMP9mBY8j9R3EL23FKu5GF1ycvA8ItdLz5SlJjt/7N5zmSLeO6y9YjSzLbWzeQ6Ml7YFq2QH92IbbgQlZrMHOHqHDtBWAoU4UqZKkeuJzS1vk4xV7E5B6Gnt88Ua+nNEtg9eVoikDKdQ0tTV9CdZ0Z4dJMhTGu49K576SweDZjiSGe2fY9yuRJkjWaLWH27J/QVJtPMGxn0+gtW7CGu7G1NPLMVSjTF+Tr27seqWoGgsuL6Pad7pL/NGS1LLIks/XwSxzvfJRK52SE/GNj9ZR6B+lPFVMf6JywEL4eEpqHaC6AkfNz+aqvUVm58A3L/704S47+iThLjs5CS0bY8crbybraTvt7KHshAhINiz+N7SvngnufYURX8Us6GVNEP0kCKmHx9MeWM6Oq+LR1/S3se+l3zN/wQWxb5GeH38HI7AosOz+x6ZLBjYf2U1D7DmTHA6TFARKetxIYvpC8vsng9SSEO8ISR30iKUlgU5GMIYJqD+PXTRoTNh72M1N9hcKiY5ivcS9ROhfg3Xsdhc4KjhQ8Qe3AWhr8k95Spi2wtncmrrhO5f40YNO8+hr6hTpq+x+mcCxBrLGcNscnEFWLcMMGwjOfQVJymDkPDz1/L5vHdVyKDTcnHDzu1UiINlZQxaj3IaQNxKiGNJBfka/MylweaKVkyX9h2yLEKxELjiE7klimzOhYJTkbYoevxB5pQDY89Eomj3k1rDcgVKszMgOyxfFxIba/Jsd7Kl8msseHauXJbpc3x0sj50ycM00XuSalIiMwIFn82pffPpQVEUO3uMzK0DDjt4Rj1+K5dhV/Huig7pU/UN22Cpx+/DXbKVn4GKOHL2N4/9sAqLv8bhz+fA6r0ZbLsTaWMvfAbxGNycZXrBrDX53NbwN665mdaiM1qNK9IYxtiuydfyu94Tn83J9FHz/NbcEv2r9BuDkf8jiyKMQe/9coGdzOnJaHUX0G9VcMET3uZmBnEEG2qL9ymJj0ZXLWAlKhQyjZQtRMMV26TrMZ4RKPG9X0EpR/hFd+DgDNmo4qTlpTTiBLiG7fKnJEaUq8OnHctkW6xM9SePOl/PHIrylX/oxpifRr5zHHdy0N1lxG1++gY8UXsZUMcfVO6suXMdIxuaCp7v4hIbEOR7UPYzSLmcgRum46VtZm9DfNGAP55+IRnyBtXYFz8G6GtkyqzCWHSeXVVejUkjTejq7oHF24H09hI1Uxm3SHTd+ML2PJU2P6RHIFlLiugNyv0UUVW9RAyJPygehiCv37UMZzKyY0Hxeftwmv6+/zyvtHIafncCj5j80a101ZtsVLe//IUP8DmEKAAuXQFMvXCbSO1bMiOpuiY28jUbyT1sZHSdoipZ5hdFOmLVZDha8P9/i5U1IbWrCk5msEGt75D72fs+Ton4iz5Ogsdq29hahrI4LpoKnqp3Qe/zlx13YEU2Ga7/PUrHgPAIZh8p4fPs2WodNvj9S6NT57xey/6Y32Wmi5LKMDnQw99nHmZ7YBkDEX8JNjS0nN9HHi89RFg7ceep6S2u+eUkevbz+P1UXZ5l/CB9tS+HST/6qupTFhc9wrsqVIxmnmuKvtEa7uyxIv7MYMH0FTFBx6goFS55T6BFPFPTYLc6SIXZsHkO0s07yjLAr3UuTMb2dFNScvDkynJ+tn1owBZm6Mku5xYs2Evo/aDO17K5FjFyII+f5yl+ym+ryfTbnOwN638rWB88mcrktlgez5ZSAJiGYOS5dxvpIPRqja8OaUSq1xqpbLxiYpgNuGYclmt8OgRTEnSJHlk7EKnNguCak/gxDTEE4zAhrVHt7hew6vC4QDjonjff4Ezw9deEr5czMyQ5LNYdXELHXhEk20Po0FOYmPXv5JhvZdT6ztHJyhTmxbxF10lJKFjwOQ6J1Px6sfo1e2KDdE/AVt1F70jYm6MyP1jG1YRuX+v1A2dGoSY2AiCjZApsLF5unf5GmPySHVxKtKpDUTC/i0ZxcL5F+TKXLRPHAjv4/OZ0Xa4r0bPotk6BTNjTPcPDkWFsxOIC4sIJv6EZNu+B0kS75HY7yNHv1SROMTOMQdFKlfPm3TWgJzGJo1DaHozSQSrfjlDvpC51EbEZn38idwmXnraNR8K7mK9yOKfvTBNFZqaiyd0bqnGGk4dcurqPn9FPQvRSCDRYipMbpNXOIWNKsRRWwnID/IkPYd5MMfYuywl2SThOegiWBD3dUZMuo7CCn3E9XfT9K8BhBRhFZMu5BkcJRE6TZGnF4G5U6a3FGyQhe6FcQ9PI+61kaSSiUj9S+DYGHKaY54u9CNMmqDeyfa26tdzpqFd1BXMv20/WWYBl1DbQiiiKZnaevfy8UL3048kyCnZykP5xMGW5ZFS/c+GivmoMgqfWO9WJZJf6SLwdFWbGxkycG08kXs3PsJSlztU66TM9UJrdfroTVST6MtUXfwA6iZqZG2hxofI1L77JRjaqqM4pZ340xUYhS2oNs6XmsGFXe89R+e9ugsOfon4iw5+v8vLMuia9vDHM98DYCmkp9TMudiAGJdB3AVVqO6/WQ1nS2HOvnE7w6QsKaaVWb7dRqKXNxywRwWTj9Ndu6/gV1PP0Djts/jEyZXarpVxn7pKzzTthejXpkQ8xqizlv3PsuBNd/jwsFJNjHgNLh5RYBRx+vnLrqt5zBX95qkGn5DJtT6uuVCB9+G2NlELDNGb6qNSO4wC8N9LA734hiP9JsxZdYWziI4p49UrgBPW4BVLfvofCkf42b48xr6eLJ3PVVAemQainsMd1HekmBbArYtko3UsvmVT/GoT0MUBbJzQ6j78kJbWxYw5/iY2/efmHYbV7XMYMPy89g0bR7qjmHE6OSkWWGIaIKNAVQZIscVk9TrdIXtEHHPUwmmummvWpA/aNlInUnkrry+xQrkrVU12QFuy/2CfcISPMcntw/6/RE2Rs8nrb3+tmlgARQPD3K0t4QqQ+TfF/wcb3kzACOHrkRxjxGo3QJALlZO1/o7+aPkpFW1KDME3pV0UH/ZF3EE+qfUG++cT3pdD4t2nibt/DjGKlU6L34Ta/sv4FVXnkh9Gxe/JMcRLK41k1z1ps9hWwI/evb77JPznfWd/WuZ0/byaeusvnCEoZJzkNO3AT2Uu+7Azllkx1QEwUYr+CBJ6xLcoTsoSLdzODAdQ3GTUBysazyPRdajOITTR2FWcyartkeQxmehwdx96PYkaRCJ4Jd/iyhkyFHP/uWvYrgn/d4Lj1xFRXcNAeUHKEJ04rhu1aDbFbilya0zgJR5IVlzGcmNvyA97ODQjHdR1bMOX2qAynPGyBXdTqHjG5wOY/q/kTbzYTR0NYLhGsESdTyRBsLKt3FLmzHsArLmCrzyWnSrjDb3J+hb+DOOxMppKDzVmjZg3UjAW8/o6AtIdgS/0otpS/jVqcE+hzJV+JRhXHKW4UwFspgl5Bg9pb7/LgaSxSSzIcLeAQJqgs54FZW+Xlymi+nr8wFobfU4qu83pFxOxKFbkTU/Of9RDFlBNWqRsiKiZgE6AjksPCRLdiJpfkJvuZaiGQX/sPbC2SCQZ3EW/3Bkxvpo3fYNRhz5nEyBzGqKZl3I5oMdhLwuZtU08eLuo3zgdxtPOktBwuJDi4P825tX0NI1eMaESMtlURQV4SQvuL3rHmPetk+hCJMamITxZmLGTWyrOUSy14kDA+Gk+DEaHr4904doR6nMdfFkaSN/qvSSlQUWjRlUZXTGVIHjXpMLh2KcI2xjoHIbZUIP3dMt+rcVYWrVpPrz+hnJYVI8f5TssIdIu4egspOUsR/dlvDKOW6q34tPya8sk5bKQU8VA3NEEopK+cFyLhptpn9HkM72PDFKVzrQK/LlbUtE8YwS8EwO4LYtkB2rAwHa9ryTR33jq9YiiaU9W9lVvxgha6I3+rmw+QXmtQp4c9WM1Fczp68d0bLYsHAeSktsYoutV54kLpGTUjVMXFMSsJ0S2DbiLA/Ldt3DtB4bT+4JdNHi2ZU5dEUiO/M2ekuqqRrchmvkCJf0OSlZfhS9azknhx8QTYM7ZjzHLxIX01tRhSnLKIciSMP5yd8MO5gZ70SyUhylhBHRItq2bIIcFc5ee1J/QNfGD3PQ8tDqyhO+ftnmZaeO8NxXACiofpWiFQ8B4K/Zh/990P1uN5kRk0SLibfZQbzWjVoQxkz0UbDIycE9CyeIUVWlj5U9ApswOIJFjx5ASwXJRasYQuJEsMYn6y+fQo6GPqsTfFRC7RAZOeijrvgl0oGNKJpBz0th0kMnrGk2tZc/QNa1gKj2afau+Q8QojAeK2el3Q4ClAxlCcYMTEnAn9AZCav0lTopG8zRPMvHgkN5wlfk+CSGVYNIimGHlyK9HXm8/928QtOWW+mcFscWLIqOvo0S+XM41IdOee6K2IlC5ynHszTiYAfDY/mFTtxfT9J3HF9qgGxEQSzWiDmDBLLRU84NyveTNZcgYKDoMZxmPuCiW/0hitgDgCyM4pXXjrehnxnZz+J7+SGCtVvZLYIgmtQEJy04peIjkIbKvyENLHZ1T/y7yHVqqpIzRVu0BsOW8CpJslkPmijhlHLU+Lop9Y47n9gCTaYHz/G3Eu64AkE5QFj9AS6zPx+gMgXDRdsYCFZC7CrC6eO4HeuxPBqiKRNIZBFtm8FCFSmg4MqY9FtVFHHZf7vd/zdwlhydxf/TMA2dvr1/QnH4UVwhEsOHaE98B8sxqR0onXM353/1SboyKmBzbpnAtoFTNTzPfXwF0yvy3kNnSox2PPlT5u3+D+KCyoBcRdAYJiN6WGB1gQBRczVJ/U4EdGy83NeoUGceIKFOw2GftIViC8SlACklx78vDANhACrSOnce+D3e0DoycQEh56HYXcGA3kraEDE2BzgWrT193+Qk+rfn9VFFjiTvrtuDbkl0poI0nqQrWle6EGPaAB5jjILWeubvaUfusTk+Vow+Hrwv4xBJXZcm0TePWMcKRCWDKBmo3mFC018mFy9mrOUq4t3L6JVMdjoMGPfYqaGH+X3ttE6fSyRYyGWbnqZWz5KtqCcLFBe3UVXdTPj4Erxb+3h6zRVYhQ7ko3FsUUDM5EmRLQlg2Zg1XmxVBAHMCg8oeVL6jud+TVVuJnJAJ+X1oTscXNyXQRnuIWvfz2iFQk23ii058C0zEWUNMzeVcAm2jeBOMa/5RzT0SOS8i+mpXkWPrwAsm3BRhqtyv8df0c/m/nvIiNA5sIzkizYVc/6AuzBOeriaruYrITEb0VLZ5ptqVdnrMFmWs/HaAqNdqzEGF+Jb/l28pXkHAUlN4y0HV5GT3LwyygvaEMRhjIwfhCzNRgAkE0pdXGnmsCSbRnJgigxJNsfXfoucmmTQNblp0OKS6bmmnrINx4m9w8Cosom8z6DkP1TSgw7iXU58VVniXc6TiBGAQLJboWzuBxlJf45wx5sYq8tHUrZskeDQdGYeLMInPznlHkMxg4b2/BZtRvHxyooQs5pNilNx1PEgqGV6XneVckoI2LizFgH595S0/gSQCMo/wyEemahzOOgCDEZ9XkYcQdKaj4p4jNJshP5ai7g7QMWOFTjij2ObLnTZRThYgkdaAwPbyMVkCqTN7KtdTFFmC9M68+2LSUECZhRRyFHufM9pvyWAreEmcorItHg/lZlJMXeZ40OoXZ8l1Pdx+ub/hMGsl6FkOYXeIYLOKCndjSwYdMeqkEQL05JAsKgLdnBsrB5F1gg5o4SceWvS0UgdDimHaUsIgo1XSSEKFqOZ/Jhg2hKyYGDaEg2h41i2iISFJzKL2XIWzT2Iki0A1UJNFeNIVlKw7TQeaeIwjvBdFGQOIL5m3VE0qlE02gb88DUnTVp1S0Y0SkbyC6CxxBsnv/1XxFlydBb/z0HPJBk9tpGj3fegOftOLTD+1nsz8ymb9wPe+/CucWIEILCh/6RC43hrgzpBjM4UBzY+yYLdd6MIJg50AkY+iBzWKJYtkDQvIWncCijYOHi5JMlv6sr4r+3t7FKbEJjcbhMQiKoFfKz9uzxYeRejDonzhtMsP/xNBg5ZwGR+th7iQOlp26SIBq7KLNmIircsRXLAg5KGm+rzAeYckjmFGL1Q14SzoIsl27N4EhkiR1sZOTjpQWOIsH7JeUx7yz5kV5K+pz6CPb79WNywjrbCHVTrMLr+3zE0H1ucOtuck6RPDAqsSQzS4J3Fe159DrH3KGZJBZ46Ha93FEk0qa7JW11m1O0nsruCTz78HdYvqufokkuJe33IRpaKwV4KEmk6yioZCwQIRtuYdfxVrIH9zOgKEE4ImFXTSQZUTk5hYThdGFX5pCmVXUcRFZVkSTmN5fkEwpZhwEmZukRTJOkymDVahyYKSN2drNp9mD3zV6KaOlXRDOXLjgJQXdhL10gFB1WTc8dW0rtx5UQ9eZuNzUsunSHJxpYEcueWoG4fgZTBzwJZKgyRt6RUyLmxN32B467jVNQeJDhtPbIzgaRkJ7YrAWRXnFjHcgbGs6N7/UlWH0nQueo/8Rgy7LiTgXFLW4ftwhJ0REXE0i1GJJs29XLEe+7DtgTanvkKsiNOsP4+HG0ivZvDBOpTRLrciECy2sZYZRJ8TCbe7aRwTgK//Ajlx26ntiMKcgdeuxOFzVM+pZzVhEM8MOWddOkJwpEwBxcoDI14qevKIJk2AyUOBosckFqCM15N/fB6fEYbFc6pQU77vZXEhVvwDKzAEnMkw4+QK3sFSUgwAIymqgh3XEl177l4pT+TG9UAF4dnXcvnPVlme8r5evFscrG9OMQ9+EbfRcesfXRUuwjFdBIeEV/Kz/zmJJJ9qofWnrIqempkPEo/tiBwBGjPhZnbEicYNxAEjUL1y7jMC5B3fJoqAWIVGzAjKSwpC7XP4IjM4OIjN2JJOUDAFcvHGZolGGR9XQiWjCNVTrKgGW/FJtRUOe7RWaiZYhKl25E0H+nQEZRMMZLmQbAlHKkKXNEGcqGDmJaKrAVQMoUI4++zJeho3l4ciWo09wDJ4t0ki17FSTv17QLBZOxEDFoAmmf5GCpUKRrVmHfo9bd2T0afu4iIXEzwf5gs+/8GzmqOzmqO/p+AnknSuukbDEiPvmE5wVQpMC9jzgX3IjtcvOVbT7J3TEbA5r5r6vjGc6305/JEaX7I4E+fupqOgTHqy/++rNnH9m0i9KcbKSCGafsw7EqidhF7cOIkRqNxA5bdwHFfjG/MFpgb8fB4dYCcJLDnz1fzGefd1LsmNScWFjXHx3AW7KGu6kKkodnsGvs1mfjkxC27DYyT0jA4gjn81UmcQY2x1gDnBDppEkdO7TtZQDHyw8CoEkCxDDaXziQdNuhVipjTHmd1x246Xy6YErOouT6IcJGDYFM/omLQtv9qhluvolO2qNclvLZAQo3g00IMShZ/9ORInqQHsjwy51Y187HOQgKBYVJD03lG2Y/bP8zChc+ctl/37rmc7KCLwqOHGApJjPqCFI+mSJfJHAsMcM5uBduW0VQFbBvFFtCdTvSSGjy1YzQ2bkGWdXraG3EHkmSzXjo7FmAYeWuIKBrU1u6hovIwmunlr82XUxR3IVgytmgQU2KEF8eRdofRtPHtyWQM50AXli9M4ZIxauv2AvBK7yr+6+ANOLH5QMyJ0xYQxpNpRESbB/yTFiN9TpAPrv9PXlh0Ob3dk2ORgsXKjMqynIwAZB1DpN1deE0XLl8PkjqGLxBFcUB6sIl491Lu84IuwLzwMb4MrFuyiUPWHDauW4xui9wSd9DsMNjlMDGqPaj9GSzd4l0JB02Na0l0L0NP5lf6BWXPMnP3kziOTBVyDX1Bw3JD8X8oiLpAycIY4RmnT8KaHlKJ5q5j2HSi9vShmyM43Un8c0M4cgGCvucQRDhaupKu6W0gmmCJhLouobj1nUjCALbtwCJEgePfcQmHJ+rOKSJt7s/hGzw1dk+scBcx5zDVPZcjMkZY+S5OaR89m0Ikelz84E338qwjT+Q/1dPMhbseYsZ1A4iyTUelm+5KJ4JlU9mfZbhAJe2WCI4ZuJNguCz6Sxx5SaAgUNmXYVpbirGwSsol0VfmJOuU8KQMlu6OTmiqALLmPCL6nZicyZiiIxHFZOrCLBU+gGi6cMbq8uJvNY6ScxMr34jh7qKou4GMw4dt+rBdx4lO+y8KIhq+pIElCMQ9IdLeNLosUtGfRdEtbAECCWNiLDgZu+YHiPplCiI62JByi9R3ZvBFRGIBiaMzHJhSftEhWDa2OFV8vXDBfxEOrz6D+z1znBVk/xNxlhz974RlWdimjqQ4SA13cnj7l4m6XjltWcFUULVSSrxvpn7lR5DUyRVMe/8oF/1gMxYiX7ywlPdeupjOwTG2tHRjmBbXrp7zd8craj+0A+GJ91Fr5bdAclY9I9q3sHGeUlYTba5f7aXXnZ94glqG6178FZ9L/JlbQ9+i3jFVMxHsSFMtbqI9FT7pBm1qL+olUJ9AECCXULA0EWcwB4KNN2NSOpSjtvtU99yTkRUUnp22AF9ZO1nBQdr0UNopcE7XEUYOefPWonFx+MHpfpS3CSjlw4zZAkeyEq9GXazZ+RUedUtoAvgEkwuTLhQbEqLNyy4dbXy8tBUBs8qLo9LmrvY/ML1h3YSL9PD2m/HMeBZ3IL+lIpgKSqYIwVLI+fP9sWvn1aTTQQp7e6jp7qGtvg7RsqgcGKR57lwsKU/gQmNjREIhEAQ83lEWLXqa08GyBNKpEPFEIeXlk4L1vp6PsH2wj4JUACUXRHdEyYk5mKtxceDPZDI+DresIZksQDB0EAQWr/grLld+VZ3QPNyx8R5sM3/jiqjzblc7u/Ri9mvBievoMwO8te1litJjKKkMDzS8BWNo6j7GpWaG+YkwfwsJweb+QL4vbwh08ubqzbyj7ONogoOq7UcZjrip9I0wlvWT1lX8DRbxURXGDC5OKyzUXrOZIBhMv/JOyr5toAwKGAU2qXNNeqetZuzIRcx23EP4iXzRkkUxwo15gmTbkB5U6e3xYx57428oMB3Kl+QtvEnjSjLWanzS78laiwCboPIrAFLmBfT6VlDBt/CkTaJ+mS7XBwl3Xo5DPIBDeRlBTCAbFqZdjGkXAAZe+SkkITHRrta/lKJnJN7z5m8TGX8nL07H+eTzX6HivDT+suhp2zlUqHJkuhdNzX+vas5CMSwKRzWmd5walDTlkjgy3UMkqFDRn2V6WxrZmpxuM+YKstZCRGKIQgKnuBtJHEDkVO0cQFZx4NTzhNoGUm4JXRFwp00c+j9+Gk87JQ7M8mFIML09TfHopGebIQkcnOFlpNCBYNvIho0lwLSONJYoIBsWI2GVpFdGH6hnztWPU1T091ne/xbOCrLP4izGYVkW7a/+nA79O1N/OI3Fdrr7S2jZEepWfwTZcWqBn63dxjc3jgAiparGzRfnA5TVlISpKfnbk9DpsPWRr7HsyHcmIv12mPNQ9LuxcZKUwfsaL+wvNbnodYu4NJ03Hd5H3a6/0qgMYBgSQuH4p3mSV7KmuplVMEh7W759qk9j2oXdzIhmmbZxjEOBalJeEcOpIHa4KYtGqU5N9WhpcddzuKIAW7ZQMiL+tMZokYRLyGK3N5LtrmAWu6nPtZIaUDm+fVJXlPLAwE0yYw1jPDKmMtrvnqh3xtASdssq2rjAPGFLPOmZ6iZshVS0uSEU2WDF/q00NEepW/Q8ljSpUyhalk8zIBgOard8FSVTyKgqsbEySq3/LtxkWLjor3R3zaVbaGKkYlL7NVpaiiiaeFxjaJqb0JLjVPnGCASGprRDThYz1i1huxIEapOIoo3XN4bXN+4tZwqUHfgg673nYlv/lT9H96I7ojgsB0NZBwTA5UqwYMHTDA3V093dhD8whMuVQNRdeEbnQul2ls/Yy5YjixBMG91SeDDVOKUtZpmLq9o3USCaWN4AOW+Atw1t4C8rLiGCB8fWvHbleclFpLSDcwZqkN8gyevw+JaaQxV5f7aEjcUjaELeKibPBGkL9CTyFgtbEakxx2hzh0mNQatislCTSQg2m0rbySSLuTTpof3Fr6Df+ABB4wjpOieR9gsZ2XkdINBifoYVvm8gJQQGdwcY3B2gfZoNmkhd99QJ2/LYmEEbWwW1fdISFTsG4WkyzpCBV16Ll7yg2SntmXK+R3qZ8rjCvvkrwH0InSAzX62hxPnmyUI2cGqEhwmMxf1YGZH2srkTxAjgkDO/Vdw72ohc7MItnbrYKh7RKB4ZYzSkoOg2/uTrhFU40d6MyYLmOLvnB+gtdzFU6GDR/hjedP4bcUlbcUlnlvcPmCBGkB8STtTzj4IpCBytCtLhq8bt70a0bEJRnYbjKdTXWJNk02b+oQTw+ttrFQMn2ruLdfExLvoHk6N/Ns6So7P4X4POrQ+dSozGIZgK1Y6PUr/6o4CAOG49GBiLs2n7MZ7d303QpbCzJx/4rSOdX80qmHz3HQtOSVL592Lfy7+fIEb7rXpetNdwtXkNMg7umu/kxVIF0bapS1oU5Wy2FUjUx3r4xIMP4chNDnrlgQT6oIRk59sjWAr2OHnQHW7qnRFmveUYtirg8uRYuieFL5e3FMyOdcFpEnQPSiWUmIMkzALWt91LSulHzjmICRLLGg4h9sW4aOQRZKMFUxdI9jiJ4GZgVxAAQ4IN58EvlkgIko0xfJIVzIbpkXk0dF7Lo57xgJWzg8hHYwjjq1lbALPex4JUM2//4RNoqsrA9JkUNYwiSDpypoDUwGwcdXnvQCkXoHLP7Tzkfhl8En9quIRhbyVXjnyLGws+jija1NTup6Z2P6YpIQoWgvi3V8520kvFsZvxDS1l2njj7VabIcduRpf+HMmtY6WdFDbfhJpcxUs1o8wfzdcrG578jQg2WnYypIMgQklpGyWlbdjjlrVg25vB8EHpdt7mexq/Q+TpqjUIwznEsRwCeVK0JnWQa5/6I8fmzME9LUt9/S4yGT+HDp7HzY/eRyhncv8NH2W4V0UazrEjW8KOYJaQI8olrh6c3YsJmwIx0cZlC2QEm2d9WbBFlrh76F78XY5IF3Flr870pMmD00v5orubL5ghMGwaahQ+715LW7aQz/EmuhSLZMlRnlVkOpJlIMEzbo3rUgE699xJl5zDbnZyMmPPpavpel81Vb/uQh7LH6s7LuT7Vrax3GAW2Ix+1CARm83wgevQUwX4zttFWWwT5X/Ke161vVhE0VvTFEmnzzB/Al75eebuv4R9S8Ms2ufEp06N+J02/bilvHA5JzrRBCc+M0q/1sArynnUR57Bh82BmvwWz3RB4pht0icKxFUfvpZuDp9zDiUDTyAL/TjE3ej2NMAkrPwASRjLby2dhBEK6TdnofvWEM8aWKki3OxhhesRRGDJvhiGKNJb7mDn/AC+tEnJUI6S4RyKYWPkfQeQTpIzmWL+74EiBymXhDMtYAoSpZEkqpEv2FLvRxRMDNOJb1TGNNwcUedS6d6NwxHBEGS0TBjbFnH5BugtdSKbNp6kgaaKpN0SCAKKZlI6pDEaUpBNi0K7g6qjmQkx9cnoyH0Or5CgUP3RGz6npBnGK+UXG4PadGYMjcK0NzzlXw5nt9XObqv9X0f3zsfpHXiEkGclDed9GlEU0dJxMqNdBKqaiPUc4uC+O8i4JsWnnvRsFKEAn6eJyqZ34C7M5zFLZzU6ByN856ldrOv526/2t66o4u3nzjvjtu544Xc4VIWmc65BlCQObn6a3Ks/ZVEqP7GvNVeyS1zMJcVNVHVXMuQQuPpcD+ZJe/DlsWFm7d/CooPbQbBxhvNJSIvnj3GFeIzMC16+tOReyuVWJMOFKWXyo2c8xJf8/8FxfylDFdDYlqIgN7lya88uIWMFCco9jOq1jBq1HM+uoEDpxCcOs9z3CKqQQRXzW2x92kyC0gAuIcrAzgDRtqlJNQGiXptPvl8m4Z5sv2ALFKRLmRGbw4Kuc9FsPw/6ckQkG4od3LHjJ2yftZJ1yy5CjOt4pAQX71jHvKMHGK2dhuELIQgWyxa8iOobpLn/Y/zIq/OjsV7KLJtQ56V8vaqT58sULMmHrk7Hmd5Czr2ElzZGiM/4NcmSnWf8zACyvQU0HfgWknB6s4IlatiCiWTmrYwP1qnscayjoTuGy3QRHF1APNiCJeXoKVZ5/6DItrZXcIRy1F/Wg+zKE0M1UcnP099mY5HMJ8R7aTL2s+cv5+MY6KEkbbC/ZgEDhYVcsPcVRl02ui+I0FjIoiVrJ5LvDvRP57nR6ykdG8PTvovRkpn8qeI8pP7X3xqVBBPTHr83Cb6z+guEnDF+mPsk73xVoV0aZKx0MZeqW/lqwdWMkuaXI38iXZ/Pz/elzffQnTx95OZrUioz9Em3fxAYEy2ctoDLBkE0mPGWjxJ+UEbpFtCmWVguSJ1vYhZD37b3Eu9cddq6PXY7i/d8DzluYYs2O9aUkiu6ECshUq3sYMQToKRjD5qosLDcpFLpOKUO24a1QxeTHephoKCQ4oJBFFOif6iRXEGKwsAQJaZO2boY8kj+Pf72ZV/jJZeTlV6FzqRJHxZfOPwyqw6vJTPfQjz3Ugq7356vHwvDEcWtjRBUfoVhF6NZjWStJWStIHFvP6EhL+bIEeTyJdhGFkQJySHhVz+DT5x03Y8EZPY2BbDG9TmqZqHLwhSNjqxbCOS1gAC+pIEtCAi2jS0IJD1SnpraIFk20rhVR1dEVM0i6xRRNRvNIRKKaFT1ZRkNKfiSJqYEBWM6noxJ2iUS8ymUDOd4o7VF3ChllFtxmhWYdt7Rw5L6EIQfExR68Ul56/R+52I6kssZ0htQ/V040oXImkrak+D8a6ZTtejNr3+R/wbOao7+iThLjv7v48Dzn2NQfnzygCXhyFVMyWt2MsLZi5h38Q+R1EnrRTSZ4fO/fYWDg5kJi9DrQcBmdSlUhVx88Z3n4lSVNyx/Ml5+4G4u6M6vmDqESjKSl1nGpDg0ayv8wfth6rTZVCSqkBD42XST4O6fkE0JOHOZvCv4eHl3UYaai3tx+HVsG0Tb5rxNETqfK+Q7F36JYuUosubDlNPYoomWK+PL3IXimOoxs4NLiUgN7JKXUNZtkrLywda84gjvLPo4qpDFMiHR48I2IRdTwAY1YGDpAkN7A6fc66gPUk742RUSx8vzLS6x3Cw9fh3ViWlYuRAAJjZPejSOKxa2JNAwe5Dzd+5GSidI2yIIEksPH+TgzEa08mpCoV403cWsxi04PVF6zHoeSN/DtT0mm32tDGr3M+zyEin7Ggj5Z9nU+WMGhW0UCGsosmfy/ZaF6I4xMqEjJEq3o6RLEE2FnKcfwxHNe/oIFr7+FTjj9VhyCtF0Itgy+9ytfLruNzRk61kaDzM7Xc/89AxUe/I9iMtw1bluFh37Lk1DjWBDwdAq4qGD6GqM3lCS20bfQihnENWGaZH/ROC8nSjpEjI9n+IDC6sBqLB7+RafoHn/xWi7x5CyaWTLQpckTG8AsaielFNk5qwNFBVNvu+WJbB923XououU4mBMUFm2bxdfue7jKLsnAyC+Hi6c08q7Kn6MI1rLPfq/s6wlH3ndJQZxzu+i4rkQUYfFjAvWoXnzlpv2zkv4auvVE9HC9RkBpJ4UYsqgyoQbEpNb05ucOlvGPQ4bdYFrUg5EOUuwfiPhhpewLQktUYrsjNK79UPoyRJsdByigG1LFMsivSdpZMKJvcw5/iuUaJ5gaoU2clxAPE3wZvXqANM8LRN/tyVmkXo1hhz9m90ygUhBHXetvo0u0eYO/152pmay0XTytniC97+Uj/Jt+iG30g9109GTB5GPZ/AWvxu3tJqscxhRsFAzxYiWihlpJ7PtZ9iviY0klczFMedaCG8gyDoC8uCU34f8Xmwlb4UKJvJCZwsRl/7G23X/J6BZLrq0BbyUvI2LCnM4ssVYmQi5vnUo3lnIJXPQ3AMcqn8Ad2k73sHFINgUHH8zSqYQWzSQDA+2bSEIIo4rvRSt+d+VW+3sttpZ/B/F6LGtyA4vzkAp+zZ+lIRr19QConlaYuTKNDJv6U/wFteT03Q2N+djofzipZZx13uAU4nRqhKLD104m8UNFazf38bq2TWE/adaSN4ItmWx4Ucf4ILIZOqCWrsnn84M2GjNo8WehhryMui6mvM68wPerpCNvPchpGiKeef04MwKRIfCgIVQmSTUGEM44cZiQeHOakRrlHRcQRqvXLAl8q7kJrokMRCpQQy48UsDJMwSuoRpNDlfxGs+z6UmZEtUtjpWk3VaXB7N6yayUZn2Z88s39u3rhPZ2SBwIqtrgWRx49H34B1cjFu0yVoSFjAgWfRKFodcOQbGU4QoNRKL23sxg0HMYBBZM1EiQ+xZfS626qShYTOlpcenXO/h3Gf4jz0RokY3n+8p5dNLf0QkJHFh2zrQ9pFQRRzJJLW55bSE9rGp/r1cK/6Af+9cxuqBlfgHVr72Fk6BZOQtIq+EBrlrQSW68l1GBZGtgKQPoehdzB0d4PstKzjo7uFLcx04NRdyLk9CFS2IaMtIhhNdjWEbCdq9IgWaRNhRympupeO5Fipc9dy9MAC2jWCn6RUriNghqqv3sz96KQU5FT0bIxk4odWymd6wdYIYBV/9CNFZf0QMD7F8xROMjlbR1zsLT6yEdRdeyQdefJCNyy7Gl0qw0z8DWxWxChz53HNjGohQnR3ireoLAAyOzGK2NrllmzNj9DkdLAo3EHIOTxAjgGnlm/C53k0kZaM4JJ5oHmLQ6eN2DLol6HdolOVU+iVrghgBtCo2rYrFDN1FpPVSIq2XntL/AjagoI1z+t7XiIfHfAt4ddG9zNXuoWBTFHXk9TVV2lMxtr9vIfVJL0esGgKvrkOOTi1v+m2k+NRjlsNGzAkk3SXsmPFeuoX8ImVayXGSyQQb+9fQ4QnSWXUJBSMb8cazuJ+LA7vHaxAx/L/l2BceRrBtAr+VEQ0VR6YO2o6etq3mYDPpwWZcK24jUXojx5RnaDIfxCHmxdvF8eRpznrjZK7/U2QsHxGjghPhKQQsBvUGjrAEV84koXpI6YU4C49SF4pxoTeG3COQ3PkF7GSe3Bk8j1S+AMeMa2gyPoZ8IDjZ+mwMo3s9xuhRRG8pVqQdvAGGFy2kiH8sOfpn46zl6Kzl6B8GPZNET0VxF06KZC3LwjZyDB9ZT0/XI8Rc4+H8LYkTkcXUbBnLz/0rI8c20tv7GIYdwyvPwBecjySp+Ipm4q9qQpRkHl2/j2+/2MaYcXoL0eyAzlVzy3j/pYvoHYn9XS74qVQS2wavNz+Z5rJpml/8Dcbh51iRfBGAl8xFbBaXU2l1kcPBqFDItDlLGAm7CDQXcP5QfnB7uijD8L5fUFI+SPUFfUjKqZ+ZbUN2uAq9ZyYrIjspU46SGVPYtWEaf7j6fQSkftRsAYaSxJJyRO1qPnv8i6wt+BWaJuEr2M3blG9gjYJlCJhZEU9pDkGyyUUVTF1k7IiHVP9UT7ljZaDJMLs7n45rZ4PA0XKBLefYzHZZJC2BEsUibgosGluAuO1GMnK+T7olkz97NLInSbRswGjw8+aBjZxXto/Cyv0ga7QePJ/B0SqCoT7Kyo5QWNgzpR0jQ1fzG+EGVrW8SA4DEXAUXsQhRzPl/d04LAfDzmGKsnkhZ1bKsq2+iJbyiwgMfg01d4TpmSoMwaI+V8H1o5dSrIc47uilVx3Eb3oZUhI0+xMcC/jpcLtwxR7AlMvQXAtQcocR7BzJ0LvRnU0T7RLMODXdd7OifxFBLYgvOgNntoSUp5O0r5NuTzdrF3+UxliE2w5HWBXLbzV0uQWuO8eDb+SHODI7yXrO4aZwmlVsIh4vpO34EnI5N6FwHwHfECVlk8mOiw6/k3DXZSQL99I7/4cTAhTbFujoWEBP9xz6AoWkvVXcum4rPcnDqJrGYCgEokxPcRmVQ/2MlYZY/qbnyMnwPuFRPv3qduLGZKyv4ZklfCjaiaWk8sEaewsQC7NYjhT9e97F02mVt6QqWEU+hcc7nWm6swZgU+CIEbc86LqSD7hp2wgWSDbcknAQtkRkwCXm34nkaeZ5AQub19H3CRbTUg9Rs30XmZCbseJCHCM5esqvRTEzzDn08ETR+FsMXNtElP58XUcvOodu63q89h4ySj2qM0pN+S+xDBfR4+8kYtehC3lbQKti8KRH53o5ilc6ioTEC7m5ZG2Vm2IORNOgNLIJ39DTVAyd6oV2OnQWe8l5V6BmWsEapnbwpBhlDj/qzKuRyxciOWQE+VVU8Xmieogi6ThuMYYi5nWDSbOE1swH8EmjCMIh+ozpdOfOIaAeol+bRanaikcaQXZFiQoFRIaWYCPilwZA0SgXW5nrfgZVzLAl+w5GtVqGzRqqz/s2kqQzcOg6Qq443vJ9SLEqzHQhBZITV2w6giXhSFWiuYaw5CzORDW2kSP9yj1Yif7T3rdSswZbS2L07znt7xPlvv9Vpr/pbWfUl2eKs9tq/0ScJUf/PYy17SId6UDLDJNOdxHTt2IJGpoz/wE1eL5MoGIhbft/RER5Bft1khsKpkpYvwDXjM/wTHMvVyyeTuNpMtpblsWfNx/iV5uOcyCaH+Dy0WLyq8OApLOsXOXHH7wEx9+xTXYCtmXx/M8+yflD/8VWu4myG37E8IF1rD70pSnlOu0S/vSu5xlNZ1na386cxkY8FVU8eLiZkT0mdxzJr9I3i4fpbfsr9Zd34a2emiPp5K/Ns7uR5cmtiEJ+FtEsB4NHPexqb2DzpVfjFkdxZEowlDimnGFEqObT67+KfpmXI55qLh19lcQxFwM7g2d0n8N++MUtkAoL+CWbjpiImMq7Z99ZksXuXUqiZyG2paAli3GG24h35DPQm9isd2nsPmlLz3aIWCEHZcERrn/5j/iXO5g+c9OUaxrJAmTvpMdcqP1NFB27juPuft6/rJZr9v2FQHqSvJUTYJf7EGXpitPew9airXRWXE0kkBfUOtIHMWUPluDCkd6OLXrJetcg6b1IxgimOhNTcqBmduEbewjROt1qHQy5lJxnNWpmN4rWTm2ilsUjiwEoGFyBaKtkncMkgi2MOkZ5oWkNUW/e82z22Aj3HHDy7ZkO+uVjJJL3TNS7yHsLN4V++obPRdu3gIbh2/nBDAfFWZt394zSGngCoXYHUng8SnOsmIMHLsA0VTKKyp6qBrL+GkRbxBfrJjjWTyidoN53nLlz17HBuJIHhVv48Ktr0THHvxaBRFEjb5r1BQTAQOJnvbcyxxnhwoLf4mq/hJY9YS7zvomcpxfBFulPF/HugIEdm/yGbUWkvC7D3LZDPOtehhjXWa7BuenTB/qTBIvyGS8wZLVyNBjAKbpQY37mZXfT03Eblu0jL+E+cYHxf70mUWn14FNMb5ma6NT0QOvSi+nn2jfs45PxnEdjv2LySWcno+Q9GVP6NH5vhvl4zInDziftkbAJaZ2IkV50JcTC/T+ZqMMQob9MBkMg4VvGQOWNp1xHzUZoOvAlgie82gQJ18qPI/orEJ0ntrItJoOSvr7FzMbCktNYko6pxlBT5WjeXhLFu5GyAWTTjSXlsAUT0VQJ9J2LJejo7kFEw41oqmBLE5q6KXXbNkb/XkRfKYLsBFHGHDyA3vUq5sjr52I8U0Srgqx8Ycv/uJ7X4iw5+ifiLDk6cwwdeomj7V8j6zo1X9GZwptZSFXlzQCIokLx7EvYcriL9/66GQ0Jh2Bw5XQ3S6cVE0vneGhrL/UhmZGUSWtykvRcUAFfv/EcJFGgKOD9H3maRUcGCP54xhuWabPK2Cws5LGL/o09uoOwZpOTMwhAfdzBLe0aq0fyVrB9kWfR5BSeS55D8ucnlHhvE6o7gjPUi21DoreJwsMlrFEntVb91LA5cA5Ln3yG58TldJy7BIUkjnQphpzAVFOMChV89NHvIUg2JQtiaEmZsSOTIloLTlmTa8U28bcbjMzIU0mX7iM1OAt/5S4EyWTUEMgeuJZE6+X5EyYmpnxN7bLJJqfOgDx1mNCn+agKDbJ69FVKX+0m2zCDVUvWgiOJb2AZidLtU8o7o/X4uy7mv4RB/lp4iKx3DbMyS1h4ZAOKrdDl6aI6VT3lnJwp4RCyqIKJbavo4895Z+FOfM6F7CiZTk6WkPQhdOcsTLkEwc4g544DAo70dpTcYWRjYLIdhpOLY8sZUEbZ6Z8aqXkCNlzRfQUu04VguCgcWUpA6mOUIJGinRiCwZM1fyHrXY0phcl6L8KSwwiWxcqj96AZWQzBoNfTS9D5Hj43uBl1bvOUS0SO+dFTMuljpVzm+zSfWuDk5ZL8O/6OTo1PHc5hYzEy/Y+M1f914ryx0XKOHluBljv91nDTrI2IRWN8xvoZ728eIhvbjSEYtPvaaYg3ILjKmLH0QYoY5vfpd/NnT55UfNH+HHNSUeo2f5146TYGmn4JlkTdlq9xQJf4aGMRQl8WO+RgSXw/5+x4Fkt18vsl1zHcnx87L1A6WdQdxeP1Y+gGOVeccPkoD8gzaI9VY+dOnfzlIpEb+zOUJIOnvR8FMJncbPKm21m45z4U3cCURbYu+TI555mH3tCw+Vkwiwbc6TjM2Hj8I59Zyo/0Kq5PqtQapxftV3W/SPHQK/RXnYtQfj6CoNCjn7boBCQjS13bb6jum2pZkUrm4pz3DpBdiA4ftm1haykwclipIQTJAZKClRoGbOTyRViJAQRRQvTmA3RauThWoh+poBEsAwQRQZxsu61nyKu2HdjpEfT+PUj+CsxIJ+bYcaisQBD8GLueOKO+SzsL6ah5E5Yg0Xj0EVRz6qJ3oMBPIJ6jv2QxXTXXoBg5iof30Ftdy9W3X0zlzH+su9pZcvRPxP+fydHo0S30HH8MzRyiIHAe3nADgcr5OPz5bajUcCf7t91KTu7HZdSQchyecCk/AdFwoujFFLkvQ3UUkk62MXCSuFowVUTLgWoUU1P+USoWvmXit7a+Eb755A6e7zSx32DFdDKKVY2bl5bxsatPjYb738UrP/0Y5w39BoAR20+hMGnpidlufsxN1MxezCNePwcdJfzn9jQzEhafXOjiml6diwYn9Re92V1kq9ZhLDyUP2DblO4poiHegYlKuzEft5WmQj2AIuawgb1iI61qGbsLSvmPrifo/kMxf5hxJbkFhYj2uF5k3HM6SjEffuxUF9r25RbCmwzUMDibBeRBAa3Oxii2sUKQi5eQHppFrGMF2bH6fH22iWTlQLKxLBVbOnWbsk02+aNHOxH7EVsUsEqcXBt5keqWg5guF7mSSiyXh2ULnsfhH+J4ZhX3axdSlR3kjkwP4VwAR6KaF4QU9yxcgiXlvzNPLsK0tntZNbQKTdQ4kq2g2H+AkmzJeNeZPJxbjgC45VGWm+1UO050h82+gn20+dqwsd9owT0B2ZJZNLKIqlTVKb+Jao6nSl4kK2fBhtu73ku3lX8PgiPzUIwgjc71HMmex0jxqyBaPF/xPAl1PLCg4CMVuJqqbIDQ0HMsHM1rKw4GD3KgLMTPtq9gV09eryY5TcysRIW7kUCwmunOJlqCHj60zI1ojOX7R5C5tr2DTx0tQBYzdC/+Ntng5BacZYokU3kX7Xi8EFGwqKg8TC7rwuHMsN6+iEN9VzD/+F4soNXfyphzjBVDKxBFBW3pMc6xt/FR+QEKYv1EnS4Wuo/wYeFH+e1ubBDzdMQ3sJTS/bfygPYcT665jPkdHcxseYniokUstqbTJqa4wxNEiOfHhtLQMKpTx9AlhmNhdP0MLLmqwK3JNrzp2X+7LODIRqhvf4re8nOIB+rP6JwTaCno5q9mIcukLE3yAaxxBbrf9vLD3CwaPBluiI0SzzSg/gPDCKm5GIt3fwNXLn7Kb3plKdLQ0HhG+78NQfVia5MWUMPjQcpkEazxUBqhYoRMAjn7xoFfzxT9RQs42vBODMUzxZonGDl8kb3knC5yvjf2+J29Bi5414X/kPacwL8UObr33nv54x//yOHDh3G5XKxatYpvfvObzJgxufLOZrN88pOf5LHHHiOXy3HZZZfx05/+lJKSycRzXV1d3Hrrrbz88st4vV5uvvlm7r33XmR5Uh++fv167rzzTg4ePEhVVRV33303t9xyy5T2/OQnP+Hb3/42AwMDzJ8/nx/96EcsW7bsjG/+/y/kSEvHGWp5AdNI0z/8e1Lug69b1puZD7ZN0r3/lN/c6ZlUl70fBIHSuVcgSMopVhtTy2Jkk2jJUTwl0yfiDQE88vJefrmxnfa0MoUQVTk1fv7elfz+1cO8cixCW1pFHF8rukSTGi988LzpXLu6iX8ktv/pR8zf+yUcgkHKdvC7q58kvOuPVPS+wl7XDO5b8F4qBQUtO8qhQC2fP5Dl2t7TLxUzVpzB1V8n58uLFkXTpvKAk4bYqRm0TaBVCHLQY/C25OQgN3zAy8gBP99a83GqK0cR7Kmjc5IQC3ufYNHGfAqQnNMmeb1JaoEPLVVILlqF6uvH1Lxo8TJsSybWsRIjE+JvMYiEYPOqU8djC4xIFn2qkfc2Ix+8MVyTZm7sEMue30QqGCJbldek+L3DzK49jBLuYIBSPm99j6w0nopDH8SV3IBiy0TD14JtI1kGwfh6CiIv0DQ8neJsMTYpHs6cz/lCK5VKPwmjlI12JY+qX2aG2ENmTKGlr4q7pn+ES5XjJCX3lLYn5SQCAh3eDtr8bZRkSjAFk/pMFSV6AWHDz5jxN5b4NoTxYNk20XHBbEp3UTu6BBBY7XuQLYl3Mxo+gKEm6AgeI+NIcMg9SVoEW+CynsvwGHmrTkpO8VzNdj49dA+LhiPE08N0Jg5QHG6kQckTgaNekTsWuYhYW/CP3o8glDFc8WVsMb/9sWowwrf2y8hylC7PEyTrtuMoPP029Qn8KnIPRUc2E9RCRNUo63y9hCyVCyP5HHJPNlVh6BtYFFtD3UAPumDwp/nL+Kb/c7jH8/lpQwJqcX5qKNt3K8LgXNb1/oZY0ENtRSkzSwYQTQfhjjfxuHmUnwj1CG8wtys+UBI5mkbbOH9oLz9d/XZisgdpaDwBtAQ3ulqo6Fk0cY471U/ak88ZKJDDxnG6qgEwHceRijZjJWKoOcias5HMuZhiiKw/g8fdT23Tr/nCoU8QiXu53ddLVJ/UYgm2wFO5RYwgsrJ6Bx/t+gOZA8tIiVWojhFSUjXDwSVv2O+NRx9FMnJECpoYKD61rGAZhMdaCA8/T9Vg22lq+NeAKQiMhKfTVvcOcq4wlvT6/X6mWHRzkJUrF/3tgn8H/qXI0eWXX84NN9zA0qVLMQyDz33ucxw4cIBDhw7h8eQHhFtvvZW1a9fy0EMPEQgEuO222xBFkVdffRUA0zRZsGABpaWlfPvb36a/v5+bbrqJD37wg9xzT36vvr29naamJj7ykY/wgQ98gHXr1nH77bezdu1aLrvsMgAef/xxbrrpJu6//36WL1/Offfdx+9//3uOHDlCcfGZeeb8byNHlmWR6DuMM5AXgCruwBTycaKMpecQBBht28ax4/dOiQ90MpyZOtxiAzFhK6Z66ormBFyZRspCb6Nm+S0T13t+Vyu2bdPcOcJzLcPolk1dSKWhxMfCumIuWdhAKqvxvSe38lRL9LQCapdg8LFVJdz2GktQS+cgxSEvBX+nV9mZoq/jCO1rv8Pq4d8B8Cpz+MyiuznmK8dtZLgq1sHvCmZNOefyvixfa546wdq2jSAIyLRyfOXPyPoiAIi6jfNIOSvHmhkSRI47FPY4HOxwOjjkdFCpG3xreIRpukFmREFLyCQHHMQ785P+B666h0t8+8EyJ7a3AHL4qDO6mL7yryhdAlq9TWJoAb2bP4RtSxMJJU8HE5sO2SIl2mx2GiREmwZNZL4m8xePNpHa45Tzyl2858hjFIz0YXgCaAUl2F43M+r3UVhxaKKchcDdxg/QEr1UjD5HtdHIM9OuJqO6wTZQtT7efGwj0dwADtNBOBfGbbqxsRlIS9w8uJZbyj6LRt7S8Pbudbyv4xmyHifNhQvoqVxGSXQXf67wU6iXUy0lTtGknAk82SR1re34s3EGKktpK5+GZcNrUkGRy0BBagZuo5DOYCsvzLifWSMLmDe0hownP6lOM0totEvY4t/CI4XrKEtVsXB04UQ8GoCnq56m1PEhfnpg6tZtu0fkF3U6z1cEkXOtBAfvQRhPG2EoVURK/gPESS3WHzcmqU7b2FiMOXYScR1jxNWMEopi6y5UGcJmPQWDl3N7eYql7SNYWDztiWGNLMbv38EiFPy6n+3TFtPtc3Ht3g2I4+/MsCuHP2BzafHv0feJfH7WxQR9DXzY9VvCms60Td8iZtrsdRyhZtlvMJz5d13SfCh7b+E3yQQvlC4ji4oczWHrNkEpTa0+zDW7X2bV8f3kFIWDDU0UjQzgSUZQLXixcTk/m3ct4rguZ1HpPi5zHCUl2lARJZeQGM6WENc81KUFgkcuP+WZqgV7eKkmxaG+6dQHOmgqbCFmB7m45GWiWpA/9L2Z+QXNPNFzLekBFSdwR/A4/dkxRCWIoMcxsTDlSn6dzJMx1aFxU+OjLC/dzVg2iEdJYzx7IaOja8i6ighGj+JN9iBaBoqZwFl9kNg7x4gQIrvbQ3F2jMC+SgaF84mEJ8cSZ2aUYLQVbAvJ1PEmDiIwiKKLjIUrCEbjFI12knEE8eTyWr38BC2Me/0xccyUHEhm7ozs7jaQU/1YgkzcX42u+Mg6i8i4Ckh5ysk6w9iC9IbfVFZsYbWziJRVzOHsG1u5BDGLWxIRLBnT18/MGytYNe//YcvRazE8PExxcTGvvPIK5557LrFYjKKiIh555BHe9ra8Mv3w4cPMmjWLLVu2sGLFCp555hmuuuoq+vr6JqxJ999/P5/5zGcYHh5GVVU+85nPsHbtWg4cmNQE3HDDDUSjUZ59Ni/IW758OUuXLuXHP/4xkCcFVVVVfPzjH+euu+7iTPDP6tzunY8jCDLewgZ8ZY1TYvKcDMuysLQM2fgg7oJqRGnScpYZ62P42MvYloXqLiSXGqB/9A+k3ZMxPgRTQdELUa1CisNX05H4AZZy+uSPJyDpPgq4mHDRasrmXzNBdizLIta5j4HjT6E6iwiVLyNQOXsiF1nfSIzbfvUKnXGThCmh2afflz8Bl2Cg2SLmaybshWGTuRU+agp9vPeSRf/jyNSvB13LIUky237zBZa2/QxZsGiRZ+EzRqlkMp3EK8I8blzzfUzh9FEtbun9E/WpFG9qvwoBiUTpy6QLdlNy+O1kAseINDxKwq9NGGbUJDTui7PerXJAVflQLE6VkR/4LWBYkigxTWwbRg7mLUUno23GDG6b9QFucu1AzGnY6viqzTTRZQ/ZSDVL63ah+gZIDzcSa1+FbRkI4ulXdwY2PbLFNodBl/K3zfaWS8q7h5cr1CpdXLj5RZSMG8vpwhEyqKlopaj88JRznLF6fii8mQ2eeVyy/5dUJ6sZcY5wKHQITXGSFiNg51gxtILydPmUczsNL4t27adOHEU201ACgT0J2mYvo698OYIt48gWINoqmhph8a7v07owy4/LrqQsF6TeTGHbGgFZwnFSJDu3naCEMdK2i0GhCASBmUcPUdHeS29lFYpmU99+BGcuhyUI7Jw9n5THQ05SqenqxAjWM1x0LWDzx6bvM+TLa+1u2fklEuHmKYa4SrOAGXYJL8uHsIDBtMIM1SAq22wr2ka3t49U2S+5qt9mQcRkS6HMXysUsA08sT/iij+HgEZRpgjFluhzDYzXL5JzLSReeBsIMp89kOK63qnPUNOTqMqk7qzdpfHjgj8xa6QQS9L4XXIxd6hr2WHOwggfpDZZS9bhoCfgZfrQKBkpg2tcpPvi9HlMP3wvh5ouZTR4FYJts0jYwofVvKDc17+CnK8Lzdt34uUCGeRMAc1brkA53sqilsN4sxkMUUK2TAaCYVrqq9BFCyNQSCIcBkkG20IZG8Ix2EPSV8Gvpl+HGMsvPmwBnD6dXPy1W3I2N5TuoepwXoxvizEc5z/AN1s+hJF54/HoBATgbn8/KT3BmB2jOXyQgmyI8nQ5pT4fzwzPYd/r5DarL+/i3dJTjNpFuKwM0zJtRJxufuF+D8fi9QgZAyFjIpg2tgDSPBc/OHoXxS876fdeRH/pslOsMN5EFwVjLQi2QcZZRCQ0A80xGXdM0ZMYsgvBtlC0BLYg4U4PEg1NpqHxxdtxZ0bQFC9JbxWKnkC0DDTVjykpgIgpn34OOhM4BIM5tTtILXic41IZCzrnED56JQdSImOGjU8SKPTEqbIDKILISPFW7OKDlBx+N6mCAwimk4zDx8JPvPu/3YbT4V+aHB07doyGhgaam5tpamripZde4qKLLiISiRAMBifK1dTUcPvtt3PHHXfwH//xH/zlL39h7969E7+3t7dTX1/P7t27WbhwIeeeey6LFi3ivvvumyjz4IMPcvvttxOLxdA0DbfbzRNPPMFb3vKWiTI333wz0WiUJ5988rTtzeVy5E5K1RCPx6mqqvqHd+4rzyzDcORZv2g4KRHfhj/YxMjQy8SEnTitahQhQELYj+HIB3UTTAdgIdgygi1jKq+fs+bvhSNbwfTquyltyscgsSyL9fvbeODlw7SM5gekGxYUsXJGOUtnVE0ERmztHuJI7wgPbDjK3rHTkwcVk2qvSVoHzYSoIWGclNzIL+mUu+FwQuFds118+cbzkOUzG8j+XkRHBmj5w1ep73+GEkbfsGyLVc0xvYJPrfkMUVcIj2Hzy+0Pcd+sxRzx1mIj8MXjP+Xynnqy5kosAuS8HXSs+OpECIKTYdnQ22dzPCbwtMeFhM0PB4dZns6RHHDg8BnIznyaC0GCkRYvw/sm3zkzYJNaY/I746v8wenlZucORG2SHAlaFt3hoSu6jOWZ/POxAU3QaVYF9qkGadFmaVZGRiAlmiQlk8OSgHXSRG75FDBtxPTUQHNGjYfzhjZQPtSDrqhU9XdgePxotTUUBUeZUXUUKzA1/lRKL6ar7638NORhzL+MBcd/xoreUzU9ve5eXIaLsJYXzpqCRtbw0GMHsHtzrPBUI1oeEEZYvenHHJi7hqT3ytM+N0Pew/mvPIxqaBOJcAE6CySaaxbhtWUWtezDn510wc4pCsNFRbQ2LiXnWIiiBxCtvCXT8G1FNjtp7DzAcX+IQFJiuGwGtnlu3gMIiweXfRp9XG/3lubbCeeCDHj241RAkKautAUbPGMNONwZRl09dHg72FW0C0MuJe2/mpznHNRsM4HhqWlw5kXm0BCdmb8Xbyc7C3dOEDBTKiFW/ElMpYwrOztpTDq4tt+D+zWv4SvBDr4wv5w1B39NXbKWgGUwV/krW6NfJaf4ORZ+goZ0aMJaBDDqHcSd8+LSPRwqsun3X4xbiLDy2G4ERJ5tWsUt4e8wnclYPoKh8NIeiZdKBL5eKGK5U3jaLmf9UT9FR5pxSg4KhgbpKSlgpKoGu9iBrGTx+Ubx+UawTJlIpJxIpAzbslFHhxGTGr9afgNa5xsHQBRU+OCiX1PTK/CSczrrjp65/rBQEPiM7aRixm94qaMOQzB5sfxFSjOlNEWaCKp+rtGr2WAV8g1VI5s4dSvWVahTWjZKdMxLbMyL9TdkPZZb4pol67jk6ZcJ7AzRXfeOv1sn9X8DtapIhUvDFeqip2ozj5ZV8fzARQiHklgBlSWzD/Bx9X7C7VdyrLiLIeKUeIcpTnto8bo4wHyMOAy5SlGtHEsO7+bOO85M+H2m+JcNAmlZFrfffjurV6+mqSmvBRkYGEBV1SnECKCkpISBgYGJMifrj078fuK3NyoTj8fJZDJEIhFM0zxtmcOHp65qT8a9997Ll7/85b//Zv8OWKaJnp2HyB5sRxRLztLPb+iPw4nE7MnTTNy2dCLb8qkfpGg4kY0wQWkl5dPeijtcjaS6GGvfRnR4N33mrwEbyfChmqVUld2CKKmEa5cju3zIDheWZXGoc4B/f2QrHXGBtC2TH33zk8RPd8b46c4Y0MIMn05vCpLWiZXb5GuiCibXz/bSWBakJOBmTk0JVcWhKe0djad49WAnpSEv8+vL/lvu9WcC0zDY99LjxHsPI48dY158PSuF149L0mkVs8+cTiczyQSKebxmDlFXCL9m8/z6QWT7bfxku4ZX/COK2EHcuIE0ky7lw9OepFWzKZQFQpKNDRzKSnRrAm0xgaOCAl6bz49GuCGRxDah65UC0kNTV4uGbCMb+Zkv/haD6DlOcrEaYp2r6B8KUUkGAWGq379lgWCwSzWo1SSKTYGIaPO41yB5kvFto+vkyWVy4radEnqDn3N71jPrWDOHp88lozhxCDmKj3dTPhjBDBZiBgsRZYNEcAkNFUcprXsCRGtKaLrR6Lk8mrueLaXlUJs/NqPz58wZCp623yvG3fIF22LYkPirmV/5e/QcH3aYSEbBeMlKtqy8BwQbwQYRDVmJoOmT37lsLOSZy51ozhgFIz1UdXfj0HJ4UmkuOHIQRzZHe30d+0uK8cfjRIsKGPPORdGCuDJlOHJT2yYnVgAraC16B5ag0e9LomqhfP9jE3H3o0s6kiVhiiaDvg5Kk+ezWjzGA0ELhy0wL1KHoeTf8ZzmplAvw8pEwdVDVaqKPYV7kI0B/GO/gLFfnNI/FwyvJpwsnfi7JllDTbKGmBKjNdBKv7sfqf/T5FyLeK70ataqZXx/joo7m6YgncKUXNiZncQDK7D0DYTHo5eH4ml2h27kF5dWkFNFqgeuw9X7MNXJGgAGXAPE0/WUSil0oGHEYm+dyHt2HMIk7z5+6ZHdPDj3fXzV+3lELBydAV4ZLuLhee9Fd87krkQLX+QrUPsCy9JvpbmilIFEIT1yNQ5ninmNL+NwnPpNllccyf/DVIn1zeHQ3jI+tu4HvNB4BYdcdfizCRyiwcrhXVREj9Pjq+bJgjdha/CfW99zSn2Vzgh3bP4N0UCQA4WNFNgWLxZXEdEDrMke4UZpMZWyD6QsO5AwBBNdMIipMdRxopzRssRLt3Nxx9WszArcHEzQ6ynBqPPi7RxF7zHJjCi0j5Secn2Py+DKgxvwKA56ptWxzleNNWogpk2eevUC/lJzKWvO28b1ufsYXjsNp+cyTLkGU8zS5+tBNLN4kxaKqaELSbxaAMG5EEPpJ+s+RlQ2qEguQNRDjDiPEhZlSowwCdONJBqErQLGrCw2Bh5RxS84cIqg25C2DFRBotg/ik8rQEXERCBnG2RCrQS0AmxfPxgOsr4uUqU7MZUkQ+5Busxq7jv6cZLNKuJ4kllpNMeejQ3cWvwtlEKIDgSQO/LaSXOaB46aSMPZib6xnRLnLvvH6o3+T+C/TY4+9rGPceDAATZt2vS3C/+L4LOf/Sx33nnnxN8nLEf/SIiSxNebr2QsdyVzQkkWhbuYHzqOw9mCahbjkOYgyUFUySBQuJDo0E40M4McXENRQTEjHX8lnt3FSG4RwYL5NNXWsnHAwR+2t1PoVWnZPcBYtp9Sj8jsUh+XL7wBL2+lfyyG7nQzq6qQytoysprO+n3HeXDDNrYNn7x1lR/EBWx8kkHcPJW4HElMPVbu0FhY7uKua5dTURj4m1thBX4P16w8M8+Tvwe2ZbH1Tz8ld3Q9vlw/bivJIqFjsoAAEdtLxPYypAdQ9Qx/9p3HIWctKX+IgVAxgUSEkVAxkVARpiihmjke3Xoc2T7xHqgkrGsRrKn3+ErJs3xXP4w+nnT15DhLJ65do2l8dSTCwlwOy4DO7QVkh07d7pINAVuyiV9pcSx0A7G/no9tgynAMX+OeWJuvEpxMpuVbSNikxLgv3w5PBakTmqiVxYJCAIDloVhgx1Q8tsTDoGPDA8SivUzY28luZyfnlATnngaVyZCzE7hdfnJlZXRqEqEardjFx/IW2XGPZaEXJC9yesYMqt4xe+gPdQItoaa3o5opFjZ3cmMkTyBkbB4JttAiRhltdxGUgzgtXSStskfjcX4Ywnu2/0DjgUrEKtXIYnTAANFiqKbhXndlA1gYaFOIUYn4EvMggSYUpaOarBFA11JYihxFM2PZLqwBYus4kE0Vfwn5TLNymn6QknCaQm35kLVVU4Mg6Kt4hi3biHFwAwQC+6iOF3MOYPncCRwhGFPNwIW3WPv59LxTB5JTxumdQC/aSEll+b7TAugWiqaqPGu/gv4dfm6U+7jwshMZkVXMGgnsQWbYCSDktIZrsyvggN6gKUjSzEFk/Vl64myG0cmH7E54zkfSy5g0FWLLTiRRAM58zjB+Cb8+hUA9LlLeXT+BeRUEWybrtIgruE1GL712NjEVQN1wIVfCXAseIiQFuLG7S9M2VQS9DRzurN8NfgdZg0/QDbj5LkVn5v4vdM3i4djH+OD/u9D0+95I5cJJVOIkiohXXiSQ4ikEajaQ0O8lBbvQs4/9gIXWFNNYpbioCrRySrPNjY7l08ctyUBK6BwU+smSlMttIdkIEnF2B4EbK6O7KXIWcW5Jdcji/kx7VjdHxiNzAQSjDpHsAWBEWcKG5scGt1FGwl0XoIHJ0/EKiAGue4xJEHlk+EEu5IyIjZeNY3DyhESHNy85TEWdrQgOoPY2RjssrkTaCms4e4LbyWtyQijGq+OLmRv2RxWv2sHl8QfxxN14VAcVO9sBG8UTyBI0FmAXDWKnhNxWzvQFJ0UfipGarC9OXRnC6LpRDRc5HxH8IzMRbRULGmYnKefnK8b0XBiuEbyuiQ1QUBJYklZEqFjnG4/YggnR4wZiHGDpOjF63ExmKvhsRc+d0rZEhkG88yZ3JBEbghkJp1KpOOnyjqknMG00Jw3eDP+NfHfIke33XYbf/3rX9mwYQOVlZPRkEtLS9E0jWg0OsV6NDg4SGlp6USZ7dunxkAZHByc+O3E/08cO7mM3+/H5XIhSRKSJJ22zIk6TgeHw4HD8T9X3r8RevqHKOxvZlGqi97hcn7tm8GPlQUANPp0WseJh0MwUIUcAbWJoayEhgX04xPnYzKf9LjVRhW6T9L3aJwgN/052DOW4beHWqY2gC4UTCyEcb3P1Em+SNF4S1MB16+aOSXg4sBYnJf3t/OLDW2okoBm2bxtYTkfunzJP20b7ASONe+g84UfI1ct47zrP3bK77ZlseGhL3Be14+ZkixCAN2W6DBLGLYCRAwHz/nO4cX5F5JyejAFEUOeKgTvL5kkw/Pjh/nRgSdxZz6KLRgMzXiUota3I1pT35Hvl/2G5wObp2zjnEyMnJbFB6JxPhiLgwFDB3z093pQEyK2aBN7h4mYhEyjgBSVERSNEWkRA8ffidme1xcIAux26AyJNpXiCVv9a7ZsLGGClJ1MjO7BxbnGuOUCmx2uMaq7+1ByaQr9DShKNZa7hLGaZ5GCx6gobKYCUNJFBLsvxFRSxCqfxVQTk5JPwSaHyvrku3nMdTFa4fj2npnAO/oLQrHt1CfqqUxW4jOCE72yJ1fOyqP7GfCE+XH5xbj0LPWxPuri/Xy9836mxfqIewMMVaxGF0/EPZHRzcLxOzZQhTQ5O08QJDGJaU1qakR0rPFvQDLHTbEWyIYXMqf/9m0MBNEAS8JpuKkfnurtJggaAiaW7QJlhKSk4c3mtVGRwu3UJmchIDAzNpMXS17BZur34E3V48pUINgioq0gk8XAiZwuRfN2oWbK+WH7+6i1jjJIEaXaBRyWetmqHGWABAjgTBsIxho0l0bdaDMxM8pYcf7dkGyJy/8/9t473LLjKvP+Ve188jk3x76ds3JOlhyRwcbGYMAYzJANNgMMYRgGBphhSN/wMYaBMTDAEG2wwQEnIdmSlbO6W53jzfnksGPV98e56u6rDpLAPQPfo/d59Ojpe/auXbv23lWr1nrXu+bewtHeZ3g+2y1i6rUevNiNsq3W7aurHX77Ld0w+nsebbB9LuSL16bZt/MazjxSQqoaG8ICWwdKBPMx1fTDOIlDKumOzQs9LxDIgJuXb2Z0+SQH+2/hxb6f5fSgi4xjbp95hHz1RUx7G5/e8WauXlnh5t4/v6BLVnOAvhPvJbN8NToImI+madr3MFG0ET1zLG/7OAhN7+4vcFvpao6Ku4gqU/THKfrMQUyvyFTvEZo6ZudKi41zn6TqbOapnTt529HH2Hxqjvmih7lbYKeyrC5txMZgNBxjQhcYigcI8qdYTU8yM/gwmd4zLD25F2gwm+pmkmrRZio9xYbWBsqdCQ7d9IuMzL2J0tydyMTFWcuO/M1ymi/P/QW1aIWMWSBSAQrFlm3v4Jktu5jLtlHaxo0hHRtc9cI+/uoTP8fpLW/id256G6eamta8zX3zt/NF7y6cUYjzLnvfeYC4MU6SdTlW3kxUl6A02jO6qgr1EGubwXB+njDayNvjT/Okdztz8ibu2Pkw+4O9qDZsKjTxxQiLDNIhxQ4OUSNPX7zIM8f30DnpMrpxiWVzED0bEDZNOrkMcqZz2UxDYQquK9SopmcJbZNg/E56969iVRPK0UsnKrL9T5CKsgxGfVTlLNd0ttB2Z8mZM6x+dRpu/eClL/IvEK+Jc6S15sMf/jB///d/z4MPPsjWrVvX/f4SIfuv//qvec973gPA0aNH2bFjxwWE7Pn5+bNZZX/wB3/AT/3UT7G0tITjOPzMz/wMn//85zlw4Jxw2vve9z7K5fI6QvZNN93E7/xOV/dFKcX4+Dgf+tCH/q8SsuMo4qM/9F34za6NHguDR0q3cSC7G4TAVBGFqEbZLqIuUSH8UnBFzPYC7BrMcHC+yf7q5W1bR8SUbMVQ2uCOrT3ce90Wto70XnFj57Vg3xNfZuQL302v6G7vazrNkzt+BlWZZvvS51kx+tkWHyV/Xrjs2Wgrq50MkQMHg2Ge7r+Gg9uupVzsu+R1hFZoIfnGpQfIxS3etvIIt67AAfl+RoON3Fd8iN8f+hh763v55ZkfBqBqNPj+zb9E02hjoPmWWoP31ZvklWLGNMgqRTFRmHERV9YxiDnxbA/xia4hodKauXvHOV7+CbQyuoQUNIbVIQ6yIOC4pVg2FL7QPOd0d8wf9E7Q0RVEFKOtNUVwv412U7SGdtCYLfFIknBXYvBjuEgimsKnYCmMKLtWj62rBxSm51jd9FkaQ08QYtEgh02AQ4C9FsJVCFbp5Qi7mFYToELascuj7lsIsXBbX0ULi+GVF/D802yub2SoPbSOu9IVmEzxd+1xPqyP09eaZ+yxL0MiMNwEP+tw6KrbmTfehB32cA5dESdTdIj1OfVeU3TYWygzqjZQSRQzmYcoL2+hngydPSblHcE3bRJhYEYZ4k4JLRWW0aQgqjTiIpF20Hq9seuIJkVzhoVox2XfzSHvMX5n78fYuXQX/X53rrpv5D7uPfQhenSTdvo4lrIRtdsxVNdQM+kQ070PJSLKfU+hZYKlDQZUnopsYWuTijy3w061I5zGnRwaz2DFms1LKzi5k1x19AzR8kGevesemoZC6K59HjmrPND3NIHRXYyVEYCGrfUJrip3Vb3nSrv43I4c2doz9Kw+QNuus2vxDh664bsRSUCqXqNZ6kPrFXJtg297NmGh+HHqugMSnvPvJe28yJ5kgY3NNX7OjmspO1Xe9eIxUrG79u4onhqZZGrwQ/z1yYdxEpPEbONVt3bpAFGOetjkad9hxRR8ZY/NqjeDrYbZMw1utsNdo39ApnhOJNH0C1idfmKnQpRaPvdAggwvPnUD0aFFXCx8EdPavJfR8Ukmtj5x0WcoEmudPls9zvPcE+8mps3nxj+HXtM5ygd53jT3JnoKJruv+tOzxxcm30LFncdOVShNvZXC7BvO/tbQLT6lv4zTW2HzjudJp6toLRBCE4Yehw/dRaNW4s5HniRfqfI/3/CDPFoYpvMKmV6vBdo1EH6y7t/a7G6qRKBArv3/NUNhpE+yKVNgofS3wDm+YcrXtB2wYwfbHKDFLPoy1pVU8At9v8R7vuGb/gn9uDT+RRGyf/iHf5i/+qu/4tOf/vQ6baN8Po/ndSeED37wg3z+85/nT//0T8nlcnz4wx8G4LHHujW1XkrlHx4e5jd+4zdYWFjgO7/zO/m+7/u+C1L5f+RHfoTv+Z7v4ctf/jI/+qM/ekEq/wc+8AE++tGPctNNN/Hbv/3b/M3f/A1Hjhy5gIt0KVypwX3+S//AzKEXqczPsjx5+uzfEzsFSYSRRGghWcmOYGYK9CY1du7djS4OcbAS84UFk5vH85TbAfVOwpYehw/cPE5PqcjK9CSh36FVXsXKFej0b2a51iKKFbmUw4HJZTYO5OnPp7lp+9j/EUMoiWOi0MdvNyn0Xnz3Xqus4LdqTD9/P8nkkxB3SBrLXBPvIyVCQmVgX4TofD5iLfnBgZ/mC9veiue3aKUvfGbD/hIVK8f75z/Lps4Mb1t5lMFwBYlGa1C6QKCuYr/xJj5VOMYPL34rEskHN/4KZ9zuTrIY5Ugpl4pZZ2emwT1lzS2rK2y/TLVsFQumDhToHO1+B51rFaeuuofFyW8hArrlY895gkI0n0mHnH5ZBtnefJsbgkNdccMk7mb2AAQtcNLMbdjBLxztcng0mifGn+ejm3toWw5ZGtzOV7mpfZSpVJaNnOYQu/k430GOOsfYTluc88JkdY0Sq0wxgRYXhkqFarFl8s/YtQxDnaELfje1ZEgLtqn9/J66kU6rxJvDMcRahXvDWiRvzFNJRkniPFKvD9cahCTY5LzDvMHewwN6P6o5hCsbpPNLmE6JZbPCU9kXkd4C2XqR0cU9iNrtF30GOWOBdlIkvogejkHIROphPHeWhjfPUdnDEPOkI4Pe1hhL/nUsxxuJdAqDkNLof+M3xtoE1Pn6ya/HXTN+Hut/jOHy1dw4c++5to0qgYwwjIgaJl/e8hc0nRp75u9g9/INtPLHSMyXkZ00pNoSM7A51Xszn7spj28FaATDFZMbTvg0U03absTNxx4mY3qsuhemWRdVV+6iLtokawv9VO9G7t+oya3+LkKvv26a7+HM+D0A2O1nyK38DqCp9f8sXnWCwVbMsY2Zs9oGxcU/5C2njLNk+othxVnhi7uuYmP5Kj7wzDFSwiOmF1PAkrXCE4NZnh/6UxJ9Yl1/YmsUmdTQ9lv4tdU66R2fueQ1XoIMchzbdy9LKx2053H9VU/j9lxeM6hCAYeQr/AmDszdya0n9vHw4MOseCvrjtu7upfx4GruNf+E49ePMsYUJgkdXGYYY4xpRk7cixnkqQ89jjZC2oREuSUMIjoKsgaEWrIaaYZsTRi6TE/vRu3PcuuBCvbCYX79PT/Kg85GaF9kvrMFhOctyaaA+J+YMyVCQIDu6oybmSPE7c1o7SKEj5A+juEgMvsR+eNIq4piFKXqWOahV2r9lS+vNHYCE03BDcUP8O8/8JP/7DbPx78o40hcQgPhT/7kT84KNL4kAvnXf/3X60Qgzw93TU5O8sEPfpAHH3yQdDrNBz7wAX7t137tAhHIH//xH+fQoUOMjo7y8z//8xeIQP7u7/7uWRHIa665ho985CPcfPPNvFpcqcF95nN/SHLmCfZ85//D0Ucf5uG/+t/EYfDKJ74MQki0vrzVP3HN9SRhyMjOPVz7dd9AKpe/7PHno15dZXnqKGPbr8N2XjnVc/bUQWY+9xt4rRl8b4DELWI159lZf5S06BLwnip+A2LDbZQ2X08S+QTNGsbDv8Gu6BKlGoCn3R38m2t/jTcfvp9/v/S/yRo+CknLSjHTyXPc7+eRTbfxyd3vuqgOx0CwwttWH2WiM8v3Tv8tf5cZw1UwGg7wqUw/j2RPE8iYWCTYyiKQIZGI+Y3JH2dPZwuP5p/i0eL/5J5mi3nT4FCvxxutkHuPNvHU5cUDtYIl4bD8aB5jxkQLzcK9oxwJfxwV2Rx0NF/0IkpKcHVgIoGMEnwhHRKIrtHUg6CG5ntxOLJrhvFTZwiIsLV59pvTYRthp6gWNzLU0+Gbjw/wq9cs8oXs9WxbnKVtOyzmSvj2OcPA0gGRcLCjkNC0kFpTbNVpuikCa324UWjN5vlZNi+uMJmbQ4pVxitlxptj6zxEEkG/Akt5/F08zmkselWN7zPvo1F7HyQZLgVBRNaaph6dn62j2FCa56nefdzU3MHe9ma+knuU+3qe5J2hwtKa4WiZoc4pJt1Rfssb5o7Vm8ivbCIKxzBlFdtoEUS9JOcZRTljAa0lwirTn9qHdlb5772LTOZA6iaRvYnYHkMmdWJnC57I09s+RRD3ExinSMLuZs6NLb5++p1n291f2s/x/HFGqtsZaG7ASmwCs0NPa4Te1ij/sOv3aDnVs8e/5dj3M17ehbIrdLw5tNEClaJpbOHAhl6OD5m07CX6Fv6URHdD5LXef0eYuqZLyBcCK9Zcd3oagzrXzZ0ivkzl9tV0js9ti0lXuyEuK3aYqOyh7qyymDuDUJIh/wNUsimC6A9Q8qX0eZfy0K+izG540/IPI1ST0L2G0uJHuHsqe9Z7FgvFF3btIZGau44+QSnM81zPfp7b8q1sWZpgst/CTEKE8mk5dfLLv4WRXD57tNr/c/zbRxa5ZvBjBJsaPN5+I7unDjFWnsY5aWHrIarfVSX2yuvOC7GYZZTp+j0sTQ1xeKiHipVmvDlJKSwz445wcKjLfzSTmG95+gs8V7qfsttt5+4T305kRDy68RNIJbmmfA1HR9/GZO9GhjurZO0yR+VGbH8/kb2FLWYZK1nBDU9Qbh4nsMZph8tYwUVqkMkU/ekJvit7lCAJqc1tYuT+fvrOHMJJJMeHx5ntG2RJZ0lbMUulHophk5Mjo7irLep5h6lRxea5Gabyy2w+3EchbvD4dXeg9GPocBWkiaEWkeYMiR4BZSBkHaETpPG1y3getjRvzEaU3Vs4nRTZoE8hW8dZrZvE2ZgNpmDAifCsAlNxmoxhsVOeYp+8BU+1ST8zyPf/+9//mvUH/oUZR/9/w5UY3MWZk+T/8GZcEdHUHlP3/ikbd99GY3WFxuoyhmXTPz7B4UcfYubwwe7fTIvCwCBLZ06xMn3p2mXSMDFtm1Q+T3Xh4lWSAdx0hr6JTbjpDMPbdtBp1DEsm1PPPspg41m2ZpfJmR3yRhu5tts8wQTLQ3dTuv4b2X5DV6xr9vQRpu7/KBtnP03V6GNzfBxL/PM19SdbBeY6WRYz/fzDjq/jc+Nvvqjn4lL40NRfckttH1c3jqFUk48Uc6SV4qid5bmL175cB1c5/Oj8+7infiORDEjnPkS/f248Ayyc87IG19YoVCQ4NNNDqAy8XR3CJQP7C+cuqFzNsevfwZzV9SpUpOIvswGdS+iqWcBHSLEHgxh4cfAk92tFsTZNRbYpqnPcGB35CMsFYfDXN9xN27Oxg4Svf/EpSq3q2eOaqSKH+gfoa7YITQNPScaWTiOERCp1tlwCwqSZ6kHGBmY0i60u0cnzsC22+GRc4hQF0oFPwWnyBmMfb9IzPFH9EFqt5/L0m8cwRIQvNTLxKMcTL+PrxHQGnyUaeozNUciLtuBT9ix9qsDbW4uURcSiaTJlmcybJo5S7NSjPG8sIFCgYWMwzJy1Qqad5d6ZW0m8OR7tO0rbUFTNkMiUKJkBITAwIVni1SKbKH7oTD+n5LlQyqJ7kkeGXrjseRntMRrDEavLHcuob8SRd+GbglYqT9OJiDmJGc1167+Fxy9oQ59NnIiI7K208+8gsjeDMLGjNm84+hw9vuBo/yh11yMxLBayHrLzIKn6p0Bodizewu1nvompXJmcO81zuQOc7lmvfF9sD9JwysRrxaEj5zrcYIbkPC2wes+HwNrOTaf2ke4ssL9vkbaxjBlNIjTsLe+hN+hl2VnmQM9Ruopeap1o4Usw2EDk3YitCxjBMczgWVpWCwQE3nXY1o+wUjhnuDuhIuNHDFQ1yyXFStrl7XyWq3mOh3gjj4o3IJIaXvNBjGgGhInGQEsXmTRRMoUZzeLFBl5nkuZ5Yrc7Fm/l7lPfhkbxt1f9JuX03Lq+aoyzwpwAWlgomcZIqpd9/peDIVP0JA4q6qWjz2BHMZWMZvu05uiYwIw1qQDq6dcucPq1QH8oSSuLgh7En9jGDONMii0k9ugFx/bpRXZwCIuQJQZpkGVSXFym4McOfop//6Ff/Jr29XXj6AriSg3uJz7523zzgf+07m8zYpC2kcNRbdKqiaMDjmdvIhy8DndgG/78YWjME7UVqw2btKtIj27oFhKcfwFHN9DSxA1Wicw0kZVFNOvMi51MHjpCoEz63SZKSzqJRZAYDHt1hlN10maIBLZkV0mZr1BGAWgkLhJF2riwTMFsVOB+6zosB1wzxo18vuJeR9NKsUEtcm3rKHsbxxh2upOQ0hBrg/v93Tyf2cEjm2/jdHocOwxY6uuSXktRlQ9Of4w/HX4Xs+6FYTlbhextHuc7Zz7OcxzhWdekJzaYsQQN4/Kvrwn0SU2/mSC0YE/zKt45+16yQR9aJNjZ32IgfOgVxySMBScO9iIOX1yWwO93ObTh+6mmd5CgOWolfD4doYECgjdj8SARK2gyCEYRfCcOleGAF7LzTOZznHGH+I6nvgwkrIqQHn1ukdBxSNtWpNfCO9PFfnpbTbzw0tIF/xQkIsE4T+CzT/q82HH5ir4KH4db/EN8u/1lXKvIqebXkYR9iLOcnouVvl0Pw15AqDSRV+Or45/i61ngYWuZthB0pCBGcOYVpB9KyqTqbqdhj4N0MaJZhA6Rqo7QIVp0zzfDqXWL26tFX2Jwc6fO+2tNHqi/k7J7bmGwgxWsoc/y58UNJLqD1P66c9PK4bMzJxEa7tlw4YKiMRFcGJ51owxXz93NwcFHaTqV19RfJTy0MYQZLaDXuHm7Fm7jztPv5aGeVd5vfZxZPUy0/Bbu3/rXnCm9iKEs9i5ex/VT76Ft1/nEVb9JZFzCu60FhuolMmwkF5bDeQlO7KCFJpRroqhrNQFfEecdF9lb8FO3YYXHsfwjCN1GCxehQ5RRopN9M0HqRpz20zjtJ0DY2P6Byzb/ckglcZpb+MDBHyErF0m0xaq0+Kvr/jOxEZ7lIb0aGAyQ0E0MspIcsewgSKNEdf0tChuhL1/25bUitsawkhp6rQ6gJVP0GEPUcWlbJYhnUfEKUtXRMk1kb8KNpohSN9OTHmPR2E4umaJpbqEqe17hav90jM+d5rcWJ7njJ37sa9ru68bRFcSVGNx2orj14WdJgga/c/jXuad6caLglUakJdZFSHJ1Uvxt9s3M9I0w6/TzdH4Pt1ef55rKIbY1T3NHc9/ZUgrnl1XYxwT/Y/P7+czIm19V2YZM3OrWwLrMsaaKefvKV3nv9Ec5bbS51g8JpMMZy2JcjLC7eYSnvCxlEfBIyuHhVOqSbaFhKCoyImK2ey2uTivKVsw1x76X/OLNdPLHcesbEbobuo3tCnb6fzLc6Za1UQIW+h2GFtfL8ZcLFiu+Tfi5LMbyhQt/nEXR9AAAtzZJREFUZzDN8c3vZsXq5tEdtRI+kzqnmD2B5EfSGcbjgJHAIUBjA356jh+5WXIyGeUNx15gvHJup77qrCLaJUrnCwyqhFNujY1hYV2ZEAPBsdJhpr058mGeseYYfUEvek2KoGpXWXKXaFtt6ladptWkv9OPqUwGO4NILbGVRa822COOc1SC076Wk2E/G2Sdv1BbGEjKfMD6Ii3GkP4WOp3tCL0+LNetGGcgiHl01ycYXN7CpuVz9aXKPbN8ZdMxTvemMIOTBKkbuWb175nSMyQXeUfSSuNlbmLOHMWNK7wtc4YjCy1Oy+ULjn0lmFqzKwi5veOzOQw54aQZsUcZ79TY3ZjC1AlPei4tIXC05o6OjwQ+teVGjjy7Fz+fx2g3SFJZZOjzH63fRwqYt3uYttM8N9zHl9PDVGplfmVxmptaXfLqg/YAHx65dHbshvJu+psTbFu+ASdOk8gQM7ZZyc4itKDurlD1liin5jhTunRY+nzYsce183dw9cy9fKoQ86Ol3+P5dpekXQgszMot9GW/yHXG09xX/QUikSBFRMOusX/oQWruCoY2ublpkFp5M4+MPcjJ3vUV5YUWXD/7FjYvX8exvqc52ruPtrtyse78H8WlbLGB9gChEdKwGggt8KMi3/rih+mN1s/5D408wMnhL7KjuoOeoIfIiFh0F+nv9NPv9zOVmSdb20o62kXLnmYhO8NAo4enxu+nY01fcF1ljHDT0tu5JiyScif4ymCZ4+4B6v5+rOAYgoTE7EcjSMwhZFIhdrYQulchVZ3YGkULC6F8EmsAI15CKJ/Y3oiWLgirW0A6XkALF2VkuyqZFwzMWu79JaoAXApD/hwtncL2E25Y1mSNNO+ZSUjVE55Siv3540z2adwgwI00riphRwmOX2dmeDPVjMng0gx3Hp1n402DvP2Hvu81Xf+V8LpxdAVxJQa3GcX8xl/+Z/589F46hst19YNc15nFSPXydcf/gqubL/K/Jr6bptfPYHuRmxa/TH+0Ql9c5UVvO0JrdvvHWDB68A2HupGl5qSxkoRn8ruJpaQY1WkLlzetPsG2YOqy/TlhjTHpDTGX6ufh4vU8UryOslW45PG7m8fZWz3KotXL4cJmFpw+DB2vK6/hqYDOWrmKe8pPMuYvMByu8MdD72LJufgORGrFjtYptrSn2No+hYyX6Wm9wH4r4R8zryIW9jIMhR7XtUdx7CZ3mzUKlqA6vIyMShSn3oIyQtIre/Dqmy84N049Sl7/EUV9bqE9uFwiOWwjhhIK1zRh1aDxQAZ/IzhHBTIQhFmXIxu+i9XSHrzOMoFTOCvLr9E84sY84Z7zCuzFYGj7PAfS/ZzuHebG6hF2tZbpoc4TfQXaiwPcMnkMzuM1SaH57OjnufvU20lbAhEGZ1Wyp2XAgZEHeNfiWxn2B3go/wwHigcJLrXjPw9ekCEdOywvfRNJ2MMGXSaxK7juLMeadxAk6wm3RZpslrO8XU0ThVsJO5uQawZR2xZYiUYBJecUyg7prKk7f/nqOlHucxzNXo8d78W3HRJD0rZjcs2vkql+nIj13hYTyS5bcDqykElIXrq8JS/wHvxpsNrYhWmiygY2vu0XOdTaSHtukVOyyUHboSMFpSRhyVw/8X9Xrc6ONYMopxQmcCg7wendGtc+lykWJTbtZg8bJkOKYYPZdC91zybs6aBWx3nxxCa0bePOnsIf6YYMvt//Y0bc2rrrnXGGcXTEULhMKEweHLqat849y6eCH+BI62bcOI3UBtOFIwgtGKlvxXxJpVt2iNF4xXkMq0W0uBOhLRISjLUwZCxDzvQ9xBbjBFvkUR5PSzKxw3irF1sr9tl5Bv0s13Rinml+J0okfN3oT7IaFfkid3ffLa0oLt2B1OfGanF0lcTyGT49wrD1IkP2YYbswwQqxVK0jcPte1i1I8qpORqpBcbLe8n4fet4aADHBx5noecFqmaX59Lb6aW4VvjWSRwsKSi1hshWtpHy+6h7SwjTJ2MknMod5mTuJBWnQsvsag4pqXASB1OZFIIC/X4/K+4K05lzRojQBWJDkwsSbl66iWK4Xow2IUEiEQhWnVUeGXyEIBhgfPKbeUdlEy8Z9C9BkfC/h59lZ/4MOV/Q17kwsadptlhKlRls9bDoLfJc73Ov6B2T9PHOM/fy7c0byBkmM55gMt/m5PhTVApLHGreTmgYRInJkezEufN0ws7OYdKVhKV8gSW3j0iaCKG50X+aoXCeOW+IwOrmn3aiNOnQB6mpmHmm7XEAxoMzzNhjWDpiZ/Iix+ROrl56lqvqz7FoDLHS6GPTmdO0vSJGYtK2YzYttEmzjYyZ4tb8GFlDUjZqtA2fwbAXA0kl1jzf8ilaNjnZDaImQEdpPClwBHhSkJGCx6O/5N/89kcvP1CvEa8bR1cQV2JwKwf30fjzX8TNHOCXt/wAn+x/dXwaNwnOVTPXySXT/A2VYKuQjukhdUJfWMFRIT1RFUMrbqnt4zN9b6QvXOVYeoKGeSFB9vbai+xuHGJDZ46NnVlMnfBnw+/kH/ruvuBYU8UMhss4KuKqxjH+/Zk/YoM/T4LElw7pl+nnB8KiamVZtko0zRSn3RFWZUI9epGqCHjGdVg2L9zBlISkrBMumGk02Noin6R5R2svV216CBwfLSUItc4x5ZW3M/7Mz647XdDBEifImJ/DYAFLTiHFOfe21jB5uEBn/zmvVFLQyCaI+Fzj7VyRZ/b8DA0nQ0No+tc8MxpNVWqeSSe8YHQNo3dj8b04fGL3CeLTc5gqoZYqcrR/ADeK6GtUGKhXzpN47GJPPMafjPwtU6lZvu7Y20lbHkazRpLOgRDUlMf9m//igrGLKjcSVm9EyBir9DDSKqOCQbS2SNoTxLXreCncVaLOqFhmWvfjiZAFXcAioUfUuUseYkKFGFYLK+phIdxLzR1lvmiwmjNIBER2QG/V4qozAbnO+YUwNV/cc5Ry+vdprL3uaZHHNkZpWL0Y7YcJXubJNLXm29omaXcjBxbH+fqrHiTtNWmVxzi2710k1XEyUeHcszRC8ld9jP5Nj9LyS+hmhiQGkfaxGh4bV8uUiUDaxG6GVBRRTnvo4RWkSAgWt7Fy4m68dJXG9PWoxMJKlclPPE7Pji8gjIQ4yNCYvoGwMcDJynYS8zRoReboC7Q27UbbDn3yJG/1nqdueSTC4LrKUcw1knRLunxh69WEjVG+de7vMVD8ZP9P01wZZfNqBjc2kUkWgGb6NA1vgd7qbm6f+G/c2OzygV5I7+SR07+EWNM6UyRILpwPPFnmmvRnORHvoBFsxZItGqoIKsM278vcmf8oH+Hf0Obcuz0aQbB6V/eZiYRvL/0ETZnms8u/gkBwV+6jHI2uYrHT9YRudb9KNe5nOT4neyBFm5syH2fQPMlnKr+AWlPZ76Qnsb0GpojJapc5WaWQ5BDNUaLg0vOrsOrowimWjXo3SxPWFMovRM2q8cDIA93Ql4ax1hg3Ld90ybZDGfFQPM6it4Bq7GRAR7y7bZEOeomlJrFWEVpiramir6ZneMFs8/VRH25+js8VHsE3fDYHozjNIqZeP3cdzR9lNZfmzpW9DCYR/VIy0p7gj3ue5quFBxCcmx+ldnn/se/lG6KdpKVAXsKr3jQhFQMiphMbKKCSaJTWOEKwEmvypiBUMTPhMo4tiAOfFX8V2xoiZXWNumbskzUsVDJJwUphyxSh1lRjB09qEiTLUYUhK0PJzNJULz3frlHTYwqKpua4O8UfDfwdB1Mnz/ZxLBjkBxe/metbu/BFwGdKDxKLBIWiIwMiESORmNpg1ahxzcFhvvcP/ssln9M/Ba8bR1cQV2Jwq88fYPWvK6SNOQxxPx33APcN7eZgejOZpM1EZ5bhYJmKleNgegtH0hvJJS0MnTAULFM3Mzyf3UHLSNE0UkTSYGNnlncuP8hbVh9jS3sKS8c8kb+Kz/bdw/HUOCe9cebc/nX9sJOIREo2dOZIJx12N0/w3XOfwlUBO9pnuorMuh9fXYUrn8WUXZ5Dw0gx6/TTNNNIrbi6cRTjvOyYSDs8b91MT7iFtnmAf8h4PJxp0TQa+CLkqiBme9hEiW6R1X2uw8JFjCE0ONpmJOrh3v4ltuYaNEODYN+3IcJ+pt1T3NrsI2W6FGkzv+NvaZQaCAGpld2kV/d0K4J3+hCyhtMYR0YD2OIIGfNTuHIfgjbiMvobSsDkag7/vq4B2cgM4wWrmNE5T0zLG8B3Sxzb+i0cy/byyWxEhGY4kUjXYE7FqOTcJ/RhYbB91wP8fu91lE422Lwyd8F1X0JaOzS9CqtOmWW7zNHUKRKZYMYF3nT6RjJmDllfRqcKaNNCxQU+1juLnb8fIWO0cmhb78B33ko6FdNIdRddY7IJsUb1Ouh8d+EarcyxmO0lMm0MlbB5pcqdK48zEkzyd8Nv50jvOLGUIARD5ZiFgoFei6lasWbzfMTVZwI2z0d0rCpCC1p2jYXsKaZ7mszljpNw5pL3Cl1jKBaC97Y0PVGLPlHAGksx94+/gFYWyBjTbhL7hXXnnRyuUsuW8Vpj7JyxaGdPk93wFL2DhzFkgr+ylezAUbzsudDk8sI2bKlpLW8lro4RrGwnCbLr2u16KEKkchB2CxHbaGWigZWhGsnywxi9eWS7SXryCJ2RTcS5ErLR5vav/yQ6MQgaQ0RmSGnapOQ3OTxW5PHJbyU12+FNQ5/ins7z3Fe4nccqN2IABpq9ieIoDkb1GtzCLG/If5RdrQvT0Q9lN7Lf28Xh8jvpm+l/VfQdAOWU+aH8D/MZ4x4O6J0YfhvZqhP1DLJTH2M5cyPlaCvvV/+RTXFXauRLzR/hRPPNF21vi/sw292vcjTZSYDFHfZ9nAlupK0KKCTH/DsIVPeZhXYFoUysOHtBO5oYss+TD/LUw20X/L6cOUnFq1HULlJH1KVCE+DIGDdxkEZALBQKxaHiITbWN5JO0mfPt/wsiWrgdiKm7B4iHZHtNKhkXDpOno1GhXRQIF/dg0bTzkzSznQ979nqdly/a1TUCgcJ3VWSuB836admzgIBYyJL1ZrHUha+fmUu24DKID2Hj44/ShQfXPebmVi8a+q9vK1+C4aA5dQsDbeb0feid5L+qEQhyfJi6jgbgmE2+2MsWxVySZpN/iiFJEvVaGBpk7Ty1qRh178hCWrNb7aW8YqmJTvY2sLWFktmmaczL3Jtawe5JIMSiq/knkYiGQh7mHLm+WzxIZbs9RmC50No8ao4WrfV7+ajH/6dVzzuteB14+gK4koMro4UL/6Pz2DV22TaXTVmS5zGM76K0i1sOYvSwyS6G35KGfchRZtIDaJRuHIKIS6up5PoLL7aSqzGMcQ8GfPJs6JjvrAJpM2Thau4q/wM7kXIf1oLIj1OO3kDneQeEl4STdQYYhFLnCRv/m9MMYfGJtZFJs1+5sUYnyzO8YzXom4Er45k+TJkkhTFOEdPlOed5bu5sbUbaSRM3fArBC8raErykjEl4DwBNyPIMvrCv8Gr7ez+WyxjiGrXM2R8DlOuV0y/GGIpWOp1kFoxnU3h/Q8PoyaYHrmL41veS6q9yND8gzhhm0pxB/NDtwFwxkz4ZCa8ZBK1AdwrTUaufZbPir3smT7DcK072Tl2TG/Yg1ASR9soNIMiw3/Z8D/PhiHO3Xsaz/kJ7jryCBmjRFKbx3TzaCdFFEj+6g1vJa7GxGkbnbZeFf/rn4p8K+HWI00m5rtZSdOFw8zkjzFbuEja8hpu7vi8UQ7SSSKkv8CSoVk1DG7wAwadDdQ2t0k5DdrNEv78NSzv+2ZMbWL0RjSbJman609b6OuwSQZkEBxkH0JAW9qE6ja2LlzsKXQFNqXlo2IX9IXe2rQNM/mI006CMG1QXU/lUsHhlAmpuIUnbYaWFb3T/0hfv402LeylWSZOHOPMlq2E/aPIRoOx0r20Esl8LLmq0cSeeIhJ2+AfDw1z18pXMHRC4KT4DxNfQAh4KH8ji8k4UZJmszhEr1qmmFTpibrhuRjJ+5xfICN9fjf4bVJqfejx0dzV/Lr+GUyZondBM9RUeBocJbDXPshVqTjiBvxm6ceZiof50lo4zZs6hkhi2ht3YemQD9h/y0fH38v3nvx7/o572aZP8kb9NL/f+CPcTtd7/fCNTXprip3HuvPiBvdR7s7+CYk2+bvyf6WtzoVhd3n3MZeMUA0vXiIiZZ/gHZnfIW8u0FIl2qrEYrSFre6jnA5u5MnmtxGorgRJYvgE7jIy6Rr1WiiEloAgY/sseGfOF6rH1gYp7VLTIWacxgoLxFYDM05hxClamUmksjFij1R7pKukDlQ9TZx9HC27c60VFPAaV+GsTb2x0SYxO7QypxHaxEgcAmcVjUIKgY9kkzKZl+G5DNBLoF/lOTxg8qX+w9idJy8gZkslUPKfvgxv8IeYdZYYDQbIJWkSoTjmThKt3dvFDJhsnCaUEYF8dSTx0N1LbI3Qyb4FI1rA7uzDa97fzRo9D1qbhFyFNjKY8RQ6ThOHI3y/LPEzH/y5f/I9XgyvG0dXEFeEkD07yeEH76G31Waf9w1MHHo7JX1p5eZuho/mpdi3KaawxBQaFynKaO0S6zEiPbZ2zPmLYYwgJG18CSnaJNrGlY8jRUyie4jUNprJO3DkYZTOEepNvFR+5PH0Pv7X2J9TEiZWu5+hzhCedjjqnWHOXiERCR3pE8jLZ7f1GZohQxKGKTztsKIiosTGVQ6WNhkO+3hT/Saub+0gSs/iZyex/BQLOz9GlFntEqmPvIW+JZuVsX3MbZq54BpGJBg7fDeZxZvpsX7zVRlBlYxLuUewvFb2opUycEJF0pZoLch+ysB7ViK0oO328oVbfo4pWzIUS/qVxBear7oRvqEJXZMzcYgG7sDkm7D5e0JSwD1YXI3JC+Mz/OeNQ1x36gRblrsZPUILThdO8GzphbP96g97qJp1wpf0ZUgRGVtQZoYotZUgfSvXnzTYPfMxPFlgWzjIkihTtUJaYZu/fOO3o9aI2lIrNi00GCwL2o6knHVIpEaLmNiwsSNNYAnqKUnH6dbXuvWIjxPHLORtahmD1Yykv5Ywsdymr/IYxY6H0prl9ALTuaPUnRVaznp+zfmQWvPWVhtHa27wA3qdCSbVzaRLk2RH9tHyC/j1XkR9AL8xRGf+WqJm18uZSCgPKOJoEj8p48oxnh0bJj9/ki3xaQwVIQVnOVcAM1WL5aGb2B1IVGjQW0uoDiYESjG45JCONImjMRyBmwim0zE5ASuB4kzrKL3BcSzPwc54VDuQdAIWjBKrRoGamcVWIV/XeASrtxfleshOm7GFGm/oew8v+i/wXG8bkpjJ+YBIWDTMDMrMs+wM0NYh31K7j2RkAwiBszjN1aWTvN16/lLDB8ATqT38UvM7iMshvuHQzBZ5e+FZtog5vqX1AJm10HVTeixYPdxv38i+eDP7OxuY84toLUHAsFvmMT7EEiV+j+8CBM7SDPbqAhpobd6Lth3exoNcy0E+yndQoQDAAEts907xXwZ/CZ2f4/P7fhBbh/xU5o/ZfKJw0X7HAsy11eOq1D9QsI5yUI4QmS0c9xRbklWuTRY5HdzEV+s/QEtdyEe0RYu9qc+zEm9kMrjhgt9fDi+1QiVzhoZs4yoPpzGEDIsYSeqSobiXY7kUkG1XaRSOnvujFhSXbmGpYDNcufSSGDgHUdLDjHsRqlvLLTEAYSC0xIwyaJGgZYxKz1HzusXUhYZxnWclo/jk8CwN9iHPk5Xo+n3+5SzFSTKIMnPE6VHa2XcwGBa5a77NdQtTzHsOn946zplUDSuYJDFLKLOEEmsk8YtQQn7gsU/wyz/3eljtXw2uxODuf/Ez7P3EdyIA3xZUczaHBjajw11Etkm9Poojy6TjNlZUINXuRdXGceI0eZ1CK5Om0mSkwJaCcv8TlFWC1xxDmx0qVhktQ8biQfKNjUh1keyE8zBvrvBHA58kFooFa5l5Z5lYxOuLpr4qaO70YMIL2eAolIa01KQvRo1SEmP+eqhuQLlV9Ob7L9qiGSr2PnkjuWQ/ppxHa5NA7SI2JIgIQ2m0KgEaW5y4pFH0UrbTQq/H6U0OgdOtSSTakP2cgbkiSNo50qeaF5zbdvL89u3/jodz53gZI1oQKlh+mUzA3UbMzr0HqFlF3j0TcaZ/mjk7y1QKji9t4prTp8/yiAzgaOkI+/Lr3ennI7I3Uu/9MZR5bhculOYD/3gc034WU3p8Q3Adh81ZThqLrKgZtPN+Znp9Cn6ZHZNZcu1zYYXAaGMn7tlstpdc7eXUGXqUZFVYnOp5ATv2ONH7HA13hU3VrSTK48jA45fs51pjjAYDjOhFNkRt3tJqoIRgWxjSm3R3j18auZ5PVd7H/nAjmQTurLdwQ4mIXSSCU1mBsAX7zISOBelOyC3xozjuudT9xA8w3EtneIkwwFme5fPercy7g+QQdFREb7hC5PTjJ21AkI0bFKMK/cEKo/EC0pDQN0CSujDcc0kkCenTh7iz+HZG09tQaP7Eug9tmLizpzA6TUQUnv2SOk6aeGIbyLWPIo5pzi4ytgfGWeKuzvP0xOcMzV/Pvr9bqHfhJt68eB/h2ATacvAaCf3WtbTNGCewaQ9/mW/ufJ7h8NVl6n1W3cOz8hqMRhVv5sRa/yRhoUQwNAGAQUzystKa7+Q+NolJgtjiM8bbCLF4k/kwPzvya1x1OEV/vRtKKqcVT10dslIQvOsrNpk1Ia9x+znuzv8e9WSQcjxGM+nFV1kOdd76in2+JvUp+qxTPFz/XpThEwnwrGlGxBKRVcFQJlOttxAlJTQxiRG8JoMoa81SzmueHumjsJpiuP0ckV3DXZ4hzPWgHI9sdQdPbh5nsWCyZT7iulOvXrhX6Ige6xkqsUmgdmDK7numrQbNwmF8Y70ncKfawOmeDHOez+lcgabdw+GCidAJWnqgQ7q1P0zQCTJeQZn9WMEhnPZTgEBLj1gPgbZBC6S5glRVlFHCDE+ijF60TGH5hxAqIPR2E7l7McIZtLRJzH4SewzQ3ay4tVChFvZZAycbKn7uiTM0ktOsynNe7ox2sc0t/NH1G8mXY/obih3tKpqQYqfBVj9G6RwLdpOONnnC9vjb//DuVz2erwavG0dXEFckW+3wZ9Gf/C6y8Tl3owaUhEQKlARDQduVBI6B70qqOQslwfMVoTCZ7OlFaHCd6tmwiesn+I4kaSqEr6DHxI9cDlVLuO1BNjW38AnnICedBTaYUF8rO3vqEgrPttJ8U6fJaJzQNgSHPIdFx2BamZjANkeRNxU3pGM6SrDBTJiY7aBl1xgpVSPMWOMGCU6gSExBLWtxetyjnTJIzPVhDTNWpFsJY7MdPD/BDjVWkMIQFxosl0M17XBwd9eQiQ0BYu3/SuDuE3hPGcgFB3slumwxxcjwOLz9ffzlhj3sX6tpJoy1rNeXISvgu9yAp6+aZ9uBVdq2y+ObdmMlCYP1MkPVFYqd5lqfYh7te4wVr7uQKZGi3vcTa6R8jREvI+NVtMzgZ+6i0Olw7ZlZIlPhBha7T+d4YuzPuaa2GSEE7/Pv4IA5xQFzilUmGS2/g0xYACARMVVvkRP9D3OieISG2+WNTdSHqTh16nbrrDtdaHnZ+kcvhxdmUDLhhvYYb+gU2S72c13r3E47QXLKG2HKGWDa7uGJZCf3VW5k0K9TFG2a2mFSFXl5DNYkISsC8qLD7cYprMtUt3EWu5lJIgoRKqEzugVk970ScQRaIeIIvVZixa4so2wHZdoox0VGIVoaKC99yWsYcUJiyAvCkyqOycwcx+r4vGvDj2LJ7ibk48kXaKTP25BohUiStVT/DNq0SYTAWJtWvalj7DM38UzhOsK1DE+J5s4k5g1hlVTrBNPxKVqjm+Ai3LwYwWxpkFR6C1uiSXb7n2ciOMGEP42tLwy/B1j8uvpBlLTwpo9jNmuYchSRuoWw+Qk6o1tIsoW1m0xITR0jTucI+0YwdExadKhzzoBM0+Jd4kt8ZOv7uC/7ZoQR8a0rn+HnT30Uk4SKzPM/gt+luHppZXSAo8MWX7nKwbdMrqkd4idP/yV/l/1G+o9vx426Y5WVS3xTz38gY6zSHb6uWJJ6KWNPO/xF5Vfxo/Gz7QoSbs/+KaP2PnLmYleTSUQ0RZqW4XHQ3c3fDbyRLwzfRMdw2TYb8p7Hl6j0PQNakz6xn6jYT9g7hNPpI9PcyPx1L3CkNMRj+WsoNhUNr/vO3XWow61HfNoONF1JX13R7pvmLeGnyeZP8bHht7GxM8utlaeZjzI8rgbIzPwAykijnCqt3EmC84wkQ0tMJMEajcLTNgmKUMT0qTx9Kktep2hJWEhlyWqbJcemmk0hooSZVExLKIoixVhH8+CAyZwnkEqTCBhrKTrax1UW/crgxvmQF7IBh/rS3LakyPkwmxKMt0MKfoBXb6PNkMgrkG+1qalJGkYDX5xbQyxtIoBwrc8p7eATYmOuO+7l2BFl+bZf+XeXfUdeK143jq4grsTgPvblT9Cp/XfGy8sMLS+S+ScWGYyBUAqkhKYWmBpySp1NoD1tmUyaJquGwdOey7xpcMS2KSUJW8KIM5bFbR2fWEBDSsaimDFiJuKYUT8iF7+UY3IOGqhnTao5E98xyLRiirUILcANFMarvBUNhJZAS4EZK4SCy2k1Now9vHDdLDsPbCDfXsSS80R6CCHaBLag7aQo9waEbki15mAdMxGLKVQnhRn5+F6G1GSbVOVCQys2HJZ7r6GdGsBIfEI7RzMzSiMzyoM5kyfs7kf+PqfO3Zu+yt9M3cz9rW4Y9B3pJX7EillOt/lPG4a48cAJvOjiMfpEaE7mjnOgeKBrsJmDxPYm2vl3gewnMc5ZARPzMxSDFsOrJrsm07iRjUZTc5d4aPPHUUaTO5buwEsk3xHdwzE5z1ftQ/iqwv3jT5AO82ihqHrLr8ngQQucMI8V9KGtGomM6GtsJh0UkMJiW/oEu+KQgq5wb+PiujrH3HH+q3g/T9S34ifrPTwbZJl77HMZLTXlMKtyZEREpASD1EhbF/bXmT2JWa8SF3rQhoWMQ2SrwczAOMXaCoV6GTdKaKZTBANjxLlL1/m6+H1r1lZb7JU5nNWFdT8HpsXMyCaE7dJXWyVdWUKuPeetjHDdxvefPfaF5pM8l1lCuRfX3NJakz59iKjQS1QawGjVu5wfwDHS9HkT1IJF6tEKyk0Rlga69yMERDGG3yZJdxW90fqsMQiwlMpyYHwb5XSWmpfGJuba+mGurx+kL6qgFRxd2UI2ChFhQPrkATJqhLj0LQghCeofQydzxG4abTsYnWbXgAQ649tJ0ueMItPvdLvkdGU2vpnPkbUa5FUDJ4k4yDaeZzd7OcoN7OOXvN9l8PS5+nuttTpws0UD1TPNTdbn2dqaZCxYYDhYJlxToT+WGueT4oeQM7vIBJqX0wwQCWgDUAxZh7kz94dMhVdzTG2lV7V5Q/ZPiLTHMf9OZtw+2obHoyNjfHLjzWgBXqjpqSfsngrZuBTR01A0syfppGcxGxW8mTMkrkt7406EEpSWb0Vqk17nKwwOPseXxq5npL3ErvIJfvLqn2TJGCAyOWtMW7FmsBKzcTFm61xIxxEsFE1WMwauvcR2nuWWfUepVu8h1AMEroF2y3RSc+sMpdeCjHZpEZzd+PSpHDXRpkdl0ULToevNTFA0pE9K2/SpPHOyTLRW4UDors/NwiS4jFFzPjbUl9m5cIZcIeKh/DtYslfX8b/Ox3BSYlFWSYRiQ5QmrWZ476/+93/S/V4KrxtHVxBXYnAfuv9ZOp96krzhwq4XCUfvY9uZRfpXQwwFFc+gJiUNJTATzaYwIhGC1P+Fx5DoLLEexpFHX/ngNWhtoUgTqY0IERKrITQWhljBkfuR4tKuaK0NYj1EoK5GIxFENKwJzpifxnjRI7inQbwhhTJb6x0OGtznJOkHJc7JS8siRGaKSmEbkZVmqe9apIqpFraSmC6zRsKCoZFCs5yCQ6YiiroL9bcNHOXA1Rme53qKlPmt019hMtfm90tvwk9S9JZb3H7iAG4ckaCpuE1slcK3DALZoW4ucip7gHBNUTxwr6VZ+FE2npnkhsUmG5dymHEeZbS7E5qClltlMTXPoYFHqburtO1z4Zab565jNNjIeJDnrfoGVkWDv3eeQquIv9v0mZeNjaBU30q7ta1LTrWWKEUZSvWtLKgCK94SW4r7uY5F7u4cYUdYpm5kqBg5sqrFQFSmLR1S6uLPrWJm+aJ3KxUyfDm4hmfqW4BuFwpC0KdD8iJmQC7Sa71GgUaV4E0dR2qPrXOLTPXmWSjkKDXq3HbwCMWO3/W6ii5n48hwD6d78yTpHHG2QJwtYvgtjHYTZTvdjD7bRRsGIgqRUYjZqGK0G11PE+eGzg0jpNZ0bAt9CVL7tvlVBnd8O0OlawmUxpGCerjKF2b/qBs8FYIklaXTO0SYymKGAZnZUxh+C2U5tDbv6ZYtadZxFqcwQp/ETdMZ29L1JJ5nMNu1CvbCaYRSpIIYK0noWAatUh9B/wjavrD2YRRHBIaFbzv0dZpo81x40ps6RsYfRWffRiKgKjWlcJWw+QnQ59LLTTmCVjVi0SLsHSbsHcJo1nDnToMQtCd2oa1uu7fyLCEWz+vd66RGtusTvEP8I781/v18Mf9GepnDlF3pj3cuf4W9jWNMMsoSPRxhM6sUaZHGIMYh5E08yv6evUxPfRs9jcsb+76tmdxzku+r/wF/k/lWVH2MkVP9lzz+5cKQsdmkWnoeLTXe1DFcdR1xeJTWhhLK8cjUx/DaG88eL1SMll2PXl4dJDMwyZyXYynaS2kxh/EKZXdajuCv3pCiYM2ytXWGTftOUFy+l9j00KJCaDcI3QYeLl5i0rRrtM0WyVoR7nScpmW2LnuNK4V8YjEQNzDsBaaG8xwqbeFweiMtw2O0vcB3vvgwUTBK1YpYzJU41D/BluhFosikJ1hhe3CazeEsj+WvxmkKfvCnX6+t9q8GV2JwDzz6PNP/6RdopF02z0zjlrZSvukWklwEUYY52SASCYEIaRgtIhGz2R/F0DFHMg+SkOWGYAZXx9QMxbIZ4KpBtkUGFoLQ2E3ROkUcnsIRZSY6y1iv4glqLQhNlyjZSRTdRqwHCNVONC6CDoIOppglZ/4tppwk0T1obJQuoLVLQh/N+O0oimgRE2RmMKIMIFBmG9PvwYhTQIhBFVNOY4plICFUO0l0D4oMYBB6SwSZGVYGHsT8h0UKL3TDQRpojTq0RzPIpiJ9qkMn7dAhZGT53ITeTA3iuz1Edpa2N0C6NUsrPcSBsbs449rUpUYJzayhmbNUN59Cn5soz+52hODG0SXODAyxfWGSgfoybTvFsxt24kUht53sGkQvoWxXeHTwkbNG0HoYCG5h+PROeiPFVh2TKIOvTHyOqrdET2sYO/GYz528yLnnILTg3afeiZAmb/T3sIkBEhR/7jxELBSD9nM8Gl2Dtqq0MHlnnPAO+SkaRopC0mDR7KE/LlOK6/jCwtWvblf4Eh7I3ohEM5CU+Yx7B2fia8m28/S3m/QYbVxl4Md1qkaHphmj5PrFQbabpKaPE+VLhKVBRBKjXA+zVsZsN5BBd7cs/RYIi3sOniAVXTw78yV0bJumY9PXaKKBmVKWmWKWWtrDTBJSoaKaunTJESNRCK3pbXa4anqJwDQxlMZOYtBQTbtM9nS/fzdKaDkW4ys19OY72bLxmwF4shVzQ8rAEIL7Z/+M1fDStQ1HKh2sWHN0x2bC/pGzf08QGC8j3Yo4xl6dxy5fPskg9jKEvUMkXmadUfVyiNDHXl3AaYCdfT9CSLyMpmBInu3EDLaXCVufBR1iOjdiejeh4kXCxsfhImVNlGnRGd+GctYLtYrAR5smrIU0TRXyg+Kv6BPrS5/USfNb/MBl7w3ge/g4Z7KDfCL7LajmMHOpFAVxGk/DE0M7yfgx9zxr0LfGewoNsF8WAp/sM1FEjK5qLHXeJkonpJuztDKa1f5plKEwWg3cmUUe7/8W7qodxbdexB/ZhKMDdh5UzBfvQRmX53OuQziJGS4Qm0W02YsyLAyxnt/2R2/OsVgwUIZgqLPEzuV9tMM0ou1STJpUc2lGl+apFAucGhhn89wkTStFJZdj0+ws0tLk6m3GK8u0s5JUOIxHm5olaImEojIxlYOwGvjCpJrJM6jmiWsuVTPPzGCae1YeQ/lFMBY53jdGSxfp1W2O9vZCU1Jq1zkzMEzFy3Asu4FIWqA1ffWEbEdz14sdpvpMHt/hdpM8XiV+5ZGP8r0//7px9K8GV2Jwf+8PP8rs9DKGiBmdarBr3yNkw4jEy2GmeoncIomQ2E6BbN8OzEwf0smiVYKQ3SrsOgkBgTDWT/haa0hChNkNZ2gUYWYW7R4g9Kog21gRSGVjqhodsQkl09iNTTjN0XVlJ7RWrJifxI/mcOOryKeuw0rSZ8trvBxaJASZaebSL1IWM4TzY8S1IqXKfgqL80Qpj9Vdg2wY2EHv/NVgOQTeElaYJzZ82maFsruP5ulJorZB4DfpnVlheLWBRlDPbiDfOHPJcVXCYLH/BuYGb+H5vs3UpSatBQd7YNqBliVQfS7akmBKtCPRORv8BBEpUBqd6X7oAtBrnKirpo9z26lLk6ZfwsnsSV4svcign0V3tpNNVYgjn/mwn2ZnExt8Czu1hOUsMpuZpu5eWhvkfEyU91Lo9GMlNvnqHq6zHuekO4CMI747futZJeIHzP2cNpfpTZa42j3CUXeYO8N9HPO3ckqPIpKEIjVG9Rw3WQdxREiMyWnGaJJm3uhhqjNIi1601GRNk5I6TMZTdMRmVsMUYVORmA5ps4CpFUonzIsKWuizmkcXQ5f/o7HLi1irC+ycX6XpWDQch8QU+G6afCtg++wcWT+kY1s4UYypus9itlTAH9xGtt3BXDmFbzn4Q1sx+7bjB2Wk1UPWHkTNP8nI9FFU40LDRNE1cvLtANBIDUoIIkPixt1VVFkeKxuvZtlJKNsaSzqIJO4adFY/YfUwoSnx8jvZ3n8nvalu7b/ZUPGfdYcfkQ57LZPlTo3KC79D2u3BnD1ANZOikrJw4gQx/A42jN6OKwUnK0/wnHOSKFdal3EHYJWXcJZmEPolT4nATL0VaRSJ/SfRSQ2tuu/Qy/liyrRJUmnidJ640IvRrCFUglmvYDYqCJHFzn4zk06WQU/ybWvisi/omD8MA+5udkuqnjR8Zh2HPaGgV0HU+iIqOoUwStiZdwMGUfsBkvgkYc8AyvHQQmLVy1j1MmCRuBbt8e1nDbaiv8BwMo8TNKgbvZzM7Tgrgis7LYx2A6PTRBsmcbZIkumm8Bs65kb2cY94fF3R5/NxwNzBl1Z+Ac/vGmoaWMjHtM0qKeMhtramsMsBmZRis9GkM5ellh3gZE+JJbdIZK5R0/0O3vQxnuz7Rr7JHacRtmnN/i8am7ejbReRmPQFNj1thbe8SC61yqpdoNnYge+NY8YttFxAiQwT7QPc0P8ZljNZfMtjUzjLcnMAah1mBq/lQP29wHo+1nzR4NiwzePb3XUhOjPWxKbASDRWrEkMQbLGUX2p7/+nYKqYPatzbJ7VbJi1SDVMdFJGxdPdEiXuVvbviHlmokRf2WKgmpAWFcxWnt3TIc1cg3LWoGMaDKxUqI1qfuPHv+Nr2sfXjaMriCsxuL/7l3/EgSMdhoyuxk2oDZb9Xk4HGbygxduPPYQWgqtWTlLy62uUQ4EWgsApInWMGfsYSUCcHiDIj5DoCFSMV5nCClv42QHCgV3k+q9D2mkcr4Bh2oiL7HRivVYHPeqgog4Liw8Rzj5H7+r66uRtx2apL4e74x5yA4P4jTmSqmAxOEIYVTF9D6+h2Th7GlOdV6mai8seTQ/0cnpsgGKtTqrdYmSpihspYmkQ2DZe4FPN5pjvGeJz17+Po6ND7JmaY8PqCyjTJeNrjm7YzpbZKh1H8vCOrZzu9WgZomsAJRqdMsC+DKP3FbB5aZY3H34aAZzJnGHFXWGwPchoe5REJJzJnGEmPYPUko7dZKA1TFnbaLtCSwgynT486RNYdVbSF/EkaIEXZdi1dBuGMjGUCQjyfi/D9a20ZcxQz3Nk7dMII6HdtjglNgBQqDT5Zu8b6SiNK2DeqPB5+1xKuKFjTBUSGJepN/c1hogjSBJk6GOsEdDNRhUjPMed2DWzzHi5gdCvnA/Z6ZnA33I7PX3Xkja735+ftOnELYrOpeUvOlGdysoLCL9Bp7NITQb0VGuk6mV0boAw10+S6SXtDWAYHtLrwTBcXCuDcRm1+rbSJBqy59W0mw0Vf5z4fHFIclNF8Vt4iJeF4QKlWQxD8oZB3lq/uThefoFna19CrYXFhEqQZ72RFoY1gbA2MOBtZqObI9SayVBRS87VbtU6Ign2oaJJtKqjdQj65aEWAyEzSGsLrncrI2mHCUtSfNn9fpqQ38QHDXuEwffhUNaaj6uA61uClBIccDQzlqY3EdzdMTGTMkmwHxUvgfYx7J0YztUI6aKVT0c9QGs4dS5L7yJwFqawaz5CZIAIdIhWNbRh0BnedNZIEoki3Y5JLFDKwAlaiLiOVjCeLHN74UX2G9t5PnUNOytHmZALmPQw5fezEOYIhKKNjc64tC1J8rJopFVZxlma4XB6F99VehOb10jyh8IaL6z+GZ2RTRcNYQKgQGqQShFb3XE1Ox0Sy+p60c5HkpCq2GTDLZTMBVbU1Rc0p9EoQyFNHxF0kwa00IjziDyJ1EilaRY6OL4BAhqOiWdUSYk6SZBHC00730QaPqdSo/SvWGiZ4CYRdgy1ngaz9iBDizb9nQaRGxBpB1e0iKMUmUYGLQJiO8aljaeaBFGWIJGgfZLwJEnw9EUGxEKY/UijFxUvIISDJkEnK6ADhNGLkAV0UibYmOdn/+vrIpD/anAlBvfRP/sY/5EBRpZPMtJcxHtZWKOiXHxtkSCpJikIDOrKohD4eEGTVNTi7pNPEZg2LTvNi8VxMlGH0WbXmImkSdtymajNs706RSZaT+qLLA8tBH66D63ADDvIpIMXNtaI0hYHJ7ailODp0nasMMQTETdNH2LLajc7KJESARhKsZIvMtM/iBf4LBV7+Ic738RiqZdbX3iWtuXylVtux040Nx84hJIdRpYX2DI9iaESivUas/2D7Nu6i3KuO/k9u3MvzdSls4deM7TGjBKE1mxp1rhNHGUu16RpWEyyEVNHpCsJobSoyTwD9Qrjq4sU27Wz4ZwT2RNM5U9zT+0GjnlTHEydRKNJKw9PdYugzlgxibx8+AcgExTYvnwzm1euJR0WcPQspF9EqA1oevBSIY0kgyXrmOIZFsQgSq6fWI12na3NIe7I3cJ8pMgbgpQUfHb1EyyX7Auyr8zaKjIKULa3ljG13uMoohARR10vSegDgjhXPHecSroqyoFP4nggxNlrmI0KmYUZ4iREvHyq0Bo3irESRaEdML5aI2X1sLr5WlKrszjLp5CRT+Jk0EO7Ub2b6VgGoSHJmCVGMlvONhVrjfkyo6MSKywhcGW3+Mmlyi38cxBpjfXyTDWtmYs0jwURn3IjJm1Ffssi5WQzP3Ms5t3m5cMtvtacVAm710JOs0GLZrRMoGKayiFvZXGkgSk9hm0D+yL3taQV/WuGzek4Zn87IowTYilJYaFVC4RDd2RiQBAIA2y4wTPZvMYJUmgOGzPMywpvjPYiETS0YomYzecVKa2i+DV8niQmg+A2TBzgOR3TVHCtLxhOJAaauo5IUg5IWFaaLe2YYlKnnn8WbUhEHKGcFNo0MetlUpUstvNGWiLmlCVAdBV9JDDcWSDj7yeyF/EHLs6tOh/O4gzFtkNsbCJJIqLkOFFaEJV6Lgj9nXugCc7SLLrZpi48Vu0+bircxr3Wet2lr/gzLM7/FVGxj6B/dB0Z/p8DZ3ERq1LGTt2Jaw0TicIrnqN1BDpCyEsT/4FupEF3BVDF2vuidYhOVhBGlyCvVQ10CxXNgnRAa1R8BiE8EDY6qaLiKaQ5AsJCRZcO/actTahMouSVFcLPR3HjDr7n1/6f13TOK+F14+gK4koM7l/+1V/wk4O70UIglWLX3Gl2zU9Satcve55e+w/geGaIVipFOvKpOWlWZRqtBIbUpEXASqlIFEkq2qO3XKa/VaFpebhhQBOXguszMT/DqcExTm+aoJPtfmAyTrofhnWR0FmikUqh1nKrjSSht1plqVS6JGH1a4K1kJfRjlCu2Q13WRKCBNmKUQUb4SeIasBoq8Yud4lN+cNUHYeSOcWAnKFFlue4kRk1hrliIQODXKdCvtOmp1XHjS8keWo0CsWJ/Akmc6domO1X7GqhPcBwfQsNd5Was0I6LNDTHqIQZMn4wxQ6AxT8LjlU6Ygw9SSNTHiWl/FKkEEHs9Nk4+HDDO75t2y1SjwRxowYgjHD4JHGFOkDv8vU8BDNfJ5itcbw4hIjK9VuSIeuzELDtZkb6EerhEynQ6IVbcdiuNJAaLAShRdGVFMuS8U8+WYLqRSzpSyRaVD1HJQh0VIi1PljZyBw6WtrxiOP0Nd4ho3MDEG6F7c4Rm+m9zUZMZHWvNhJmA4VRUOy2ZEEWnMqTDgqAqSABhZnzITbApPN0mDQ6hrvtoAhe/0ClmiNr8CVYAhBW2nqiSYtBS8EIY+h6BeCE4biiJHgaMGwEBSFZFhJ6kLxFRnja01LQFK0iHYX+Xenfpbf2fzT6GcVIw3FvbHNMRkzLg0KWnCHYTIqJJ/UIb8jAxTwQ4nD+41Laza9HPuiVaQw2WvmL/p7iKaMJtKaTpfXjyugH8kKivHzSNKRTnjQPsiUXGZf/gwn+jP8yKkt3Nu+DnmeT29VdLVrevTl9Z8eIOIoCSkEX49F33kh+tMknNGKFwOfdKJJYdJUCsuAomHhGoIXjQRfgAmU0cyimEVxlTawFKxGVTa3ztDndpBGQGJIpCGRKkaSkGTObQhEFCKDDspx0daF42snJqGM0UFEuxzTsoY56PQwvmYM/UQi6DO77T1kHURqyZ1xV3X/7+JVHvWncIN5NrJEIF1WZJa0dii4LbAlutmBSGGaCpXJEck0yy0bS+SxjSXaEopS4WTWfwfO/BnsahVhlBAyD9oHJMgUOlnt6hkZOXSyjFJdz6xYM2CFLKBUCyEza8aOD8JDINE6ACGRwkVpf00j6Z8PSzgU3TF63A24Zi9K9pA205ho6nGdSucY9XCZjN1PvztOyrCpRQ0M6WDILGFSJ1I+SmbQvS/wjl/85a9Jv17C68bRFcSVGNyP/NlHeDo9wTOZESovhXy0Jhu0seKYnlYdoTXp0KfUqjNQL+NGYZcc+hpR9TLMFnpZzJVoOh4r2TyhYWElMZFpYcURqdAnNC18y8YLA/oaVUrNGqkwoLdVw7ccZou9zOV7Aaiks5culOsniLhrzEg/QWW6YSJR7X6MIlbotNX9uxRgCEQ7RpsSY7GD6MSIUCGaMQgQzYgeIjZMnCbc4PHt+pMEkzs41B6iR0e4UlNJUmSMgA0bnuNQvof9zRvRFUmUKAydIh3UyXdapMMQJwqJZYdABgRGN9V1PjXPirPCQGfgbPX6RCQseUtnM0IADGXiRRkCo0NkhBQ7vRQ6Q6ykZ9myci2DjY1srQ8Sqt5LPg+NRngzmN4TzFv9Z7kEIgq6WjxCgJCwxjOxmjV656coVdv4ts3A4gL99TZP7byKN236II4U/L8qYLeUvBWLyTBCP/ST9LS65PTI9Fjo2cLM4C5CmSCTFsXGCsVGBd/UNG1BZBp0MltRZprIm0CpGio8gtbxmju8W/tNGAWEzCNkpiv2JGxAUcQhl9qKJQQ52yEjJVlD4F6Gg9RMNJYA57xjqrFmdU0sUgKJhqNxyFcNzTE7YVlqBhNBQUmKSnDESqhcRP/B1jAYSwKhySvBRtX9xqaloqgEHRJ8KcmqbmGDeVMxbyiSl3VXyABDdLoymcok1mkMHWIKH8NoEJR8OoM3oAY9dtae5cv7/x3v3fnTPFy8F/fgIVgsXvTePbFCru9LaLtKc/o7GBUl3ohFvxZkheAmTCLgPiJE7CPCCvlginrzMFVHgVb0xinG0tuJdYy0etiT2XXJsX45Yh2zGq/wXGqeWaPMGfMkX7rl+9BGnlTjeT70zBLXxBMMqgL7zSmOGXOYGHxjeCN5fV7xZRQRCS6XJro34xqekb1sqPLV4oyKmJLQRmMi2IAkjSBAM4TERPG4cYqj1tQF59raZFz1siHpZViVcLBQqLN8vYshQfGQt4/fHvlzHGXwH6d/mKujc1lqFR3TEIK21owIgyyCBpqTJNTR7MUgj8AHKmgiNBMYNNFYGhwhaIgOT5knOC2XznIPZKLw6nVSlTKOMmjFNXJWD1JIMlYB18jQ725gNZglUgFSGHhGBikMlE5oJw1s6RKrkEiFJDoi1hG2dCg6Q5SDeSIVkLN6sKVLLVymGdcYSW2hYPdTi1awjSy2zJKzcsz7c2idkLf76He6EhnNqE6MoGC9BsHUV8AX+TTf97rn6F8PrsTg/uFv/Cq5jkCZHv2ylz/d3M9zuQKrtnnZOlhZv4USktHKApuW50ksgbAS8o2AUq1BJA1810LqBC+IkK8gbxNIE0e9doOrJW1OOEPEESA0YSTpjSQZo0PJqOIaLWyhiGIDSyqUKUAmeEZCHKd5rLGZ4ypDRxsIICsUSih6hCJn1xmza9jKJZQRuzY/wvNiL/YZi4y/wkp2gKhkUkulyVkVGnGeRqeHUrtC01JkmsdwwwUqTgU7semYHWp2DYFAoWhbbdRr0f2hmx22felmbp55I17YB8jzqqArSsY0bVXA193dfKzmENrBMHrQWqFFiFbLBKkpwnSTyDrn2hdhwNDCKW594gChYZAIQTPrIZwEfE1fsw2xiRIGy9k8Dc9mdXAnt468m5xpUleadxUCNgrJ/6rZJFrzlWqZIFwBbWC4w+RMG0eAKwVZQ9BKNMFaqCgtBeEa96dgCEpmN5wRqG7op6264SylIWUIcrIbwvIV2N2KFBeEui6FulIcTRT364iDImEkkWwWktNCUUURIShLRSi6Bo6FYNFQxGvNq7TZNa4tiepx0CkTbRsIP0anTFSvi1zxMebayEqICF/hOZsxkEDsgIzB0CQ9LvGGHDq/9oxeMl6TGk7rybUwVURijRC5XU+CE7R49plvxY8c9pe28j1X/RoiqZNf+BWccBHLH8PRVUorI6xk2yyPDhNk7wId41Yfou/5XSRxAU81SSUtsobJVeWDOOHqWf9N4niUx4YIUgaWsrAjA4XCFA6BqoAKKax2yDcS0mYOz8iQMfOEqkMnaZEysoTKJxGCWadJo6eHwIp5Mf0M+3Z+B6F3zdlhufP532d3vRtuiZIGjww8RiowuXP1HvJmgYJKM2Os0iEEAYOqwKZ2BjtKcJWFFJKp9lGmO8fw0xlSwuMaYzcT2T0YYr2HVGu9jp/Vjhu04xopM0dqjWMWqQBDdNt9NVgVDU4Zi6yIBh0RsicZYyLpx9QGdZ2QFQJDGCQqwbgEB2o6nuGB9HE+O/YP1NIjxNYYg+Xn+bEz38necJS0+bUzCgCqosWD1kFWzlOYfgl743Gy2sNEdo1RbdGrc9jaJBIxnrbpiIicvkTI8Aoj0IrnRJVpa4qYmJZsorSLq022R6Ps1iV8FE0MqqLBND55XcBHMygUaW0wJ5bolE7yvT/9i1/Tvr1uHF1BXInB/fLH/oFfrP4yFa+DpUx2dTYxEPVwbWcHJZXjWPYkNaNJSWyj7GV4pLiZM46NLxWRYYK8kM8gtFrvzdEaNw4ZLS+xZ+kEfdU6WnazHV6OxAB5Hrmz6XpUvCzldI6Gm8KLAgZrZUarr1Gj5hWgijFFd4V62iRMXIJWBiUMOpHE7TQpeyE66iB1mzPZM6y6q2SiDCW/RGiEeLGHEoqO2SEWMRWn8qqqPwstcLSFpxxycYaK2aAU5djgDzPjLuLEHkliMlbbzujSDUhl4ioDdd4O2SBEyIhYrZEktSaJDtHKniEsdAX6zKCN0hptWuiXcVDMdoOB6VNsOjVNLlBMDw5A0MAyciht4XYW6WQ3YYy9hd7sBFUliJQmZwg2ORIpukbNz+g2j4/YaNfgL09qtqxN9onWNBXkJBeQg7/WSLTGB9JCsE/H3EdEHc0R3X2p2gJq56enC4V2LAjidcRS6EooCN2tCatz3fuKN2bY1pzn1tMv8sz4OHP5Eo1UL1uW5rjtxH5E4NO0HRy/zQs7r+HQ0DiRlQGlu15JQ4DTHRdZDdFSoHNW94X/Z47N1cee5zvrn6FWy/Kb8bfyFvMZHr/tdla8Ne+hjpFJHTM8hRmeJrY3EaauP28oWpTmfopdsxn2nMhgdQJMZdBJS1YGPDJJkXIhYim1wpnsGQKrgDKyDNUDdlW2oNHkwhyJTEjFqXMhTmkggg7Cb5IYAmG5aGkg1gzzql3lgbHjVPq/n9ie6J6iEpQ08Gqfp2/lUxjaoGYkJKkNmME0GT/khtmdZHUPSiiOFU9R6hQZD7euG5NuOGv9Qi39DlZlid6OJI7bBKqNMhNeolsqwyTO95A4XpeYbhhI0yMXCOqqRq4Vsk2NMJHZQ6Uzgxn6xM15jE6NjEgR2DZ66mly+c2w+U3UbRclJDktsP06ydJBohP3o8MGCIPYkDQtSacwSG1gnBlR7m4KDAV9m2jlMhwqHuJAf5PKwH8C6ZBZ/WNumlph+8oEuWaHgi+wwxjPSNOIq7RFgKtNsjJFysjQCaoEYYMNuoBrFZkXNSrhMpZbpD+ysKrz9IkikQXh2E6kl8O3spySyxw3Ly0DcUlogYtNWjv0qjx1IhaNVZSIyKg8JW0xpnpYRAMJgWygiamJkJzKYgLzxgqlpIeadvARjGMiUVRJqImYDAkBmqZRRgLGqxSHfCUkWmBZPr/wH3/1a9LeS3jdOLqCuBKD++IDX+YvHv4cQhpMZmeYSk9Ru0zhzmycprEm8mVqyU3tbWRUno4IWbTKZOMUA6oX09BU8anKJlUzoO3tZDLdS2SPkBh9gECKPGaSkAk6WCqh4kpisYKggKlNIqkwwkOY0TQyaZAJq4h4mlAqhHUrvcEGhpqCbKCIpMDQISm/Q8cSLKfaCK1YcWaIZKebxUCDRLSRWnYn8ijHYHuQwAgwtIGXeHSMDg2rgRaaptm87Fi8Wuxob2Q8GEIC17R2IJFkkhTDUR9mJ8N0aNJMNB3dzT4KLvGGS+mjlEucTONbB0lkDdsX2NyNMGw61n60bKGjBkGxeEE69svRtzTF1U/vxw0tFoZ34Y6/kQ25EbzzdGmU1igu75Fpa80P0eLo7hzGXBuVtRgMNP9tUZwl2r6EutacFgllNHMo7sFiGMlpnVBE0KHr9p8Til0YPKIj5oQmvxay6NGCDIJZoZhGcQLFKJIBBHU0T5MQiFVs7RMbYLgLYFeIjJA4GAOngZYZVFYSDF6LSvV2Q6qxgkR3ZRQA7ZndUlGtGJ02EWjcqMPeMyfZOXkCzxIE7RCtNUoIJBo37YJSoBIsL0Yv1kDB5MadHB2aACEQKgaVEDgpmq6HVBFZv0MllcFSAt+yqXtpMp0WWb/NHS88TE/gE1kWc8V+SrUasz29TPeO0PTSeH4HOwrYMXmYomjyHUOf4LtP/gqrdD2Hv9/z3/i3O3+JevrS3oUbT+3n4OhW2raHjJfJLX8EMzpz0ey9xCgSutfQyX0didWVDhBJFaf9NDKpYUZTmOEMbljl6vLVmMokFafIRlk0Gt/wCYygazwhWDFmeWosYHnkp9ZCo7Brcp6h5hIP7L4adEJp6XeR4QFqvT9G5O1BqA7Z1d/HLC+RdEYRcQY7vx9ltMn6JXbXhhkOBpCiu4GIRMR8ap5ld5mB9gDDnWEk8izxHyEQcYiIY7RpduvZXSaTDbo8Int1HquyvM6jJpL4bJtWHDNUabJzbhVTaxIhmM+nOTqcIzQNEmmsGeSSJJUhSWVRtoeybFTqXDr9orvIV4eeoTr0yyRW14smVIe+6Z/g7rkbKYVrCuxJjIyjs8agCAOs6gpIibIchEq6WZsq6cocGGY38UElyDBA+m2K9QZ7ppfJBxGhAZUsnBkvMTe6Ad8pEtgpYi0xMEnJS4cw/29DK41R7jAxP41yTKbGxlHehVIzRhSj7JclhLRCtlUO8O1/9NmvaZ9eN46uIK7E4D78h/+JB2Zkd4u8hraocip/mkD6tM06LVuTiBjffPWFDV8LhJaYwiHSnYvn2f8LgZWYZJXHnvY23l69g0PeSQ56pwhlhKEllrZIRMwWfwNvqt3EWDhI2axhB3nKsaajNLU1IyglBdW4S1R9CYkZoaVCYaAQSCVITIURG9ixQGlF2/oqnZJeN3mLwAfBBZkzdhwysZohHZrM2XPYScRA0o92BpB+irHiKCXLumgG1MWQaE0AnCLBRHCUhJpW/KPpc/S6PnTGxH5oEZ2zCW/swTq4yuBChQHlMYJFlKyw6kxiFM5QSfIkaKzIwPNd5kU/jlknLyo0ZYoYkxhIrAaWUcMVLYzIpql6EUITOVUiIyLx5tBRHq0NpFVHWKtIs01iFImc7SBM/NStxM5W0DHaWG8kpNstdh4/Ri2TYnJsAjcMybYbICWuH9A3M0/Jb1Bo13E8GBs8xag9jTRWKDsjzC3vQElFf/9hxr0ZOtKioNuk44RGxmSqsonWcg9BJ0tS7nLXOs4QttsGEiwR4LkN/DgHaBy7iZKa4eFT5LOrVNpFpExI2y0aYQbbiKh1ClRbfaTNFq7VwXGbuKZPVnXwninwLc1z1cR/wvxbtl79AqfVBmpehkl3gunmRqJ2itCxuUV+hbcUv8hpNvKryS/SMruLskiqmNE8SqZI7K5cg4zL64oOXw4yqeI27sdr3o9QbbRwkWtK112xji4hPzYHqQz/JgC9wTLvrv85d5YeR0rFr0c/wwH7pm6DKlzvpVYBxcVfxoymSMx+2rl3kJi9uM2v4jaeR7cn6A+ytNwl2qlZkPFZGQ8jdthS28zOxjYMfaER1DE6dCKbJVVglRSBEaK1QW8SUDCqjAt5zgO6VupFqKSreI6ibqyiDZMwKjM2A3ajq+ukBKh0njCTYbanyUq2iRKCptMhH+YphAUyUYaKU0EJhW/4xCLhRO4kzeI30s6/m4KqoZDUZZZM+c9I17/CeG07e6ubQIKlLASCRCQILZDIswWdXy3M6gpueZlco8GWuUXSQUzWDy9oIVqTAzCShMiySAyD1Z4eitUKbS9FYhjUczlW+nrJNJs00hl8x6F3ZQU/naKZyeAEAZFl0U6laGUyyCShd2WFVKtNO53CDkMSwyA2TYTWpNpt0CC1woxjIstCSUlsmNhhyNj0NL0rKyRaMdOT4eAmE0XMtSd8BqoxsZvCCQIC2yLV7pAAcwMZVBIzWI2QQtLIbGLqveO8/8deLx/yrwZXYnAP3/8QH//CUTAjlNVAGP4lvfuJ1vhGh7asspKqoHRIKpH4tk/FapAYmtiEmtHE0AJTGUQyIVojEjvaRqGIXkWK+dcKXuLSH5UwkGSTFANRD4EIWbRWcbXDjL1IRwYILXC1JBYKqU1ySYbN/hhb/HHycZqJYITxcBADg3rSNXIyEmwh8GQ3bTtUmmqiaSlNrGE+0rQTTQfo2F2BtJYnyLc0XqjRoqtDkogAoUAnZXRSIXZ8EA5C2+honsgNUXZCYimSNVmBVJxQSnLMOOfpx2goRSmkNOlTeW5Um7B5dZlnALVE8Q864iAJt2JyHyF1A/q1JBGawyKhARiyRT59BCN9irolqG/8HrSXxTxcxZ6qk2AQ3DMItkFu+bew288DEiEUsTmMlumuboz0sIJjCBRdppEktifQ0sMMp9Gi++/EHEZLFzM8g+UfJLFGSMx+lJFDmf1o4ZAYBbSRQ6gAZC+RfQki+hqnqb9WY8PKLDevHMVymnhGhyi0Me0OKnGwvTrCCnFSdTRgWh22pE+x6UybwaWgu7AbgqVem9CWDCwFeMF6XlFsCFZLFnMDLvWsiRaQmBKZdJ/9WaFKrS8IqZmRQkmBGyQYCQitaWS6StndAsbnHa81I/M+m0+3+V3/m/jvyXvO/rRTnOGPNvwSR7Zd2nNkBIpUqDiT6efX+Xlm5fgljwUY0rNs5zDfxN/g4vNp3sMso/ja5YjcfeEJa4aNjJew/cME3vVomUImZZTZfU6ubvNbfIi8rnL1wTr5eswL2wt8pOf7+Ufx9QDYus1P6//K34pv46jY0+17NEti9oM4L8wcTpGqfw4rOExi9hO5ewhTtxKbPch4Fa/5ZVKNzyNjDzexiQwfU1nEQqC1ILYvn6krEpt0UCKvTLRQaDRSSxKZsOqsEhnnwjvpKE0+zFPyCzStFm2rQ9WuXkK1/uKI7I3UBn4eLSw+rP8bDbL8qfgBvGiB9PzP0KXyr9174mBqm8BoIJGkowwNq46hDbJxBid2EYAnBdII8bXCDlPYcZqW2cFdE1oqBkVG2iPYrTZGu4EMQty2jxNH2EEMUYi2DawoInA0oSmxEgslDZyOT77d6oqmJgnGWqZiO52iYynGF2tEhsaOBbHZrScngVY2T7pWRglJPQP1bIblXML4gsQJQoSUrORjTow6hNIiFRokRkgzn6LjmoRCcWywQcPxCY3oAlqD0ILedpZYKqpuExDrjhFaYCUmXuzyo42v470/+Quv+hm9GrxuHF1BXBHO0Sf/J/u+PI699lEkMsBPzeM7KySmj3gVhOFYxGgtCIyIFW8RM3EQWhIYAU7ikABts8WKtwjaYjk9jZIJUhkokZz1FgktMZRJf9hD2SrTExVJBUWKYYn+xgSmX0AIRcaElBmTFzZT6dM0zCajYT8ZlWJXezMSgRF5zMcx+SRD3hCUE8102DVWCgb0WoIhyyAlL69Hk2iNBiINtVgxHyomY41Cd9WM1xLI9FpSlwQarsAJNTJJEPEkcTKJcj00MYmdoHWAGVgos0OQkyg3da5a+yt4cKSGa6KNXKs2IhAsiRrHjXmKOsOmpB/3vPK8Wmtqa96efiEQQhDrrrGm0CygOaBjnlcxjxsJEaCFQjpLGKlTqLAP0EirgpE+gZk+0Z1MDImWDrE9QSv/HhJ7AyONeVYeV/Rbk7SjItWtoyQbs8ikhRGdppsUnRC56xdPI/GBmESmuplxX0P0Njv0RB0yfsiGVhl0mc3BKYTRJp1ZZWJwH70tn2IlRElBI2tSz5jEpsANFH0rIZlWfLaQcakSIYBDapwX1UYm5ALXi2MYQrOk88zoPkwSzuhBLGJukwfJi4tLLmhgNd9dkPurIR3b6C4wkUYZkPXjS+71fcOgZVr/X3t3Hl9FdT/+/3Vm5s7dkpsVkhCQRVFUNgGJWBRbqWhplWoVrS1Krbb9qFVprWJV1C5Y/dbS1oX6+3T59NNarf1Y60ct/SBqbUtE2VSoIrJDSAJkucldZzm/Py5ccyUoGBCQ9/PxuA/CzJkz58ydzLxz5pwzeJbG8jWlqSwG8A9vKP/hfJMOiujfawEbt52BxuQ5+9t4lUlaVDF+1GOjLsfv5ZD2wpRugc9tewNbeSwrqWXbsAxpI8o6jqaZ3jTSh/UMpJZN9Gc9/VnPANbi+SaWsfvcMTuoYBXHs4hTWcvRtKg9j5bcpZ/ewPn+Y8SaOhjV3MyaHbW8qfvzdfsvrK5TbLZrWc5ohvnLWL7uBLAVq/qNYrl6t7/UUP0aFWznH5xR8B61PQmn38CO/5VA+t9oFUThoFUQJ3h8bmi5CuAFanADtbiBvhheG4HsWpSfJpj4F4bf/r5tMUp3ee1PN+ydb7ivVBYJPMKmy3Yv119ulwAmxZFBbCr/D5JGJSd5S3jo9bvwswHOOvk3dBpFfCL7R1q3/YVt3v793QEwfRPP8LA9myKnCK00YTeMYzhkzAyucsmaWVwj91qbiBvBMRw85RH0c4/0feWTNbIorfDfMypH6VxwEnbC+ZG4WTObX95dWfaV7dn5fPfFyds/x6++9cN93t/7keDoADoQB/fPf/pP/vbCSsK+STHl9HL6gwqhjBgoA9/IojwTz+pEmxon0IFnpXCtDnwzg+4S3OwNw7MxvTCGG0IrH4XCcMP4ZhqlTQxtAgpfuRh+AM9K5X9ZfMPJP6O33AimG8Jyi7Dc6M6m5NyIFcPPvTVeGw6+zmL4IXwrjW+4eEYaww9iZ989fkqZO0c65d6trcj1+/HR+LsmLMPFcxrJBjaQiTkYOKhMFjNbjOWEQGmcoIPSHhoPL+CA6eKFInj2PrzzCLC1SVgHSaoMPppeOkaZH8XEZIjXh1IdJe5r1roeMUPR1zTyE/Mt1i4t+Lzte/wTj81m7oK063bR9fJS6W0kFenEKd6CGVmPxiDbexRObDzFiTV4/mZ8fzMoC20OxAtU4YSG4L5nLhzb8/jc4v/lxeahPFR/D612Md8adx3R8SGaont+yeaeBF2fjGVg+JqKjINr5h7ChH2XplAYQ/sc29GOrxx60YytM2S1QTagqDCbONFeCo7ipMCrhaem1igN0aRHNOlSuzVNWbvbXcNNt1b4/fm5fy5/c+ugy7DrvuZWNns1u6W3VYpzgv/iGHcHATxGG6sJ4NKgKxhurCVElgAuJj5pbNLYtOsotWo7rbqYt3VfXvaHEFJZehEnSJZtlBIjyQTjNWIqgYvFy/7xzPdH86x3CgDl0Y388JQ5/L9lX+GdlqFMNJZwf+BnhLp0WPVROIaJ55n81R+LBj5rvMxrDOKeyBSKo3HKQ61s7qzFVB6G0ryx/XiCZobBVgMnOZs41/onUTr5nf9p3gnUELHTtKoQRZF2BpZsJO0FqY41QZHFwuwnSLpRCCiiTpyISlHBNkLJBFt2VPGJHeu50P8n/8wOZ7rzHQCGqzV8O/IHfl02Ac83CSQsvl7xKP9KjGKZOZC+fZtYEz6W8lQzRW1tVITaGFS9kT/zBZYyljaVm74g5rcx1HuN2sR61lrHsaTolPxxsHQGl8A+B+ZKe5T7Gwm4zfjaQxtFhJWDadhoI0wrFQzVS+mdfpGt8fXEXUWJMjipOINv98W0q0mrCFls2iijhgYMnWGTV0HEDLCRo1iiTsHd2SJW6W5jdv29PJMex2bdizP7reBHx38dgHP0UxztL2coK9nmQIdv4Vu98NwOMl4nCQ+UFcPTPp1OAlcrLGWQCvSnt7+ehAdpVUzKTZPyHd7JfPhZ/D8qhjYIeBYZK0t5ugzLD2BqRYkHxycDlFidGJZHn9IO/GyQHR392ZS1iVudGKZPtenSmbTREU24swjLj+IFt+H5GieTZGDkRL727Z/t1zJLcHQAHYiDu2z5qzx/z125iVy60W73ocjZjtIecbsG34iglYUGTCxCKohpRzD9zfgBGx3MTQ/vYaAMB61dfNNCh3Su4+sBolyNNsk9j3Z2Dtk33+eCt2vGVt/HTGUwsi7KV6Bd/FCEsOvhByy8gIWlFYayyFiatLlvQ+/f3R+gIKKDxHSYVpWgSIfo71XSW+96X5NBkAClOpLvKwCgyI0GW6JctqB5A5e/6wwRN0HGsHGMAJVa43pJ+qQ2kTVswl6KsL2OeO/VWNon0FGDgUdrBJJlDcQjPgSSeFZvvEBffHs02chJZAN7Nxu4oX3KnBRDO9fynQ0/45vNVzNi3Wqufe0JAH580lTKB3dSfILD2uBxrA31ZUC2gTrn7wwufSUXjXiKrUYfUkaYCrbT5pVS4W+n2IqTIkJFR5JMFHyD/CzFLZRj41BMB6brE3A0WTsXSO1q4YkmPKIpD3PnOV3c6RKLu5i+xjMUlq/RGv7mn8zvvTN5TQ/EVi6fNhfTT28ngMdG3ZuVqi8bdS/ifoysLgwIjdAm/Ew16Pd0SlXO7ss+Mj6h8npmD3+SWCDD2vb+/OCV6wGTYtWJic9RZjPFOkWljhNTCZ7yTqV957u0BqhGHgr8hKOtLSRUCNe3aFYleBYE7AwByyFoZihLZTATBo97ZxAmw+fMhaigj2MpsrbBjmiQRZkRrEwMpr5zGOudGgLKwelyXAK4HGVvZUh4DdOD84i2af7mn8wv3c/QwbvzF11r/pmLa/+XdMig75YUrzvH4mqDftEGbvcvY0nyBD4b/SdTwwuwDIdH4ucwLzuWNq8YP2IT1Gm8hMFnjUWUqQ6WesewpGY4Zb0UHZXFJN8zO3txxkGjcRWEOxMYaQfDN9FFmpCnSUWD7Ajt27W32E9SptsY4G1hlXE0TXvZb2uXsq3tXPv2/8cLmZN4VQ8BoDet9Bni8XL/3V/zsYuhfQZkOkgbJg127juuzmSoyjisLIrgGgYhTwM+adPE0JrR7R3EvCxVejPl/hJsfw0lZpxOu50O3yPtBLCA4nSQkMoSCXmU+oqOjEFHxkCbioDpsLEzSMDSeJZCJzVlvkFtdYp4Qy/W+1mctEWfSpeYnWbbjiiG4eFlfZIBg+KkjecrYkYWnQnghj3S2QClfhbVYeHGA9ilDuGyNKm2INmUjbYNSktShKI+JGMUhcZTFK7h39EIAaODMmcdqm0lHe1xPDxsw6a0uAhlAskiqipLcK1O0hmPdNRmY9Dka1+au0/f0weR4OgAOhAH9+8vL2f5b3/BYOMoktkOEtkW8MHx05hGANsIYWBgKIsOZweWYWPt/GumKFCGp10yXpKoVYqpTNqdHYAmYhYTDZQSsYrxtUfWS9Oh0iRNj5TpkjY8bCxcU9FheQQdj6AO4CvwDLC0AsvGwiJsRDC0wlAmJUTxFGxX7bSoTjrMPXcSz7XMvttEG9KB3GRxat+bZ3extEFvv5QKXURKZdls7MDBw1M+vfwYAW3iK42lTYJY1HgV2F45njII4dOISYNKYuKDcmjwPLKeR5vfTtqIEtAmhttBp5skrF187RHXuXeSFTlt1GQaKXLjeOFW2oscerUGiaYtEiGX1mKHpvI0WsGm3knai4uxAqeTNTPgbUcbNhm7AssYRNbuQ8bujX7Pq0BiXoLT0y/R6ZfSapXRaUTwTEV/YzXDOlcxNPU2NcZGwn6WaNqlpjHN3I7P8zPvAm5Z8htO27QCgL/2r+ORk87iH8HrSFRo0kETw9cEsz6xjlyfM8vN9f9J75w12vRyL6+0HR+ja0d1pXAtheVqOoMBTHL9cGzXx+zmcpDVJp1EcDHYpHvzb78/W3UFG3VvdhDDwOdf/rAP9f2bRf/m2NDblBtJVoV3kHBysxiHcKgyEkTdMGkzQyxbylqnlnYdxHFL0G4JfrYM8kGWx7vteV0oF7QF+Ch7B2ZoM8pIo/0I+AG0tvBSfcF/N4BQZhwjvJlw2T+5KNbOWf/eQuxpk8RpPr85eRjPvP0l0HtuvVSB1lzeXhFh0nze/CfHqs2UqAT9VRONupx1uoYwGeJEeNvvx1L/GBrJ1b2ETkYYa8joAJUqzijjbc43/4FpZzEtH8vVxItNPGVgZA067QCW6VKWyBDu1PzB+xS3uV/Jl8cINmCX/4v01gsB+KSxjBHGGv7XG8caXQvA2cYr3BH4L0zD5S/OaazV1WgUQ9U6zrHr2RIp5e/OSAYZWzktu5ImpxdxIvRTzdimw//nTOa/nLNoj5bunCDLQKVcjIxLBR20UEzUSFBjb2NNuj8eub+8NApdZKFDJto2IZh7b6JyfbRl5Cad9TTK8zGqI/i9w2QD3f+R1qs1C64m5oFjG3QYUJLyaPF8MlkPvyVNpKWDW6zf8ap3Ak/74wq2P9VYwdbKalYPOh63ZN9ap/dFbdKnVyb3OzmizWNz2KDU0bTaiqSpKHE0EVcTczRpUxEPKIZ2JKhKWnSG42TtFAkVJOTDpmCY/vEwQe1Q6iVoCSqsTCmbogYmGSpoZmAmwdpIgGWRKgZ3uvTOOmRUgGgmRNTP0GwbbAoXMTDhEvB9siY0hh02hGK8FTPYEVS02bsfc9PX1KY0UVcT9DVxS7G22KQi4xNxwTUg4EPI87ny70/x5ftkhuzDxoE4uCv/vZLwbxqxu5mv6HCQJkuj0Y6BIqqDZJRDGocyHaVYh3G1j4tHiiy9VIy0dunAoVOlsFCkzBQJMsRVig4jN5qmWIfwtcbWAdAmKe2RVQ5JI0M4a9GU3M6WbCdVkUEU2TGSNBEMeHRkQzRpTYUPLU4LHa5LaaaTQan1mFqjtf8+c+B+MB9Ne5HDP4fH2VJbhwp+AtxGIq1P4VhxvEAfTHMQAfrgRIfQEq79wFepBHWaWjYz2F3NGfGX+cLqf1Gceffxi2sq3C4By3Ydw8SnmCSrdD/+4H2K33mfBq15YsFMwp25wGdteRVXn34jY9Qqppov0Eu1ESfKVl3BO7oPjraIE6GP2kGEDDYOO4hRRAoHiwQhkjpIBptyFaeUBDt0MVWqjQAuG3QVCs12SmjRxZj4GPgElMsq3Y+4LtpTlQtYsdcoKl5Oyi3Dd8rQTgwwUVY7ptVOyIoT8hW+FyXkBRnqZznaiNGpIxgpCw8HU3lUlrThBtM4TpggHqFgJ52pCK3xCpJGhrSVpt2Kk7JSKAUOkDBTxAMJitOVmJhk7WZMbWJom4CvCGARcyMEPZuKoEMcl6TKkHQDZAyXDjONa3iUa5MRVpBBtqJPzXKqZwYwUrnvvXmGy6/d4bzmhEjb7fjpGrQfws/0RplpguE1nGY4tAZSvLL1PPx03w91bnZH4XOi2oCLQQabXrQRVA7bdAl91TYadQUr9LuzPJuRd7CLV3Bm2Tsc7ZTzn/E+JLadvc/7DZHhOLWZwcZmtIa/+yPYTml+/TC1lgnGa5xv/oO+ahutgQjKVyQMm1IvSZGfoYlS1vk19FE7KDY7edEbyWAasHApC7WhDcVyawCrEgMxlWaktZoh7hYcbdGqihjsbcHVFqtVLXNLLmBh77EYaEpTO/j0ln9yoreOIWoTTX5pLpBXJtt1DDQMtjbhWAa267HKG8BfvFP5tx6AwqO0zyMYZpyOTV8lS5BTjJV8xX6Wv+jxvF1xDGZAE0ykOLZtHeuL+rLVrqTca6cquZ02r4hVRQNxIzbRRAe94ztoDxeDoTg1+Rovh4extnIAkZIgOmTSWWy9O2jgMFWSSmKh2BHe+0kpTd9n+qo/8f3/kD5Hh40DcXAbdmxmw+3/S2moD1kvhW2G0UDYjJLVWbJ+hrARIWRGcHQWR7tkdQZb2TjaIUGaIqMIhSKuOylSEUytSOo0cZWg3W/HxKDIiGEYJiUqjIVPQIdJqzi+ShPVJUCWDGk85aCw0DpAXGVJaYcGdxt+NoNDBsfLoN0MRZEaIqaij/LxPA9Tu2hM2lGEjCDxbJL12UYyeJielxtR4oP2ndw8JIBvBwn6FmV2FVkSWH4aVwXwvTYy2RRpZeeG7Po+ynUw/A/f4tQd19C0FmfZXprBMTWGVjiWTyroEY86WK5BNuDTWpzFsSxcqxIdGkui7BwcY+8efx3lrafCb6XZ6kU7JfR1t1DjN3JK6lVO3fEGQ3ZsoTiV63fzuh7Eg+65LPMH09tooQ8tFJOkUrUTp4hF/nGs3fmX+3sNC/yNex6fn/+/b8K5k3+E9wHzxRx4PigXZXVgFb2NMhO5V244ZVTbmxmoYXByAGZsK9uzFikjjcrECHhBYsogaEIomCYc3Y5GUV35JqVb2zBbFE6txhmYuxxZDQo8CDSo3CNkD9zekKpROKkYnhums70GpXzsYCfKdMkkylGBBHYwAV4IzwkSDLdj2kkCdhLDdDHN3Ud2uk6ATKoEhSIQ6sC0shiGj0pC7EmT6D/fPebpIT4t33RJdZaj8XF8C08rmtJBnEyEY3s1EArn3ovVkbF5cO041racgNZB0ArfLQVtgnIw7O2YZoZYqIn+sS2MLN6EA7zaOpiMbxJ3TTrbh5JODtzHR4s+w2sX8KWBCygPpwi/DtZWxbbRAe5vP5a17YPws1X0jTYz7ejn2Jws509vn088MSifgxl5BzO8EbdjKH52D/3cjGRBi1tXITKkCWLiodC4ezHKc5hay8nGW2QJsNw/hq26nCRBAnikyLUQDldrOMtcwrFqEw26gnW6hn/r/iz2j8PGoZMIYdJUqDiuNnGx2M7u76qzjU5C1X/m6rhFKBvn/6uE7Q3TSPPuTX+UeptjjC2s8vvRrMuoUTv4hLGSVoro0BGKVZIxxtt06DAJQpSQIKrSBHDxMQji0Eu1ofEZRBPNVhnrVA3Li49nnVlLZ7SCxnCMtGkzIrWa/tktrKeGAA7lZgevh44lrYL0yrTzTskA2kLF2J6D0hBxU4TJ8HZRP8rScRqivahNbqfIybA5UkGnHeGEti00hWKkzAAl2STV6RbSpk3CCpEwbRzDIupmiDoJypxOGiK9UGjCbpqom+K4xFoGZjcSzaSwWlN0uGHa3CgRMpRGkhA0eDM4iMpAnBBZfBRhI0u0s5OkHyQeiGLYihPa3uGd9iquu/u/PvAc2BcSHB1AB+LgLnlyDq/8999ImkaPZ+jdW1op0BodsNHKwNj5Li+1631tGhSH5tfso9nSO0Ui5FHWESCWCGD4EPAM2qPvtrh4hiYR9mguy9AedUmEfVLBLKlgANsrxjU8ssEyXPtoDBXEVAYZDCJmGMfuT0DlWkJcAiSsfmRVBN1lFE5vt5kLts2jvuwklodyj4gs7TDUWUn/dAMDWxv44ta/UZ3eQRtFVBLHwyBBiFZdzHpdxTJ/MGt1DS/7J9BGdK9uCAWMNGZoE8Wl9dyzfg39nk2QHeRjNSiMtGLuxSfwt/CxOJk++G4xykhhBFqxAm2YRgZtpHHcUrRTmrsBG1lAgx8EFEZ4IxYevh/GdWMYgXa0F0L7QQx7BwBKZQGF9oOYZidKeUTMBFpl6OebRAMpKv0wUR0gaihKsCi2XSwrSzDcTrm/gWADqJTCL9X4kZ2xQCr3Fg8jrjDjgA/BlQbBNe95cWxx7jw1O7r/3XErNG61xi/WeOWAB8oDt7fGK9eoNJjtCuWASiq8XhqV2vlkDQiuMlAupI4yMGwP5Wmyg3Ru4EECjE5FYLPCS9gUve6xa0BP4jSPyL8MlK/oPMMjcaYHPvhR6PJKMowWCK0w0AHIHO/jl+aWp12L7M73ve2qccj0sc0P/gPB8RXrOstpdcJsSFSg0WyKH0UqW4bjRQiYCXoVbSFguNQWbWR06XZ6BRKEXlcULTCx1+b26MU0O65xcfu+ey3Y9UYLvwgaUjFeTwaoDWQYFM6SSJSy1vF4JRVjc2cfMsn+lATjRCIbGV2+hiLLpdOJ8VzDSFpaxuBnquCD2nIPUh8yhUfASOIqsGLLOb3337liQQclS3IzuacGa34wuYYVW75Mxqk6IGUoIkk/1UwnEWrYQZnqIEmIuI4SJ0JSB2ki13+qjA4ShAjgUkong40tBMkSxKGFGHEd2RmAZalQcbbpUqpVC2ls4jpClgBFKkWrLsLEp5MwaW1TrVqw8HhH19JOEb1pJaYSZLBp0BWYeITJEiaTf8y7P3w++w9+ct/d+y0/kODogDoQB7dp/SY+8+o9pJwUVdu2UJTsoCSpKe+0AY2nLLIBi3AmjdaKSMbEtXwCWZNe7UE6o1nwDDK2j6kh4Bi4Rq4viWNpfEOTtXxKOwPYrkHA3fcHS/GIw46Yg2f4mFpR1hFAA6GsSdAxci0uOztKZy2faMYia/kkgx7JkEt7kYNnaFI2dEYimF6caDqA7YDlQ1HKojgRQCuN5SkcS7MjliUZ8sgGfLIBn7Ttsa0sSNqO4kQHoYpOwcisx0suxzeioML4RgDDT6KVBUYRoWAfUsHjSZjVgEFUt9GpSj/0kPWIl6ZPupmvbvwj/bduZJXuR4Q0gyNbcTAxPJ9U1maj7s1fvTqaKWWrrsDZOe3+Bz7UU1kCRasoj7yF75ST1Dam8kh5EUwjQ4nVSi8jDljElU8o0ErfdCWfyTQx5H82YCYU7Re6BN8yCL1h0DrBpH7wBLapDK1mEtOJUB3QVPhhNArTSpMIdJLyDExtYpsulpkm7IWAAI4XoCScwFQOaW2Q0aDNdC6I14poMEVFrAnPtcmmwxhKEcwmie5IoGsyBFrAbFMYnWC2KLSdu9cpB6xtCmuLwuzc9z8IfBPcaoXVpHnvlF1OtUYHNEZGYTV/9I8kvGJNqs4nOvByOpseofip3YMZLwRekcLs0HTtsucHITXSxz3KxyvTeGW5QBFLo1IKsw2MDoWRBi9hYzaYWHEfr0ThVCrMaAZd4uOHyW1fqvGLQfmAv7O7lUFucIIPKg1GJ4SXGhQ9Z+YfBWpj5zaAb2vSI3y0DfYqg8D2XBq3QpMe6eP20pg7FNZ2RWCLIjPEJz3Mx4/kyqAyuQDSXq8w4gp2BoE7+lhs8Wy2ZYppS9YStjoothOETJcyy6fc7iRkpbAM2JEuoiiQwdceaTfAxo6BrE4WsTZVRGe6AguLSLiBskgDhpnEwqDE9Ej5Fmtaj2VT2/G42VJQPqHgdkqjm6kKbyfjhfDxKQ62EVDQ4QSxrAwDYhsoNTw6UgGqfJ8xa7NUPK8JNBWeT04fn9XnmrxWFWa9U8qb24ej/BAR0yUcbqI9VUEqU4ppxzGVj+tGSadqMJSHZXg4XpiAkcHxTbJuCUobuF4Q37d3TtR5+DLCG7ACbWjlYALZTBVkK/C7aTk0jSTKSGPhk9E2hvK4zP0/br/7t/u1TBIcHUAH4uC++tL/cH62DMfsMoLCz4AyQbtghED7KD+O0i5KZ0F7aCOKVhaG34HhtoCyAI3hbkcbYVx7AKbbhCaAb5aidAbTbcJ041ieRSC7g3Amm5vozzTxjSCu6aG0xjMtfKXAsHGsMJgxssFjAbD9OL6yUX4SW3eQ9bJY2Q34RhBtFGMpAxMbbShcq5K0WZV7ezkZsqoYv8vLJpX2ibnv4DhtmDqNpRNoowiMIFmzBoxgbkZd7eKqKElz9+buD8PyfVzDwPR9hrVuIZZpx0PjmBa9/G0MaV9DWll0GMV06iB17a8RdDO0JSP8yx/KK/4QMvSgj5jKYgRaMcJbCFptlJkdVJk+tUY7x7dYVKU6IORj4tARjZItUsRS7QStDKVvptAJA7+/g53OEtzmEV5koLQi288nPW0Y7raVlD+c21X2KB+nVuOXgdkKRqvCSJK7EfqgbY0OgA7nWgWMeG692yc3c5wRVxiJXIuHH82lR4HVpNBBMFLAzgDlve9G21tOjY+3s3zmdoVyARO8GHgVuZs8CrwSSJ7q4fUm13LTDlZjrhxeRe5G7FUA2sTwQtCRILBZYXQqrB25IE054IcgsDVXL23lnvQoJ9caYiR3BgdersHC7aXBBJXMDTAwOnItRX4Y/CKNDufS+0Wa1FiNWXE0lW+dB3+bj/fJUbTZv6fobxprW25gQnfHKDvAx0gorG0HPpjzLXYLKHfxoprkeJ/EGR46AOUPWwTf3v/z9wD4AY3bV+NWaLBy30PwbQOnVoPSGO0KHdkZwO2cZ9XckQuw3WqNH9NoG7zSnU/rQrnzV+lcIG60KbxKjdsr12ro9tGQUAQ37WwTV2DsnNRIm6AyYG3PBXBGityo23Th9+FHoOUqB21Dxc8C725vaPwY+FGNF8vlayQUflGulVElcwEigdx6Hc7VK7BJkR2g0WGdLwd+rlUzmQ6xXvUmaQbotEyaKSHg+phemhhZ0sUWZW6KQJsiHO3A84Nkih0sx6GtqYbW8krcYIZM0iTopDHtFNkSmyQBOv1i+nqtbNMlRFPtlDppUl6EbChAwowQDnaiUoq0DuBiEbHTKMMjlPFwDIsK2nKDS5IBKns10xnTZLfF6N3i0tdsIrbDpUhlCaZ3XlOSikQVJGogSRCrwyBkp4imdG70XYkDCkwPDEfjHKN5efVovvP/Htuv55wERwfQgTi4zz7zFD/p8GgrDtMQ7oW3FxOoHamU1hS5KYqdDoa0r2FDuB+toVJimTRhL/cLvDnai7CXoV9HI1XJJnrHm6hs306ILJuD1ZSm2ok6KbarElp1EQk/xFZdQZIQaudomA266gNbeaxAG6HIerKZKrLpne9bUhmCoWZMI0Of4tWcyBYGJ1qIZTuIhyMU+5qibAbb9dAKotoj0uxit3iYnbl+Hkbmw90g00N9Wi93KX32LLJ1G7BefIdo/cE5l3xb5wZ9hXMtOX4RYOrc0zoD/JJc0OFVaPyoRpeX4AU6yT+T2vWeCcBwwpjZEgw/gFY+ofYBhNoGYbeW45Z24gUSmE6U4I6jMBvSEApiBnvjt2/BOcrHjSRwQztIlr+JG2rFdIrQ+JhOMUor3GA7hhfENzNYmRIMN4ydrMFwIhiejZEpwrNbUCqEbyXJRpqxMjE8uwO0iW+lMJ0Iwc5+BDeVoxvW0rjlBX47aBRf3rCS6lOm0nn0W6gOB4I22fBWvHQTvteSa41xBlKc/BSBzgra1e/wN76F2aIx4gqVzQ2eU26u1ccr1blgLqYhHEEFi8nWZlGdaYwdDmarh0rlAjtz2961yvnBXOCQPM1EDTwO040Rau1PIFFBe/+XcBvfwGrQWI0Krxyyp5ThhxyCr3QQfNPASEB2QO4RJUBomYHZoXJBTVrhBzU6lAtoVDYXAAQ2q90Cj0OZWw7J8S6J030I2ijfRLWliP2PRfAdA6P7eUZFD/zlvOO4+UdP7tc8JTg6gA7EwV39j3/x9XlvsMmr4kRzHZalyQZsDKBMxekIF9OeDuUeY5ke6VAQTIPKzh24pkUiGCVguLi2je9C0g4RcF2SdpgiJ4mRdghmMoQsFz8aAFuhfE1jsDeuaaKUwnENIn4GlCZNgKDnECGF5xl4LthuBpI+qXQAP5R7CWgFcQgoPNuiraSMaDaJcjwCuATdLNoHPAjFEzRSTsxKkXRsdMAk41sUZxOEAi6pWAQCBsqElB0i6GQwXI+ydDtO1qDVLGFroIJs0iDS2YnvGfmXer5XhDRZrH3vu/M+io02wl6KomyaUh3nVP0qI9MbqNyYwGpR+GFNsjIApR52h4+RyD2SsJoURmLfbwDaygUOyjFQWTDjuV833ybX32WAxi/RqGSuxcQv0qTG+GQHQ/nrn+anb9fwxfR6QheuxEttJ/iWQWBL7lGMW7Gz342R68DsVmv8Io2RzJXTj2r8EOiIxmpW6AB4xaCDuTRWk0Jlcjdnt0qjsgo/pPOj45WXa33RwVxQg9Ioz8Z0I5jZGIFUJcqzcwlRBNv6EWiJEWyoRFkGjtkIkRCGjgIefroFtc2HdAcUV+EbBvFty9mSWE9aKaLKJhIoxs3E2RwKsj0YpiwbpzVYTGOkgtO2vE5lRhMo7Y/tK0KexgsV47i5dwgGPI02DAiE8AFlBvGdBDq1g6yhyCiPTqcd7WcxAhEIRLBUkOJADFMFCGSSeJaNxqcj3cyaoMeb5QNY1HcMc6/+HDfM/RNfWfS/DAlUEVQ2WGEMJ4VRVIUd7YNONJNsfZvt6Qay2qG25ETCfYeSHpRAh1Vu4lQriZ3og3JNMDWe0UlwczFs9/FSO/DdDEEriopU4JW7OLEOiIbxg1nwXLJmA8oF12gEA7TholImKhjGK4Vgqi92Ry3mhjBbNr/OZqV5JVLMtlCIL21fz8A+x6EHZjHTEcxmk+0N68F3KTu+P34VZIo3Yng2wdY+eHaSVMV6nHAzTrAZT7WhIxozW0wgWUUgXYZvZknFVmG0pAlsMLC25jrQm20Kc4fCK9O4NRqvJNcqqQPgF+9sSQrlWhBVRmF05Fp60OCHd7YexUBbOteqV6wx23MtQWYbBLYotAK3Su/8vYGdr5jLtRrGcq1MOpRb5lXkgnmzQ+H00yg/RHHTKEqXTEAbadrG/IuOqlcBjdGWa4kMbFAoJ1cHP7bzcWODwi8GP5JrgTTbdga9GbDXGmQH+bmWSgAHVPbdPnZWswIj1/KiDQ2mQls7fx87yNdTubnBCEZyZ/csP/fzrlZK3ybXUtbNrCvayrUIK4eCIG9XPuh3H7F2ty3erilbcn3UdBD8kMYvBbdc45fmWvgC63e2jKpc3bUJXuXOfZC7JikHzB257+XFUz7HN7////b6urk3JDg6gA7EwV367Hze+dEcenW00BouZoddQocdIREIE/BcfGWglca0PDzXwtCapBWi3Y5iaY+MGcDQPhE3g2uYZA2LkOfQEQgTcdOkzCCOGSBt5UYdOIaFZxg0RCtJWUEs3yXqpIl4GUrTnbQGi3B3jnCKumlimQTJQJCUFaYi3U51YgdaKTYWVdERjOApg45ABNewMLWP7TvYnpMLsNwMQS9La7CYoJfNzVGiFJ4y8JWBrxQZ037PpG65X2jLd7F9B9P3MbQm7GWwPZeIk+LY9k2ErRRbA5WkCZE1A7SGigm5GYqzKRSagO9Q5KWo8rZTq5sJplzCfppkJIjl+JimS5GTIuRmiWQyBLJe7i90pbCzuceLRmbnffxD0krvfMwDZjt4ZTsvIAEw47mLi3PUzot5qcY5Khf8FHQ3cHa2HITyh2ZX5hhuCOUHCG8fjFU/gIczAb5+y1f46f88wRUrG4iemsGLduKEtuOEt2FlyjCdIgw3iPICqIyJDnooHcDwgmjtYugQZiaC7yQx3RL8YBqj00IH0jhFrZhOMYZVDBmNEXfxLY3llmMmitABD92Rxm1zSWfTueue9nHdNAkngWcFUEaAjNNGPNXOypLerC49iuZQGWHXYUB8K46lSAVsDF+TMYNsC5ahTAgZGUxLk6iuYGitQXHQYt0Ol3jSx9UhymJhjq4Isr1DUxs1GFRRwuvrVvPW1jQdrqI9EyGWjRNUGbJGkEAmg5H1cYIBMqEQJZk4aYIYnk8mGEKHLWxbUVsGQd8g5ZsEAj46k6CpVeEaCtcz8D3wLJteUY8Ta4r57JhTGTOgCtsycD2fW/7wR5Ys35abtDWYm/zS9wxKO+KEnCxtFcVEK6O0OkUYDdsY1fwm1YlWSnzIWgEMM4TnpTAznWQDIRoiJWws7s32UDk6ZJC2QvRK7CBtBjE8D20oAhmHQZ3bOVoHscwQZNqwfY9IthMzECUViGC5Dq6XYYttsqi0hmSfIkYMLGFI/xM5ru9ABpZbPPjkI7y2PsWOdDG93RacmE1tuY2DpmGzQ822No5yPOLhEnYQJ64inNTZytisS2m0H6aXxdPtdDou7dqjndy0B7XBEgI1BlaJxnCCOEYzyrUxAiVoT6N8G08nyDgWli4jkW3GCmcJGcUYmSCqLIVX0owXzeBEmkH5BOMDsDIxtOGiDQ9t5AZnuHY7bqgF30qj8fGtNIF0BYYbwjeSoEwCqdxrejy7A21mMdMl+HYSK1OKzmZR26Ok3q7gGcthdb9iQoZi7NpOziyP4Fem0EU+TrQVN9SKNjP4Rjb39gIzgzY8lB/IvX3AieBbKZRvoTAIJKryrZYaD205eMF2XLsNJ7wtNz+c2hmhFF4eu7vYvBulAOReVpALYHb1M9sZCKrszoAovXNwwK5Gci93nfKDoLsOxtWFRcDg3WnC/Fy/tV2P5nexUuWY2VjuzQXhZkDhm5lcRoaP8gIYbgQv2A5aoTwbbbiY2WK0SrNs/ueZcd/32Z8kODqADsTBfea//8TAu2/r0U34w+ra8VK8Pz+QC1qc2tzop+yg3OMII7GzlSiuciOiSgANXi+NU6NRZgBtuOwcAgi+iZUpwQ23EEhVYmZKCMb7QSb3LjZjexGJZhcjAirkYPhRlDLwMgY6XkrSi5DyWgm6FtswWB8wWFZsUNavjB9+ZRpVJRG01tz6u9+ydHmcY+PthNItFAVLIBBiYwBaLA/PCgFZDEdRmfVIGiYpwyFoumTCNl7WwMMgFS3G83OjG20ni+V7hLRPNmDgKIuIzpAN2qSNIMrzd3ZGtYhEw1i2SSQcom9YkyQIyqTE9jm+uhdlxZVUlVfRrzyGUgrP13Sm3fys5LZlEDCN3PyA7zfT+seI4/ms2dbJ+u1x0o5DacinLZmlOBwhaIUY1DtGZ8bFNBTVsRDRYPctpMmsS0sii6WgOZ6iMZ4lYGp6FwfZtL2d5niWE2rLsJRPUThEVVkRxaF9HxHm+zo30brnY1kmjufTnszw2jtb2LRhNS2JrQRDNoP7HU3fmmOwLJu3N26koWkJ27aneGtbBisdx9EmnmliobADivKITa+QQTjSh5JIFK0V2UyaTGIHSa1pSsbZ1OljdaawfI8ibdFuBlDaIW5EcIgScDvo6yTok9SUZjIU+ZAIhmj3s6RxiAdMOgyPqA4RcVOkzQjbLYuIlcaxXLTfGy+QJR006FMEE8eewqfH1REK5d6BuXFLA48/8wyrNmxBqTT4IcKegeVrsia06yLCWQ9LabSrUW4WlzRuMEKFXcRW08dRFlHXxdMG2wyfAckUtbqI6mQay3Mp0prSTBLDMLGCQYzyDKYVRCuLdMrHTUbRoVbMRADLC2CEIaua8DNZikI2WpWBm0GFE5i6ONc3zvEwPB9VlAEdwDRDeH4mN1WEpVFWGO1lcq1n2kd5CtMoxsgqnKQBdhYraqBDSbJuEhwTK9Ub7BR+OkAyk0JlwmzTHgm3gzQ+RQQI+JoiI4gdLAIrTTZr4QK28skaQTzfI6g1tvYpMkxWnlPOVy75j578Ou1GgqMP8MADD3DvvffS2NjIiBEj+PnPf87YsWP3atsDcXA7Wlt4/bGzsN+IY7bmIn2VznVK7fIqJlDkX8+hHDBbcx3+dIjCjqU7X7hodPLui8q8XHOtkc41aar07p1nvWiuSdTsyKVH7/xrwCb/l4UO5JqbjWSuYyperlWja/8Bber8djqQ+5jtXaY38Xf+gbNzBI2ReP+OvLm/nnJ/lWgr1/ESKzcKBzf3V5Dyc+XRdq5JF3ItLX4494jIj+aatZWnUMmddbLAD+eafHVoZ7M3O4+xHcLQAbwQGFYYZUbxQxnAJ9BRjWquIJOwyGQtggEwYp0YwSxeewlOZ4SsmcLNmmzJ2DR7MaLaIWyGaAu42Knce6R2BFx2WKBMl5CRJRo0sMvK6VVVQ/++x+Bm0mxuz1JqeigsAhGbUDjKiKMHUlkcImRbZD2foJV7NCqE+GBa60P+98V1XZRSdHZ20tzcTJIghmnSGm/HdF2MQIDyaIhoNIqPwgzYdCbTNO9oIxYOEAmYuI5D0ldEoxFSmRaa2+MkkgYxyySTdLB0B/H27UQri7GVSYdfQmu8jYDnUhYD12vBTfp4lo0V0Gg/TGc2AL5HRa8QJZEYJIPogIEdjdLmWARNRWnEoKQ4xIDeVZhmrgnc8zwyWYfcmzw11s6JLbNOEs/NlT+TToEVQikoClrYtr3fv6cDHRztv84cB8Fjjz3GjBkzmDt3LnV1dcyZM4dJkyaxatUqevfe9xd07g/RklI2pb9AoMrFi2XxSOFZMVwji0LhOw6G5WCnKggEHbA6cZUJ2KDTuMoDZRPGRZkGac9DKxPPcLANk5T2sZ0A0WAW30ihbAfDD6AcsJMObtiAAARsF9cLYigDT2XQvsJxi0ApAmTBdfEMk4RnopWB5ZmEDQe7ZDsqWYztBcACDwPt+nimg2+5GOkwmCYaja99lJHBNzRBZaAwMXwPFejACKQwU1GU5WEYuRmMPdPA9ww8X2EoAzyFny6iLRvA8GxCykHbLqaZBsvFMsH1bLxsGMfVJFUabYQxMlGyZDFth4wbwjBdAl6CVDJCp28TTEfxHI+452HjYrk2KcvE12AaCjNooW2P4kgR0dI+DD3tGEYffwzhcJi2tlZ2bNlCJBgiVF5OJBolm81SVFSUvzgcKCHjyGhREWJ/OdQDIwDLyt1mS0pKKCnp2r+y+wlgc0o47qg9zbe0+0uZP0qmaRIJ734tDAbffV9icbT7yUEPJ4d1y1FdXR0nn3wy999/PwC+79OvXz+uvfZabr755g/c/kBHnoej/fWXmNYarTWu62Ka5j4FFrtOycPhwieEEOKjd6Dv34ftn6rZbJYlS5YwceLE/DLDMJg4cSL19fXdbpPJZIjH4wUfUWh/BSRKKQzDwLbtfW5xUUpJYCSEEOKgOWyDo+3bt+N5HlVVhU2PVVVVNDY2drvN7Nmz802bJSUl9OvX76MoqhBCCCEOI4dtcPRhzJw5k/b29vxn06ZNB7tIQgghhDjEHLYdsisrKzFNk6ampoLlTU1NVFdXd7tNMBgs6DQmhBBCCPFeh23LkW3bjB49mgULFuSX+b7PggULGDdu3EEsmRBCCCEOZ4dtyxHAjBkzuOyyyxgzZgxjx45lzpw5JBIJpk+fvlfb7xoVJR2zhRBCiMPHrvv2gRpwf1gHR1OnTmXbtm3cfvvtNDY2MnLkSObNm7dbJ+096ejoAJCO2UIIIcRhqKOj4z3zR+0fh/U8Rz3l+z4NDQ0UFxcfkkPH4/E4/fr1Y9OmTUfsPExH+jE40usPcgyO9PqDHAOQY/De+mut6ejooE+fPhgHYALdw7rlqKcMw6Bv374HuxgfKBaLHZG/DF0d6cfgSK8/yDE40usPcgxAjkHX+h+IFqNdDtsO2UIIIYQQB4IER0IIIYQQXUhwdAgLBoPMmjXriJ6b6Ug/Bkd6/UGOwZFef5BjAHIMPur6H9EdsoUQQggh3ktajoQQQgghupDgSAghhBCiCwmOhBBCCCG6kOBICCGEEKILCY6EEEIIIbqQ4EgIIYQQogsJjoQ4RPzmN79BKdXt5+abbz4g+1y4cCF33HEHbW1tByT/nth1PBYvXnywi/KhPfjgg/zmN7852MUQQuyjI/rdakIciu666y4GDhxYsGzo0KEHZF8LFy7kzjvv5PLLL6e0tPSA7ONI9uCDD1JZWcnll19+sIsihNgHEhwJcYg555xzGDNmzMEuRo8kEgmi0ejBLsZBk0wmiUQiB7sYQogPSR6rCXGY+etf/8ppp51GNBqluLiYyZMns3LlyoI0r7/+OpdffjmDBg0iFApRXV3NV77yFXbs2JFPc8cdd3DjjTcCMHDgwPwjvPXr17N+/XqUUt0+ElJKcccddxTko5Ti3//+N1/84hcpKytj/Pjx+fW/+93vGD16NOFwmPLyci6++GI2bdr0oep++eWXU1RUxMaNG/nsZz9LUVERtbW1PPDAAwC88cYbfOpTnyIajdK/f38eeeSRgu13Pap76aWX+NrXvkZFRQWxWIxp06bR2tq62/4efPBBTjzxRILBIH369OHqq6/e7RHkGWecwdChQ1myZAmnn346kUiEW265hQEDBrBy5Ur+/ve/54/tGWecAUBLSwvf/va3GTZsGEVFRcRiMc455xxee+21grxffPFFlFL88Y9/5Ac/+AF9+/YlFApx5pln8s477+xW3kWLFvGZz3yGsrIyotEow4cP56c//WlBmrfeeosvfOELlJeXEwqFGDNmDE899VRBGsdxuPPOOxk8eDChUIiKigrGjx/P/Pnz9+p7EuJwJy1HQhxi2tvb2b59e8GyyspKAP77v/+byy67jEmTJvGjH/2IZDLJQw89xPjx41m2bBkDBgwAYP78+axdu5bp06dTXV3NypUrefjhh1m5ciUvv/wySinOP/983n77bf7whz/wk5/8JL+PXr16sW3btn0u94UXXsjgwYP54Q9/yK63Ev3gBz/gtttu46KLLuKrX/0q27Zt4+c//zmnn346y5Yt+1CP8jzP45xzzuH000/nnnvu4fe//z3XXHMN0WiU7373u1x66aWcf/75zJ07l2nTpjFu3LjdHlNec801lJaWcscdd7Bq1SoeeughNmzYkA9GIBf03XnnnUycOJFvfOMb+XSvvvoq//rXvwgEAvn8duzYwTnnnMPFF1/Ml770JaqqqjjjjDO49tprKSoq4rvf/S4AVVVVAKxdu5Ynn3ySCy+8kIEDB9LU1MQvfvELJkyYwL///W/69OlTUN67774bwzD49re/TXt7O/fccw+XXnopixYtyqeZP38+n/3sZ6mpqeG6666jurqaN998k6effprrrrsOgJUrV/KJT3yC2tpabr75ZqLRKH/84x+ZMmUK//M//8PnP//5fN1nz57NV7/6VcaOHUs8Hmfx4sUsXbqUT3/60/v8nQlx2NFCiEPCr3/9aw10+9Fa646ODl1aWqqvvPLKgu0aGxt1SUlJwfJkMrlb/n/4wx80oF966aX8snvvvVcDet26dQVp161bpwH961//erd8AD1r1qz8/2fNmqUBfckllxSkW79+vTZNU//gBz8oWP7GG29oy7J2W76n4/Hqq6/ml1122WUa0D/84Q/zy1pbW3U4HNZKKf3oo4/ml7/11lu7lXVXnqNHj9bZbDa//J577tGA/stf/qK11rq5uVnbtq3POuss7XlePt3999+vAf2rX/0qv2zChAka0HPnzt2tDieeeKKeMGHCbsvT6XRBvlrnjnkwGNR33XVXftkLL7ygAX388cfrTCaTX/7Tn/5UA/qNN97QWmvtuq4eOHCg7t+/v25tbS3I1/f9/M9nnnmmHjZsmE6n0wXrTz31VD148OD8shEjRujJkyfvVm4hjhTyWE2IQ8wDDzzA/PnzCz6Qaxloa2vjkksuYfv27fmPaZrU1dXxwgsv5PMIh8P5n9PpNNu3b+eUU04BYOnSpQek3F//+tcL/v/EE0/g+z4XXXRRQXmrq6sZPHhwQXn31Ve/+tX8z6WlpRx33HFEo1Euuuii/PLjjjuO0tJS1q5du9v2V111VUHLzze+8Q0sy+LZZ58F4LnnniObzXL99ddjGO9eJq+88kpisRjPPPNMQX7BYJDp06fvdfmDwWA+X8/z2LFjB0VFRRx33HHdfj/Tp0/Htu38/0877TSAfN2WLVvGunXruP7663drjdvVEtbS0sLzzz/PRRddREdHR/772LFjB5MmTWL16tVs2bIFyB3TlStXsnr16r2ukxAfJ/JYTYhDzNixY7vtkL3rRvWpT32q2+1isVj+55aWFu68804effRRmpubC9K1t7fvx9K+672PrlavXo3WmsGDB3ebvmtwsi9CoRC9evUqWFZSUkLfvn3zgUDX5d31JXpvmYqKiqipqWH9+vUAbNiwAcgFWF3Zts2gQYPy63epra0tCF4+iO/7/PSnP+XBBx9k3bp1eJ6XX1dRUbFb+qOOOqrg/2VlZQD5uq1ZswZ4/1GN77zzDlprbrvtNm677bZu0zQ3N1NbW8tdd93Feeedx7HHHsvQoUM5++yz+fKXv8zw4cP3uo5CHM4kOBLiMOH7PpDrd1RdXb3best699f5oosuYuHChdx4442MHDmSoqIifN/n7LPPzufzft4bZOzS9Sb+Xl1bq3aVVynFX//6V0zT3C19UVHRB5ajO93l9X7L9c7+TwfSe+v+QX74wx9y22238ZWvfIXvfe97lJeXYxgG119/fbffz/6o2658v/3tbzNp0qRu0xxzzDEAnH766axZs4a//OUv/N///R//+Z//yU9+8hPmzp1b0GonxMeVBEdCHCaOPvpoAHr37s3EiRP3mK61tZUFCxZw5513cvvtt+eXd/eIZE9B0K6WifeOzHpvi8kHlVdrzcCBAzn22GP3eruPwurVq/nkJz+Z/39nZydbt27lM5/5DAD9+/cHYNWqVQwaNCifLpvNsm7duvc9/l3t6fj+6U9/4pOf/CS//OUvC5a3tbXlO8bvi13nxooVK/ZYtl31CAQCe1X+8vJypk+fzvTp0+ns7OT000/njjvukOBIHBGkz5EQh4lJkyYRi8X44Q9/iOM4u63fNcJsVyvDe1sV5syZs9s2u+Yiem8QFIvFqKys5KWXXipY/uCDD+51ec8//3xM0+TOO+/crSxa64JpBT5qDz/8cMExfOihh3Bdl3POOQeAiRMnYts2P/vZzwrK/stf/pL29nYmT568V/uJRqPdzj5umuZux+Txxx/P9/nZV6NGjWLgwIHMmTNnt/3t2k/v3r0544wz+MUvfsHWrVt3y6PrCMX3fjdFRUUcc8wxZDKZD1U+IQ430nIkxGEiFovx0EMP8eUvf5lRo0Zx8cUX06tXLzZu3MgzzzzDJz7xCe6//35isVh+mLvjONTW1vJ///d/rFu3brc8R48eDcB3v/tdLr74YgKBAJ/73OeIRqN89atf5e677+arX/0qY8aM4aWXXuLtt9/e6/IeffTRfP/732fmzJmsX7+eKVOmUFxczLp16/jzn//MVVddxbe//e39dnz2RTab5cwzz+Siiy5i1apVPPjgg4wfP55zzz0XyE1nMHPmTO68807OPvtszj333Hy6k08+mS996Ut7tZ/Ro0fz0EMP8f3vf59jjjmG3r1786lPfYrPfvaz3HXXXUyfPp1TTz2VN954g9///vcFrVT7wjAMHnroIT73uc8xcuRIpk+fTk1NDW+99RYrV67kb3/7G5Dr7D9+/HiGDRvGlVdeyaBBg2hqaqK+vp7Nmzfn51k64YQTOOOMMxg9ejTl5eUsXryYP/3pT1xzzTUfqnxCHHYO0ig5IcR7dDd0vTsvvPCCnjRpki4pKdGhUEgfffTR+vLLL9eLFy/Op9m8ebP+/Oc/r0tLS3VJSYm+8MILdUNDw25D27XW+nvf+56ura3VhmEUDOtPJpP6iiuu0CUlJbq4uFhfdNFFurm5eY9D+bdt29Ztef/nf/5Hjx8/XkejUR2NRvWQIUP01VdfrVetWrXPx+Oyyy7T0Wh0t7QTJkzQJ5544m7L+/fvXzAkfVeef//73/VVV12ly8rKdFFRkb700kv1jh07dtv+/vvv10OGDNGBQEBXVVXpb3zjG7sNld/TvrXOTbMwefJkXVxcrIH8sP50Oq2/9a1v6ZqaGh0Oh/UnPvEJXV9frydMmFAw9H/XUP7HH3+8IN89TbXwz3/+U3/605/WxcXFOhqN6uHDh+uf//znBWnWrFmjp02bpqurq3UgENC1tbX6s5/9rP7Tn/6UT/P9739fjx07VpeWlupwOKyHDBmif/CDHxRMfyDEx5nS+iPorSiEEIeA3/zmN0yfPp1XX331sH9FixDiwJE+R0IIIYQQXUhwJIQQQgjRhQRHQgghhBBdSJ8jIYQQQogupOVICCGEEKKLI3qeI9/3aWhooLi4eI8z2QohhBDi0KK1pqOjgz59+hS8HHp/OaKDo4aGBvr163ewiyGEEEKID2HTpk307dt3v+d7RAdHxcXFQO7gdn2juRBCCCEOXfF4nH79+uXv4/vbER0c7XqUFovFJDgSQgghDjMHqkuMdMgWQgghhOhCgiMhhBBCiC4kOBJCCCGE6EKCIyGEEEKILiQ4EkIIIYToQoIjIYQQQoguJDgSQgghhOhCgiMhhBBCiC4kOBJCCCGE6EKCIyGEEEKILiQ4EkIIIYToYr8ERw888AADBgwgFApRV1fHK6+88r7pH3/8cYYMGUIoFGLYsGE8++yz+XWO43DTTTcxbNgwotEoffr0Ydq0aTQ0NBTkMWDAAJRSBZ+77757f1RHCCGEEEewHgdHjz32GDNmzGDWrFksXbqUESNGMGnSJJqbm7tNv3DhQi655BKuuOIKli1bxpQpU5gyZQorVqwAIJlMsnTpUm677TaWLl3KE088wapVqzj33HN3y+uuu+5i69at+c+1117b0+oIIUSBATc/c7CLIIT4iCmtte5JBnV1dZx88sncf//9APi+T79+/bj22mu5+eabd0s/depUEokETz/9dH7ZKaecwsiRI5k7d263+3j11VcZO3YsGzZs4KijjgJyLUfXX389119//Ycuezwep6SkhPb2dmKx2IfORwjx8TXg5mdYf/fkg10MIUQXB/r+3aOWo2w2y5IlS5g4ceK7GRoGEydOpL6+vttt6uvrC9IDTJo0aY/pAdrb21FKUVpaWrD87rvvpqKigpNOOol7770X13Xft7yZTIZ4PF7wEUIIIYToyurJxtu3b8fzPKqqqgqWV1VV8dZbb3W7TWNjY7fpGxsbu02fTqe56aabuOSSSwqiw29+85uMGjWK8vJyFi5cyMyZM9m6dSv33XffHss7e/Zs7rzzzr2tnhBCCCGOQD0Kjg40x3G46KKL0Frz0EMPFaybMWNG/ufhw4dj2zZf+9rXmD17NsFgsNv8Zs6cWbBdPB6nX79+B6bwQgghhDgs9Sg4qqysxDRNmpqaCpY3NTVRXV3d7TbV1dV7lX5XYLRhwwaef/75D3ymWFdXh+u6rF+/nuOOO67bNMFgcI+BkxBCCCEE9LDPkW3bjB49mgULFuSX+b7PggULGDduXLfbjBs3riA9wPz58wvS7wqMVq9ezXPPPUdFRcUHlmX58uUYhkHv3r0/ZG2EEEIIIfbDY7UZM2Zw2WWXMWbMGMaOHcucOXNIJBJMnz4dgGnTplFbW8vs2bMBuO6665gwYQI//vGPmTx5Mo8++iiLFy/m4YcfBnKB0Re+8AWWLl3K008/jed5+f5I5eXl2LZNfX09ixYt4pOf/CTFxcXU19dzww038KUvfYmysrKeVkkIIYQQR7AeB0dTp05l27Zt3H777TQ2NjJy5EjmzZuX73S9ceNGDOPdBqpTTz2VRx55hFtvvZVbbrmFwYMH8+STTzJ06FAAtmzZwlNPPQXAyJEjC/b1wgsvcMYZZxAMBnn00Ue54447yGQyDBw4kBtuuKGgP5EQQgghxIfR43mODmcyz5EQ4oPIPEdCHHoO6XmOhBBCCCE+biQ4EkIIIYToQoIjIYQQQoguJDgSQgghhOhCgiMhhBBCiC4kOBJCCCGE6EKCIyGEEEKILiQ4EkIIIYToQoIjIYQQQoguJDgSQgghhOhCgiMhhBBCiC4kOBJCCCGE6EKCIyGEEEKILiQ4EkIIIYToQoIjIYQQQoguJDgSQgghhOhCgiMhhBBCiC4kOBJCCCGE6EKCIyGEEEKILvZLcPTAAw8wYMAAQqEQdXV1vPLKK++b/vHHH2fIkCGEQiGGDRvGs88+m1/nOA433XQTw4YNIxqN0qdPH6ZNm0ZDQ0NBHi0tLVx66aXEYjFKS0u54oor6Ozs3B/VEUIIIcQRrMfB0WOPPcaMGTOYNWsWS5cuZcSIEUyaNInm5uZu0y9cuJBLLrmEK664gmXLljFlyhSmTJnCihUrAEgmkyxdupTbbruNpUuX8sQTT7Bq1SrOPffcgnwuvfRSVq5cyfz583n66ad56aWXuOqqq3paHSGEEEIc4ZTWWvckg7q6Ok4++WTuv/9+AHzfp1+/flx77bXcfPPNu6WfOnUqiUSCp59+Or/slFNOYeTIkcydO7fbfbz66quMHTuWDRs2cNRRR/Hmm29ywgkn8OqrrzJmzBgA5s2bx2c+8xk2b95Mnz599qrs8XickpIS2tvbicVi+1p1IcQRYMDNz7D+7skHuxhCiC4O9P27Ry1H2WyWJUuWMHHixHczNAwmTpxIfX19t9vU19cXpAeYNGnSHtMDtLe3o5SitLQ0n0dpaWk+MAKYOHEihmGwaNGiPeaTyWSIx+MFHyGEEEKIrnoUHG3fvh3P86iqqipYXlVVRWNjY7fbNDY27lP6dDrNTTfdxCWXXJKPDhsbG+ndu3dBOsuyKC8v32M+ALNnz6akpCT/6dev3wfWUQghhBBHlkN6tJrjOFx00UVorXnooYd6nN/MmTNpb2/PfzZt2rQfSimEEEKIjxOrJxtXVlZimiZNTU0Fy5uamqiuru52m+rq6r1Kvysw2rBhA88//3zBM8Xq6urdOny7rktLS8se9wsQDAYJBoN7VTchhBBCHJl61HJk2zajR49mwYIF+WW+77NgwQLGjRvX7Tbjxo0rSA8wf/78gvS7AqPVq1fz3HPPUVFRsVsebW1tLFmyJL/s+eefx/d96urqelIlIYQQQhzhetRyBDBjxgwuu+wyxowZw9ixY5kzZw6JRILp06cDMG3aNGpra5k9ezYA1113HRMmTODHP/4xkydP5tFHH2Xx4sU8/PDDQC4w+sIXvsDSpUt5+umn8Twv34+ovLwc27Y5/vjjOfvss7nyyiuZO3cujuNwzTXXcPHFF+/1SDUhhBBCiO70ODiaOnUq27Zt4/bbb6exsZGRI0cyb968fKfrjRs3YhjvNlCdeuqpPPLII9x6663ccsstDB48mCeffJKhQ4cCsGXLFp566ikARo4cWbCvF154gTPOOAOA3//+91xzzTWceeaZGIbBBRdcwM9+9rOeVkcIIYQQR7gez3N0OJN5joQQH0TmORLi0HNIz3MkhBBCCPFxI8GREEIIIUQXEhwJIYQQQnQhwZEQQgghRBcSHAkhhBBCdCHBkRBCCCFEFxIcCSGEEEJ0IcGREEIIIUQXEhwJIYQQQnQhwZEQQgghRBcSHAkhhBBCdCHBkRBCCCFEFxIcCSGEEEJ0IcGREEIIIUQXEhwJIYQQQnQhwZEQQgghRBcSHAkhxAcYcPMzB7sIQoiPkARHQgghhBBdSHAkhBBCCNHFfgmOHnjgAQYMGEAoFKKuro5XXnnlfdM//vjjDBkyhFAoxLBhw3j22WcL1j/xxBOcddZZVFRUoJRi+fLlu+VxxhlnoJQq+Hz961/fH9URQgghxBGsx8HRY489xowZM5g1axZLly5lxIgRTJo0iebm5m7TL1y4kEsuuYQrrriCZcuWMWXKFKZMmcKKFSvyaRKJBOPHj+dHP/rR++77yiuvZOvWrfnPPffc09PqCCGEEOIIp7TWuicZ1NXVcfLJJ3P//fcD4Ps+/fr149prr+Xmm2/eLf3UqVNJJBI8/fTT+WWnnHIKI0eOZO7cuQVp169fz8CBA1m2bBkjR44sWHfGGWcwcuRI5syZ86HLHo/HKSkpob29nVgs9qHzEUJ8fO3qjL3+7skHuSRCiF0O9P27Ry1H2WyWJUuWMHHixHczNAwmTpxIfX19t9vU19cXpAeYNGnSHtO/n9///vdUVlYydOhQZs6cSTKZfN/0mUyGeDxe8BFCCHHkkpGIojtWTzbevn07nudRVVVVsLyqqoq33nqr220aGxu7Td/Y2LhP+/7iF79I//796dOnD6+//jo33XQTq1at4oknntjjNrNnz+bOO+/cp/0IIYQQ4sjSo+DoYLrqqqvyPw8bNoyamhrOPPNM1qxZw9FHH93tNjNnzmTGjBn5/8fjcfr163fAyyqEEEKIw0ePgqPKykpM06SpqalgeVNTE9XV1d1uU11dvU/p91ZdXR0A77zzzh6Do2AwSDAY7NF+hBBCCPHx1qM+R7ZtM3r0aBYsWJBf5vs+CxYsYNy4cd1uM27cuIL0APPnz99j+r21a7h/TU1Nj/IRQgghxJGtx4/VZsyYwWWXXcaYMWMYO3Ysc+bMIZFIMH36dACmTZtGbW0ts2fPBuC6665jwoQJ/PjHP2by5Mk8+uijLF68mIcffjifZ0tLCxs3bqShoQGAVatWAblWp+rqatasWcMjjzzCZz7zGSoqKnj99de54YYbOP300xk+fHhPqySEEEKII1iPg6OpU6eybds2br/9dhobGxk5ciTz5s3Ld7reuHEjhvFuA9Wpp57KI488wq233sott9zC4MGDefLJJxk6dGg+zVNPPZUPrgAuvvhiAGbNmsUdd9yBbds899xz+UCsX79+XHDBBdx66609rY4QQgghjnA9nufocCbzHAkhPojMc/TxNuDmZ+S7PQwd0vMcCSGEEEJ83EhwJIQQQgjRhQRHQgghhBBdSHAkhBBCCNGFBEdCCCGEEF1IcCSEEEII0YUER0IIIYQQXUhwJIQQQgjRhQRHQgghhBBdSHAkhBBC7Ae7ZlMXhz8JjoQQQgghupDgSAghhBCiCwmOhBBCCCG6kOBICCHER0r65ohDnQRHQgghhBBdSHAkhBBCCNGFBEdCCCGEEF1IcCTEIU76ZwghxEdLgiMhDmESGAkhxEdvvwRHDzzwAAMGDCAUClFXV8crr7zyvukff/xxhgwZQigUYtiwYTz77LMF65944gnOOussKioqUEqxfPny3fJIp9NcffXVVFRUUFRUxAUXXEBTU9P+qI4QQgghjmA9Do4ee+wxZsyYwaxZs1i6dCkjRoxg0qRJNDc3d5t+4cKFXHLJJVxxxRUsW7aMKVOmMGXKFFasWJFPk0gkGD9+PD/60Y/2uN8bbriB//3f/+Xxxx/n73//Ow0NDZx//vk9rY4QQogDQFpBxeGkx8HRfffdx5VXXsn06dM54YQTmDt3LpFIhF/96lfdpv/pT3/K2WefzY033sjxxx/P9773PUaNGsX999+fT/PlL3+Z22+/nYkTJ3abR3t7O7/85S+57777+NSnPsXo0aP59a9/zcKFC3n55Zd7WiUhhBBCHMF6FBxls1mWLFlSEMQYhsHEiROpr6/vdpv6+vrdgp5JkybtMX13lixZguM4BfkMGTKEo4466n3zyWQyxOPxgo8QQgghRFc9Co62b9+O53lUVVUVLK+qqqKxsbHbbRobG/cp/Z7ysG2b0tLSfcpn9uzZlJSU5D/9+vXb630KIYQQ4shwRI1WmzlzJu3t7fnPpk2bDnaRhBBCCHGIsXqycWVlJaZp7jZKrKmpierq6m63qa6u3qf0e8ojm83S1tZW0Hr0QfkEg0GCweBe70cIIYQQR54etRzZts3o0aNZsGBBfpnv+yxYsIBx48Z1u824ceMK0gPMnz9/j+m7M3r0aAKBQEE+q1atYuPGjfuUjxBCCCHEe/Wo5QhgxowZXHbZZYwZM4axY8cyZ84cEokE06dPB2DatGnU1tYye/ZsAK677jomTJjAj3/8YyZPnsyjjz7K4sWLefjhh/N5trS0sHHjRhoaGoBc4AO5FqPq6mpKSkq44oormDFjBuXl5cRiMa699lrGjRvHKaec0tMqCSGEEOII1uPgaOrUqWzbto3bb7+dxsZGRo4cybx58/Kdrjdu3IhhvNtAdeqpp/LII49w6623cssttzB48GCefPJJhg4dmk/z1FNP5YMrgIsvvhiAWbNmcccddwDwk5/8BMMwuOCCC8hkMkyaNIkHH3ywp9URQgghxBGux8ERwDXXXMM111zT7boXX3xxt2UXXnghF1544R7zu/zyy7n88svfd5+hUIgHHniABx54YF+KKoQQQgjxvo6o0WpCCCGEEB9EgiMhhBCih+T1KB8vEhwJIYQQQnQhwZEQQgghRBcSHAkhhBBCdCHBkRBCCCFEFxIcCSGEEEJ0IcGREEIIIUQXEhwJIYQQQnQhwZEQQgghRBcSHAkhxH4mEwIKcXiT4EgIIYQQogsJjoQQQgghupDgSIjDgDymEeLAkd8v8V4SHAkhhBBCdCHBkRBCCCFEFxIcCSGEEEJ0IcGREEIIIUQXEhwJIYQQQnSxX4KjBx54gAEDBhAKhairq+OVV1553/SPP/44Q4YMIRQKMWzYMJ599tmC9Vprbr/9dmpqagiHw0ycOJHVq1cXpBkwYABKqYLP3XffvT+qI4QQQogjWI+Do8cee4wZM2Ywa9Ysli5dyogRI5g0aRLNzc3dpl+4cCGXXHIJV1xxBcuWLWPKlClMmTKFFStW5NPcc889/OxnP2Pu3LksWrSIaDTKpEmTSKfTBXndddddbN26Nf+59tpre1odIYQQQhzhehwc3XfffVx55ZVMnz6dE044gblz5xKJRPjVr37Vbfqf/vSnnH322dx4440cf/zxfO9732PUqFHcf//9QK7VaM6cOdx6662cd955DB8+nN/+9rc0NDTw5JNPFuRVXFxMdXV1/hONRntaHSGEOGLI/D5CdK9HwVE2m2XJkiVMnDjx3QwNg4kTJ1JfX9/tNvX19QXpASZNmpRPv27dOhobGwvSlJSUUFdXt1ued999NxUVFZx00knce++9uK77vuXNZDLE4/GCjxBCiCPT/goOJcj8+LF6svH27dvxPI+qqqqC5VVVVbz11lvdbtPY2Nht+sbGxvz6Xcv2lAbgm9/8JqNGjaK8vJyFCxcyc+ZMtm7dyn333bfH8s6ePZs777xz7ysohBBCiCNOj4Kjg2nGjBn5n4cPH45t23zta19j9uzZBIPBbreZOXNmwXbxeJx+/fod8LIKIYQQ4vDRo8dqlZWVmKZJU1NTwfKmpiaqq6u73aa6uvp90+/6d1/yBKirq8N1XdavX7/HNMFgkFgsVvARQgghhOiqR8GRbduMHj2aBQsW5Jf5vs+CBQsYN25ct9uMGzeuID3A/Pnz8+kHDhxIdXV1QZp4PM6iRYv2mCfA8uXLMQyD3r1796RKQgjxsST9YoTYez1+rDZjxgwuu+wyxowZw9ixY5kzZw6JRILp06cDMG3aNGpra5k9ezYA1113HRMmTODHP/4xkydP5tFHH2Xx4sU8/PDDACiluP766/n+97/P4MGDGThwILfddht9+vRhypQpQK5T96JFi/jkJz9JcXEx9fX13HDDDXzpS1+irKysp1USQgjxERlw8zOsv3vywS6GEAV6HBxNnTqVbdu2cfvtt9PY2MjIkSOZN29evkP1xo0bMYx3G6hOPfVUHnnkEW699VZuueUWBg8ezJNPPsnQoUPzab7zne+QSCS46qqraGtrY/z48cybN49QKATkHo89+uij3HHHHWQyGQYOHMgNN9xQ0J9ICCGEeC8JxsTe2C8dsq+55hquueaabte9+OKLuy278MILufDCC/eYn1KKu+66i7vuuqvb9aNGjeLll1/+UGUVQgghhHg/8m41IYQQQoguJDgSQogjkHTQFmLPJDgSQgghhOhCgiMhhBBCiC4kOBJCCCGE6EKCIyGEEEKILiQ4EkKIg0g6Rgtx6JHgSAghhBCiCwmOhBBCfCT2tpVMWtPEwSbBkRBCiINKgiFxqJHgSAghhBCiCwmOhBBCCCG6kOBICHHQyWMVIeeAOJRIcCSEOGQdiTfM/VXnI/HYCbG/SHAkhBBHmIMZOB2Mfe/NPiWYFF1JcCTETnJxFB/kcD9HDvfyC/FRkeBICCGEEKILCY6EEIckaeX48Pb12B1Kx/pQKos4cklwJIQQhwgJDA4cObZiX+yX4OiBBx5gwIABhEIh6urqeOWVV943/eOPP86QIUMIhUIMGzaMZ599tmC91prbb7+dmpoawuEwEydOZPXq1QVpWlpauPTSS4nFYpSWlnLFFVfQ2dm5P6ojhBAH3Ud9M5fgQYh39Tg4euyxx5gxYwazZs1i6dKljBgxgkmTJtHc3Nxt+oULF3LJJZdwxRVXsGzZMqZMmcKUKVNYsWJFPs0999zDz372M+bOncuiRYuIRqNMmjSJdDqdT3PppZeycuVK5s+fz9NPP81LL73EVVdd1dPqCCHEQXcwh/NLkCTEfgiO7rvvPq688kqmT5/OCSecwNy5c4lEIvzqV7/qNv1Pf/pTzj77bG688UaOP/54vve97zFq1Cjuv/9+INdqNGfOHG699VbOO+88hg8fzm9/+1saGhp48sknAXjzzTeZN28e//mf/0ldXR3jx4/n5z//OY8++igNDQ09rZIQ4hAiN+vDn7xwVhxurJ5snM1mWbJkCTNnzswvMwyDiRMnUl9f3+029fX1zJgxo2DZpEmT8oHPunXraGxsZOLEifn1JSUl1NXVUV9fz8UXX0x9fT2lpaWMGTMmn2bixIkYhsGiRYv4/Oc/3+2+M5kMmUwm///29nYA4vH4vlVcfCz5meQhdy74mWT+50OtbPtTd8e+a92PuuFxVtw56aMuVkE54vH4Xp8jfia512XummfXOu/a54fR3Xmza9lRNzy+2z7eW8f9fbzfW6/uyrWn9ftz/+/9Dg/k8RYH1q7jrLU+MDvQPbBlyxYN6IULFxYsv/HGG/XYsWO73SYQCOhHHnmkYNkDDzyge/furbXW+l//+pcGdENDQ0GaCy+8UF900UVaa61/8IMf6GOPPXa3vHv16qUffPDBPZZ31qxZGpCPfOQjH/nIRz4fg8+mTZs+OFj5EHrUcnS4mTlzZkGrle/7tLS0UFFRgVLqIJase/F4nH79+rFp0yZisdjBLs5BcaQfgyO9/iDH4EivP8gxADkG762/1pqOjg769OlzQPbXo+CosrIS0zRpamoqWN7U1ER1dXW321RXV79v+l3/NjU1UVNTU5Bm5MiR+TTv7fDtui4tLS173C9AMBgkGAwWLCstLd1zBQ8RsVjsiPxl6OpIPwZHev1BjsGRXn+QYwByDLrWv6Sk5IDtp0cdsm3bZvTo0SxYsCC/zPd9FixYwLhx47rdZty4cQXpAebPn59PP3DgQKqrqwvSxONxFi1alE8zbtw42traWLJkST7N888/j+/71NXV9aRKQgghhDjC9fix2owZM7jssssYM2YMY8eOZc6cOSQSCaZPnw7AtGnTqK2tZfbs2QBcd911TJgwgR//+MdMnjyZRx99lMWLF/Pwww8DoJTi+uuv5/vf/z6DBw9m4MCB3HbbbfTp04cpU6YAcPzxx3P22Wdz5ZVXMnfuXBzH4ZprruHiiy8+YE1sQgghhDgy9Dg4mjp1Ktu2beP222+nsbGRkSNHMm/ePKqqqgDYuHEjhvFuA9Wpp57KI488wq233sott9zC4MGDefLJJxk6dGg+zXe+8x0SiQRXXXUVbW1tjB8/nnnz5hEKhfJpfv/733PNNddw5plnYhgGF1xwAT/72c96Wp1DSjAYZNasWbs9CjySHOnH4EivP8gxONLrD3IMQI7BR11/pfWBGgcnhBBCCHH4kXerCSGEEEJ0IcGREEIIIUQXEhwJIYQQQnQhwZEQQgghRBcSHAkhhBBCdCHB0Uds9uzZnHzyyRQXF9O7d2+mTJnCqlWrCtKcccYZKKUKPl//+tcL0mzcuJHJkycTiUTo3bs3N954I67rfpRV+dDuuOOO3eo3ZMiQ/Pp0Os3VV19NRUUFRUVFXHDBBbvNqn4413/AgAG71V8pxdVXXw18PL//l156ic997nP06dMHpVT+RdO7aK25/fbbqampIRwOM3HiRFavXl2QpqWlhUsvvZRYLEZpaSlXXHEFnZ2dBWlef/11TjvtNEKhEP369eOee+450FXbK+9Xf8dxuOmmmxg2bBjRaJQ+ffowbdo0GhoaCvLo7ry5++67C9IcqvWHDz4HLr/88t3qd/bZZxekOZzPAfjgY9DddUEpxb333ptPczifB3tz/9tf1/8XX3yRUaNGEQwGOeaYY/jNb36zb4U9IG9sE3s0adIk/etf/1qvWLFCL1++XH/mM5/RRx11lO7s7MynmTBhgr7yyiv11q1b85/29vb8etd19dChQ/XEiRP1smXL9LPPPqsrKyv1zJkzD0aV9tmsWbP0iSeeWFC/bdu25dd//etf1/369dMLFizQixcv1qeccoo+9dRT8+sP9/o3NzcX1H3+/Pka0C+88ILW+uP5/T/77LP6u9/9rn7iiSc0oP/85z8XrL/77rt1SUmJfvLJJ/Vrr72mzz33XD1w4ECdSqXyac4++2w9YsQI/fLLL+t//OMf+phjjtGXXHJJfn17e7uuqqrSl156qV6xYoX+wx/+oMPhsP7FL37xUVVzj96v/m1tbXrixIn6scce02+99Zaur6/XY8eO1aNHjy7Io3///vquu+4qOC+6XjcO5fpr/cHnwGWXXabPPvvsgvq1tLQUpDmczwGtP/gYdK371q1b9a9+9SutlNJr1qzJpzmcz4O9uf/tj+v/2rVrdSQS0TNmzND//ve/9c9//nNtmqaeN2/eXpdVgqODrLm5WQP673//e37ZhAkT9HXXXbfHbZ599lltGIZubGzML3vooYd0LBbTmUzmQBZ3v5g1a5YeMWJEt+va2tp0IBDQjz/+eH7Zm2++qQFdX1+vtT786/9e1113nT766KO17/ta64//9//em4Lv+7q6ulrfe++9+WVtbW06GAzqP/zhD1prrf/9739rQL/66qv5NH/961+1Ukpv2bJFa631gw8+qMvKygqOwU033aSPO+64A1yjfdPdTfG9XnnlFQ3oDRs25Jf1799f/+QnP9njNodL/bXu/hhcdtll+rzzztvjNh+nc0DrvTsPzjvvPP2pT32qYNnH6Tx47/1vf13/v/Od7+gTTzyxYF9Tp07VkyZN2uuyyWO1g6y9vR2A8vLyguW///3vqaysZOjQocycOZNkMplfV19fz7Bhw/KzkANMmjSJeDzOypUrP5qC99Dq1avp06cPgwYN4tJLL2Xjxo0ALFmyBMdxmDhxYj7tkCFDOOqoo6ivrwc+HvXfJZvN8rvf/Y6vfOUrKKXyyz/u339X69ato7GxseA7Lykpoa6uruA7Ly0tZcyYMfk0EydOxDAMFi1alE9z+umnY9t2Ps2kSZNYtWoVra2tH1Ft9o/29naUUru9GPvuu++moqKCk046iXvvvbfgUcLHof4vvvgivXv35rjjjuMb3/gGO3bsyK870s6BpqYmnnnmGa644ord1n1czoP33v/21/W/vr6+II9daXblsTd6/PoQ8eH5vs/111/PJz7xiYLXp3zxi1+kf//+9OnTh9dff52bbrqJVatW8cQTTwDQ2NhYcGIA+f83NjZ+dBX4kOrq6vjNb37Dcccdx9atW7nzzjs57bTTWLFiBY2Njdi2vdtNoaqqKl+3w73+XT355JO0tbVx+eWX55d93L//99pV5u7q1PU77927d8F6y7IoLy8vSDNw4MDd8ti1rqys7ICUf39Lp9PcdNNNXHLJJQVvX//mN7/JqFGjKC8vZ+HChcycOZOtW7dy3333AYd//c8++2zOP/98Bg4cyJo1a7jllls455xzqK+vxzTNI+ocAPiv//oviouLOf/88wuWf1zOg+7uf/vr+r+nNPF4nFQqRTgc/sDySXB0EF199dWsWLGCf/7znwXLr7rqqvzPw4YNo6amhjPPPJM1a9Zw9NFHf9TF3O/OOeec/M/Dhw+nrq6O/v3788c//nGvTtqPk1/+8pecc845BS9M/rh//2LPHMfhoosuQmvNQw89VLBuxowZ+Z+HDx+Obdt87WtfY/bs2R+L921dfPHF+Z+HDRvG8OHDOfroo3nxxRc588wzD2LJDo5f/epXXHrppQXvFIWPz3mwp/vfoUIeqx0k11xzDU8//TQvvPACffv2fd+0dXV1ALzzzjsAVFdX79Z7f9f/q6urD0BpD6zS0lKOPfZY3nnnHaqrq8lms7S1tRWkaWpqytft41L/DRs28Nxzz/HVr371fdN93L//XWXurk5dv/Pm5uaC9a7r0tLS8rE5L3YFRhs2bGD+/PkFrUbdqaurw3Vd1q9fDxz+9X+vQYMGUVlZWXDef9zPgV3+8Y9/sGrVqg+8NsDheR7s6f63v67/e0oTi8X2+g9wCY4+YlprrrnmGv785z/z/PPP79b82Z3ly5cDUFNTA8C4ceN44403Ci4Uuy6mJ5xwwgEp94HU2dnJmjVrqKmpYfTo0QQCARYsWJBfv2rVKjZu3Mi4ceOAj0/9f/3rX9O7d28mT578vuk+7t//wIEDqa6uLvjO4/E4ixYtKvjO29raWLJkST7N888/j+/7+eBx3LhxvPTSSziOk08zf/58jjvuuEPmUcKe7AqMVq9ezXPPPUdFRcUHbrN8+XIMw8g/ajqc69+dzZs3s2PHjoLz/uN8DnT1y1/+ktGjRzNixIgPTHs4nQcfdP/bX9f/cePGFeSxK82uPPa2sOIj9I1vfEOXlJToF198sWAoZjKZ1Fpr/c477+i77rpLL168WK9bt07/5S9/0YMGDdKnn356Po9dQxnPOussvXz5cj1v3jzdq1evQ3ood1ff+ta39IsvvqjXrVun//Wvf+mJEyfqyspK3dzcrLXODeU86qij9PPPP68XL16sx40bp8eNG5ff/nCvv9Zae56njzrqKH3TTTcVLP+4fv8dHR162bJletmyZRrQ9913n162bFl+NNbdd9+tS0tL9V/+8hf9+uuv6/POO6/bofwnnXSSXrRokf7nP/+pBw8eXDCMu62tTVdVVekvf/nLesWKFfrRRx/VkUjkkBjC/H71z2az+txzz9V9+/bVy5cvL7gu7Bp9s3DhQv2Tn/xEL1++XK9Zs0b/7ne/07169dLTpk3L7+NQrr/W738MOjo69Le//W1dX1+v161bp5977jk9atQoPXjwYJ1Op/N5HM7ngNYf/HugdW4ofiQS0Q899NBu2x/u58EH3f+03j/X/11D+W+88Ub95ptv6gceeECG8h/qgG4/v/71r7XWWm/cuFGffvrpury8XAeDQX3MMcfoG2+8sWCeG621Xr9+vT7nnHN0OBzWlZWV+lvf+pZ2HOcg1GjfTZ06VdfU1GjbtnVtba2eOnWqfuedd/LrU6mU/o//+A9dVlamI5GI/vznP6+3bt1akMfhXH+ttf7b3/6mAb1q1aqC5R/X7/+FF17o9ry/7LLLtNa54fy33Xabrqqq0sFgUJ955pm7HZsdO3boSy65RBcVFelYLKanT5+uOzo6CtK89tprevz48ToYDOra2lp99913f1RVfF/vV/9169bt8bqwa+6rJUuW6Lq6Ol1SUqJDoZA+/vjj9Q9/+MOCwEHrQ7f+Wr//MUgmk/qss87SvXr10oFAQPfv319feeWVBcO1tT68zwGtP/j3QGutf/GLX+hwOKzb2tp22/5wPw8+6P6n9f67/r/wwgt65MiR2rZtPWjQoIJ97A21s8BCCCGEEALpcySEEEIIUUCCIyGEEEKILiQ4EkIIIYToQoIjIYQQQoguJDgSQgghhOhCgiMhhBBCiC4kOBJCCCGE6EKCIyGEEEKILiQ4EkIIIYToQoIjIYQQQoguJDgSQgghhOji/weym0zVjMQLCQAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "clf = RandomForestClassifier(**classifier_params)\n", "clf.fit(X_train_small, truth_train.to_numpy().ravel())\n", "_, axs = plt.subplots(2, sharex=True)\n", "axs[0].plot(experiments_train.columns.astype(int), experiments_train.transpose())\n", "axs[0].set_title('Unprocessed raman spectra')\n", "axs[1].bar(X_train_small.iloc[:,2:].columns.astype(int), clf.feature_importances_[2:])\n", "_ = axs[1].set_title('Feature Importances')\n", "plt.savefig('../images/random_forest/feature_importance_dropped.svg', format='svg', dpi=1200)" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-05-01T11:20:05.925186800Z", "start_time": "2024-05-01T11:20:03.348358Z" } }, "id": "41156abfab66504e", "execution_count": 63 }, { "cell_type": "code", "outputs": [ { "data": { "text/plain": "(1.0, 0.9915254237288134)" }, "execution_count": 65, "metadata": {}, "output_type": "execute_result" } ], "source": [ "scaler = StandardScaler()\n", "scaler.fit(X_train_small)\n", "X_train_small = scaler.transform(X_train_small)\n", "X_test_small = scaler.transform(X_test_small)\n", "evaluate_classifier_params(RandomForestClassifier, best_params, X_train_small, truth_train, X_test_small, truth_test, iters=20)" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-05-01T11:20:59.439356100Z", "start_time": "2024-05-01T11:20:47.786126100Z" } }, "id": "7661e709fa106edd", "execution_count": 65 }, { "cell_type": "code", "outputs": [], "source": [], "metadata": { "collapsed": false }, "id": "9737bff20459b9ff" } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 5 }