Better data processing

This commit is contained in:
2024-04-16 16:29:34 +02:00
parent 87e1af2ea2
commit 98e51bee46
7 changed files with 12840 additions and 359 deletions

View File

@@ -1,3 +1,2 @@
import pandas as pd
from data_loading import *
from data_processing import *

File diff suppressed because one or more lines are too long

View File

@@ -1,7 +1,6 @@
import os
import numpy as np
import pandas as pd
from utils.df_utils import *
import os
from utils.df_utils import slice_df
def load_raw_metadata() -> pd.DataFrame:
@@ -56,15 +55,6 @@ def load_raw_data() -> tuple[pd.DataFrame, list[pd.DataFrame]]:
return metadata, sliced_experiments
def data_to_single_df(data: list[pd.DataFrame]) -> pd.DataFrame:
"""
Converts a list of dataframes into a long dataframe. Loses lots of info, to use with care!
:param data: list of dataframes of same length
:return:
"""
return pd.DataFrame(map(lambda x: np.append(x.index.to_numpy(), x["#Intensity"].to_numpy()), data))
def load_data(name: str, path: os.path = os.path.join("data")) -> tuple[pd.DataFrame, pd.DataFrame]:
metadata = pd.read_csv(os.path.join(path, name, "metadata.csv"))
experiments = pd.read_csv(os.path.join(path, name, "experiments.csv"))

File diff suppressed because one or more lines are too long

View File

@@ -1,53 +1,88 @@
from pybaselines import Baseline
import numpy as np
from math import factorial
from sklearn.preprocessing import StandardScaler
from scipy.signal import savgol_filter
import pandas as pd
def calculate_baseline(measure, lam=10, p=1e-2):
baseline_fitter = Baseline(x_data=measure[:len(measure)//2])
bkg_2, params_2 = baseline_fitter.iasls(measure[len(measure)//2:], lam=lam, p=p)
def interpolate_spectrum(exp, max_wave=1927, min_wave=181):
"""
Interpolate spectra at integer wavelengths in specified wavelength range.
:param exp: one measure
:param max_wave: maximal wavelength
:param min_wave: minimal wavelength
:return: the interpolated experiment
"""
result = pd.DataFrame(columns=["#Intensity"])
for i in range(min_wave, max_wave, 1):
for k in range(len(exp.index)-1):
if exp.index[k] == i:
result.loc[i] = exp["#Intensity"].iloc[k]
break
if exp.index[k] > i > exp.index[k + 1]:
result.loc[i] = exp["#Intensity"].iloc[k] - (
exp["#Intensity"].iloc[k] - exp["#Intensity"].iloc[k + 1]) / (
exp.index[k] - exp.index[k + 1]) * (exp.index[k] - i)
break
else:
result.loc[i] = 0
return result
def interpolate_experiments(sliced_experiments, max_wave=1927, min_wave=181):
result = []
for i, exp in enumerate(sliced_experiments):
result.append(interpolate_spectrum(exp, max_wave, min_wave))
print(i+1, "/", len(sliced_experiments))
return result
def calculate_baseline(x_data, measure, lam=10, p=1e-2):
baseline_fitter = Baseline(x_data=x_data)
bkg_2, params_2 = baseline_fitter.iasls(measure, lam=lam, p=p)
return bkg_2
def adjust_baseline(measure, lam=10, p=1e-2):
baseline = calculate_baseline(measure, lam=lam, p=p)
return measure[len(measure)//2:] - baseline
def adjust_baseline(x_data, measure, lam=10, p=1e-2):
baseline = calculate_baseline(x_data, measure, lam=lam, p=p)
return measure - baseline
def adjust_all_baselines(measures, lam=10, p=1e-2):
result = measures.copy(deep=True)
for index, row in result.iterrows():
result.iloc[index, len(row)//2:] = adjust_baseline(row, lam=lam, p=p)
result.iloc[index] = adjust_baseline(measures.columns.astype(int), row, lam=lam, p=p)
return result
def scale_experiments(experiments):
result = experiments.copy(deep=True)
trans = StandardScaler()
scaled = trans.fit_transform(experiments.transpose()[len(experiments.columns)//2:]).T
result.iloc[:, len(result.columns)//2:] = scaled
scaled = trans.fit_transform(experiments.transpose()).T
result.iloc[:, :] = scaled
return result
def apply_smoothing(experiment, window_length=7, polyorder=3):
return savgol_filter(experiment[len(experiment)//2:], window_length, polyorder)
return savgol_filter(experiment, window_length, polyorder)
def smooth_experiments(experiments, window_length=7, polyorder=3):
result = experiments.copy(deep=True)
for index, row in result.iterrows():
result.iloc[index, len(row) // 2:] = apply_smoothing(row, window_length=window_length, polyorder=polyorder)
result.iloc[index, :] = apply_smoothing(row, window_length=window_length, polyorder=polyorder)
return result
def process_experiments(experiments, scale_features=True):
baselined_experiments = adjust_all_baselines(experiments)
scaled_experiments = scale_experiments(baselined_experiments)
smoothed_experiments = smooth_experiments(scaled_experiments)
if scale_features:
trans = StandardScaler()
return trans.fit_transform(smoothed_experiments)
else:
return smoothed_experiments
def categorize_metadata(metadata: pd.DataFrame) -> tuple[pd.DataFrame, pd.DataFrame]:
truth = pd.DataFrame(pd.Categorical(metadata["strain"]).codes, index=metadata.index)
encoded = pd.get_dummies(data = metadata, columns = ["phase", "substrate", "confocalhigh"], dtype=int)
encoded.drop(columns=["replica", "strain"], inplace=True)
return truth, encoded
def process_experiments(experiments: pd.DataFrame, baseline_lam=10, baseline_p=1e-2,
smooth_window_length=7, smooth_polyorder=3) -> pd.DataFrame:
experiments = adjust_all_baselines(experiments, lam=baseline_lam, p=baseline_p)
experiments = scale_experiments(experiments)
experiments = smooth_experiments(experiments, window_length=smooth_window_length, polyorder=smooth_polyorder)
return experiments